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2 Applications of OPM's

Magnetoencephalography (MEG)
• Magnetic fields generated from neuronal activity in the brain
• Fields in the femto-tesla to pico-tesla range - requires very

sensitive magnetometers
• SERF magnetometers are most sensitive - require magnetic

shielding or field cancelation coils

Insert
Person
Here

5-sensor array
Partially covers the left

hemisphere

Borna, A., et al, Physics in Medicine and Biology (2017)



I Basic Idea - Magnetic Gradiometer
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*Henry Tang, Parametric Frequency Conversion of Resonance Radiation in Optically Pumped 87Rb
Vapor. Phys. Rev. A 7, 2010 (1973).
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*Vishal Shah, System and Method for Measuring a Magnetic Gradient Field. Patent. US10088535 (2018)



4 How Sidebands are produced
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6 How Sidebands are produced

Am IF = 2, mf = 2 >

IF = 1,ml = 1>



7 How Sidebands are produced

Am IF = 2, mf = 2 >

tA/;--- 6.834 GHz

IF = 1, nif = 1 >

• field Induces Rabi oscillations between levels

• Rabi frequency SI = illiB

• Slt = 7/2 known as 7/2 Pulse



8 How Sidebands are produced

IF = 2, mf = 2 >

pt\C--,' 6.834 GHz

IF = 1, mf = 1 >

• Atoms are in a coherent superposition of both states

•Coherences are maximized

P = 
r

[P11 P12 1 1-1/2 1/2]
n
21 P22i 012 1/2]

•Atoms oscillate at the ground state hyperfine
frequency (6.834 GHz for Rb87)

—Nuclear spin and Electronic spin tumbling
around each other in phase



9 I How Sidebands are produced
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•Introduce Carrier (probe) light to the experiment

From Maxwell's equations (No current source, magnetic
susceptibility, or spatial charge)

1 02De

V2  E + V (V ' E) = c2  a2t

where

De = E + 47P

The electric displacement is related to the electric
dipole moment of the atoms

De — hi' +47N < D >

Or

Dc = (1 + 47x)E



10 I How Sidebands are produced

le >
•••••••

•

= 2, mf = 2 >

itIAT;--- 6.834 GHz

= ml = 1 >

•• • •••4•• • • •
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•

— V(V • E) =
CA>2 (---
c2 47rna (15V2h ))

• For a one-dimensional plane wave

(w'X

( :2

w) = 47n,

(1--Fx/2))

/5Apr [iv -6 e c w' 2a 

•Sidebands are produced offset from the carrier beam by
the hyperfine frequency (frequency of modulation)

(1)-F = Coo + itIAT
coo = Carrier frequency

(1)— = (Do itIAT

•Similiar to an Electro-optic modulator (EOM)
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12 Pulsed Experiment

Use an AOM as a switch on Pump

Pump is off when making measurement
• Pump doesn't degrade coherence
• Stronger pump can be used (better pumping)
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I Building a numerical model
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14 QuSpin Physics Package Results

QWP
Pump
795 nm

Carrier
780 nm
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Data and photo courtesy of QuSpin



15 I Compact single 795nm laser setup

• Potentially Halve
number of lasers
needed

• Simpler experimental
Setup

How we do it

• Replace the 780nm probe with an attenuated pump

• Use an etalon to distinguish between carrier and
sidebands

• Temperature/angle tune the etalon to the sideband
mode

Pump/probe:
795 nm

Pump Max

Power

Pump

Attenuated

X/2@780

X/4@795

Adiabatic

turn off

Microwave Pulse

Sideband

Pump/Carrier

Bc 1
1
1
1



16 Can we make the sensor dead-zone free?
I

Case 1: Perpendicular field Case 2: Parallel field
• How can we optically pump • Only a optical transitions allowed

to the end state? • Requires ArnF= 0 microwave transition
• How to prepare in the F=1, mf = 1> state?

Cell I
Cell

F' . F'
%
%
%
% I
% I
% I
% I

L. 
, 1,1

F = 2 F = 2 
7

Pulse

F = 1 F = 1

mF —2 1 0 1 2 mF 2 1 0 1 2



17 Case I:Ambient field perpendicular to the laser axis

We rotate the quantization axis, while maintaining

the atomic population in the 12,2> state.

Bc

To be adiabatic, the rotation rate of the field must be less

than the Larmor precession frequency cid: << coL.

