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2 | Applications of OPM’s

Magnetoencephalography (MEG)

Magnetic fields generated from neuronal activity in the brain
» Fields in the femto-tesla to pico-tesla range - requires very
sensitive magnetometers
« SERF magnetometers are most sensitive - require magnetic
shielding or field cancelation coils
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| Basic ldea - Magnetic Gradiometer
3

Cell 1 2 Filter: Carrier removed
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to the carrier to the carrier

*Henry Tang, Parametric Frequency Conversion of Resonance Radiation in Optically Pumped 3’Rb
Vapor. Phys. Rev. A 7,2010 (1973).

*Vishal Shah, System and Method for Measuring a Magnetic Gradient Field. Patent. US10088535 (2018)
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+ I How Sidebands are produced

Atoms Pumped to End-State (87Rb)

F' ——

-_________

Atoms absorb angular
momenta from o* light

Make Amyr = +1 transitions to
excited state
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6 | How Sidebands are produced

| RPN

— |F=1,mf=1>



7 | How Sidebands are produced

| RPN

uW= 6.834 GHz

» uW field Induces Rabi oscillations between levels

« Rabi frequency Q = ”73

e Ot=m/2 known as /2 Pulse

—— |F=1,mf:1>



s | How Sidebands are produced

|[F =2,mf =2>

uW= 6.834 GHz

IF=1mf=1>

» Atoms are in a coherent superposition of both states

*Coherences are maximized

=[,011 ,012] _[1/2 1/2
P=1p21 P2 _[1/2 1/2

*Atoms oscillate at the ground state hyperfine
frequency (6.834 GHz for Rb%7)
—Nuclear spin and Electronic spin tumbling
around each other in phase




9 I How Sidebands are produced
le >

|[F =2,mf =2>

uW= 6.834 GHz

IF=1mf=1>

sIntroduce Carrier (probe) light to the experiment

From Maxwell’s equations (No current source, magnetic
susceptibility, or spatial charge)

—16%D
2 e
E CE) = —
VE+v(V-E) R
where
De=FE+4nP

The electric displacement is related to the electric
dipole moment of the atoms

De=FE+47N < D >
Or
De = (1+4nx)E



0 | How Sidebands are produced

—|e> w2

VE-V(V-BE)= -2 (f)—|—47ma(D)) ‘

c2

» For a one-dimensional plane wave

(% ﬂ:i% : (1+x/2)> E.

Froiss st e (Wxlw) = 4710 Y | 0w POt —w) @y €= ™.
sV
IF=1mf=1>
Sidebands are produced offset from the carrier beam by
the hyperfine frequency (frequency of modulation) I
e® o %°,° =
[ ——— :.: '.8. .o:. » Wy = 0o + pW w, = Carrier frequency
.0:.-..:°::° w_ = wy — uUW

Similiar to an Electro-optic modulator (EOM)
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1z | Pulsed Experiment

Use an AOM as a switch on Pump

Pump is off when making measurement
* Pump doesn’t degrade coherence
« Stronger pump can be used (better pumping)

UW on Microwave Pulse
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§ | Building a humerical model
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14 I QuSpin Physics Package Results

Pump
795 nm

QWP B/

Carrier
780 nm

Microwave
Radiation

~

87Rb 87Rb
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Data and photo courtesy of QuSpin I



s | Compact single 795nm laser setup

. 1 A/2@780
Potentially Halve Pump/probe: ) /a@7es __ Bc

number of lasers 795 nm z
needed AOM I — Etalon

» Simpler experimental

Setup
How we do it
Microwave Pulse
. FUM Wia Sideband

* Replace the 780nm probe with an attenuated pump Fower Pump/Carrier
Adiabatic pem—y | B, s

- Use an etalon to distinguish between carrier and . turn off

sidebands Attenuated

« Temperature/angle tune the etalon to the sideband
mode




16 | Can we make the sensor dead-zone free?

Case 1: Perpendicular field Case 2: Parallel field
« How can we optically pump « Only o optical transitions allowed
to the end state? * Requires Am, =0 microwave transition

« How to prepare in the [F=1, m; = 1> state?

mg -2 -1 0 1 2 mg -2 -1 0 1 2



7 I Case |:Ambient field perpendicular to the laser axis

We rotate the quantization axis, while maintaining Rotat
. . otate
the atomic population in the |2,2> state. .
POP Reference 122> Spin vector must
follow torque

vector to be
adiabatic

Frame

A

Vapor |1,1> 29>
Cell 12, .
D Btot
Spin
Bc |1,1> Vector

To be adiabatic, the rotation rate of the field must be less
than the Larmor precession frequency % << wj.