Pump off

Adiabatic turn off

Microwave Pulse

Sideband Signal

Bc

Pump

Rotate
Reference
Frame

12,2>

11,1>

Spin vector must
follow torque
vector to be
adiabatic

4— Btot

Spin
Vector

Selection rules now allow AmF = 1 transitions
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18 Case 2:Ambient field parallel to the laser axis

• We perform adiabatic rapid passage to transfer the population from the12,2> state to thel 1,1> state.

• We use a magnetic field ramp to simplify microwave and cover both cells.

12,2> 12,2> 12,2>

-111111 411111111F 

_____________

11,1>

Pump off

11,1> 11,1>

Adiabatic
turn off

Microwave Pulse

Sideband Signal

Bc

Pump

Torque

Vector

Spin

Vector

Magnetic field must be ramped
slow enough that the Spin vector
follows the Torque vector

Selection rules allow AmF = 0 transitions

F = 2

F 1

mf 2 1

IT

2 /RP

0 1 2



19
First Single LasPr Experiment

X/2@780

Pump/probe: X/4@795
795 nm

Etalon

Scan the probe frequency Between the F=1 and F=2 resonances

1
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1 1
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Microwave Pulse

Sideband

Pump/Carrier

Bc 

EL

 ►

Scan the frequency between F=1 and
F=2 during probe phase

Time



20 First Single Laser Experiment
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23 How bad will this be?

Beatnote Function
2 A, 2
El 1_,

S(t) = — E.-20'1 + 
0 e-2 t/T2 + E1E2e

2 2

2

2 4 6

Time (a.u)

1 1
(—t+— 0-1 Tv

) 
sinZirj- t + (p)

El , E2 = 1 • FOM = -\13/w2

E1 = 1, E2 = .7 • Need to test this out with
experimentally

• Square root dependence on
amplitude

• This method is more efficient
than ARP for small B-field
gradients

8 10

I
1



Dead-zone free operation

Minimum field
1

.f.12 — fii » 27 T7T/2
For Tir12 = 0.1 ms, Bmin » 230 nT

How to switch between the two schemes
Start up:

Determine ambient field and direction using a field
zeroing scheme

Select scheme, microwave frequency, and
direction of Bc

Begin operation.

Continuous operation:

Monitor signal size

If signal size drops below threshold, switch
scheme.

If this fails, re-zero field.

Need to understand better how to ramp Bc for ARP

Quantization axis rotation
 B t

Vapor
Cell
-

Bc

F = 2 _

F = 1

mF - 2

ARP with longitudinal field
B

F = 2 _

F = 1

mF - 2

Vapor
Cell

4--

Bc

Tc/2 ARP

_..._

-1 0 1 2

1

I
1
I



25 1

Atom shot noise limit

c5B =
1

7, \ I NT2z-

7 = gyromagnetic ratio
T2 = transverse coherence time
N = number of atoms
r = measurement time

Decoherence limits noise to 1/AP/2
scaling

Sensitivity improved by increasing
T2 or N

Most AMs do not operate at this
limit.

Photon shot noise limit

bB =
V2Ach oc 1

dS(N„,,) I dB V A ch

Most AMs operate at or near the
photon shot noise limit

Probe intensity contributes to T2
so Nph cannot be made arbitrarily
high.
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I

Ground State Hamiltonian: I
Spin angular momentum S
Nuclear angular momentum I
Total angular momentum F =J+ I

HHF — ptBgsS • B + [IBM • B + AHFI • S

gs = 2.002, gI = —0.000995 (87Rb), —0.000399 (133Cs)
1

EHF — —
2 
AHF(F(F + 1) — /(/ + 1) — S(S + 1))

87Rb : AEHF/h = 6.835GHz, / = 3/2
133Cs: AEHF/h = 9.192GHz, / = 7/2

At low field the nuclear and electron spins are combined,
HB — p.BYFF • B, AEmF — gFmFIIBB

1
gF '''' , F •tri.F, F— 2Fmax
gsPB = 2.8 MHz/G or 28 Hz/nT (gyromagnetic ratio)
h

87Rb: = +- 1 = 700 kHz/G or 7 Hz/nTgF — 4 ' 
9F P13 

h

133
Cs: g F = 

1 
+ —  = 350 kHz/G or 3.5 Hz/nT— 8 ' 

9FilB 

h