Selection rules now allow Am = 1 transitions
Microwave Pulse

Sideband Signal l |2,2>
( BC f— F = 2 - T — T
Adiabatic turn off Pump — 5 pulse

Pump off \ / F=1 —




3 | Case 2: Ambient field parallel to the laser axis

» We perform adiabatic rapid passage to transfer the population from the|2,2> state to the|1,1> state.

*  We use a magnetic field ramp to simplify microwave and cover both cells.

|2,2> |2,2> 12,2>
Torque Magnetic field must be ramped
. Vector slow enough that the Spin vector
¢ Spin follows the Torque vector
Vector

11,1> 11,1> 11,1>

Selection rules allow Am, = 0 transitions
Pump off Adiabatic gﬁ(ijcrkc))wadv;PuITe
\ turn off B' ebandsignal F =9 C —
) =
\ / ; Pump — L] T[
/ ; > ARP




. | First Single Laser Experiment

Frequency

Amplitude

A/2@780

Bc

Pump/probe: A/4a@795 ___—C_,

795 nm

Scan the probe frequency Between the F=1 and F=2 resonances

f200 kHz oscillation F=2
_ F=1
Pumping Phase Probing Phase
- >
Time
Microwave Pulse R
Pump Max Power Sideband
f Pump/Carrier _
Adiabatic 4| B t—
turn off c
Pump Attenuated

Scan the frequency between F=1 and
F=2 during probe phase




20 | First Single Laser Experiment

A/2@780 B
Pump/probe: ; /a@795 C
795 nm

Scan the probe frequency Between the F=1 and F=2 resonances 6.834 GHz
<

F=2 F=1 F=1
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23 | How bad will this be?

Beatnote Function

h E3
S(t) =—e 2/ 4 =
) =—e >
2_
15

Amplitude (a.u)

o
o

e 22 + E E,e

_EIJEZ =1
—E, =1,E,=.7

1
t(T_1+E

10

)sin(ant + @)

FOM =+/S/w,

Need to test this out with
experimentally

Square root dependence on
amplitude

This method is more efficient
than ARP for small B-field
gradients



4« | Dead-zone free operation

Quantization axis rotation

; B

Minimum field

? f1—>2 T f1—>1 >> o T Vapor
e — 1 cel [
o For Ty, = 0.1 ms, By > 230 nT 5
C
How to switch between the two schemes S —
o Start up:
1. Determine ambient field and direction using a field F=l T
zeroing scheme m 2 -1 0
2. Select scheme, microwave frequency, and
direction of B ARP with longitudinal field
3. Begin operation. B,
> Continuous operation: — PO
1. Monitor signal size B
2. If signal size drops below threshold, switch R
scheme. mI ARP
1. If this fails, re-zero field. F=1 — — v

Need to understand better how to ramp Bc for ARP
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Atom shot noise limit

1 y = gyromagnetic ratio
OB = T, = transverse coherence time

/ N = number of atoms
4 NT2T 7 = measurement time

Decoherence limits noise to 1/N/2
scaling

Sensitivity improved by increasing

T,or N

Most AMs do not operate at this
limit.

Photon shot noise limit

2N

OB = "« .
dS(Nph)/dB /Nph

Most AMs operate at or near the
perate at ¢
photon shot noise limit

Probe intensity contributes to T,
s0 IN,, cannot be made arbitrarily

high.



26

Ground State Hamiltonian:

Spin angular momentum S
Nuclear angular momentum I
Total angular momentum F =] + 1
Hyp = upgsS-B+ upgil- B+ Aypl - S

gs = 2.002, g; = —0.000995 (87Rb), —0.000399 ('33Cs)

Eyr = %AHF(F(F +1)—-IJ+1)-SES+1))

87Rb : AEyr/h = 6.835GHz, I = 3/2
133Cs: AEyp/h = 9.192GHz, I = 7/2

At low field the nuclear and electron spins are combined,

Hg = uggrF - B, AE,,r = grmpugB

1
ZFmax
IsUB

= 2.8 MHz/G or 28 Hz/nT (gyromagnetic ratio)
¥Rb: gp =+, 242 = 700 kHz/G or 7 Hz/nT

133Cs: g = J_rg, B2 — 350 kHz/G or 3.5 Hz/nT




