
 LLNL-JRNL-775437

A Value-Oriented Job Scheduling
Approach for Power-Constrained and
Oversubscribed HPC System

N. Kumbhare, A. Marathe, A. Akoglu, H. J. Siegel,
G. Abdulla, S. Hariri

May 24, 2019

IEEE Transactions of Parallel and Distributed Systems

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 1

A Value-Oriented Job Scheduling Approach for
Power-Constrained and Oversubscribed HPC

Systems
Nirmal Kumbhare, Aniruddha Marathe, Ali Akoglu, Howard Jay Siegel, Fellow, IEEE , Ghaleb Abdulla, and

Salim Hariri

Abstract—In this study, we investigate limitations in the traditional value-based algorithms for a power-constrained HPC system and
evaluate their impact on HPC productivity. We expose the trade-off between allocating system-wide power budget uniformly and
greedily under different system-wide power constraints in an oversubscribed system. We experimentally demonstrate that, under the
tightest power constraint, the mean productivity of the greedy allocation is 38% higher than the uniform allocation whereas, under the
intermediate power constraint, the uniform allocation has a mean productivity of 6% higher than the greedy allocation. We then
propose a new algorithm that adapts its behavior to deliver the combined benefits of the two allocation strategies. We design a
methodology with online retraining capability to create application-specific power-execution time models for a class of HPC
applications. These models are used in predicting the execution time of an application on the available resources at the time of making
scheduling decisions in the power-aware algorithms. We evaluate the proposed algorithm on a real HPC system composed of 64
computing nodes and show that our adaptive strategy results in improving resource utilization while delivering a mean productivity that
is almost the same as the best performing algorithm across various system-wide power constraints.

Index Terms—High performance computing, power-constrained computing, power-aware scheduling, value heuristics, HPC
productivity.

F

1 INTRODUCTION

E Xascale computing is expected to deliver significant
computation power to analyze vast amounts of data

and to execute ever-growing scientific applications in more
realistic time frames. The development efforts of exascale
computing systems have given rise to various engineering
and research challenges. Out of those challenges, improving
scientific productivity and power efficiency are among the
top ten [1] and are the focus of this work. In the literature,
scientific productivity is defined as the value of the out-
put generated by a mission-critical application on a high
performance computing (HPC) system [2]–[5]. The value of
the mission-critical application is determined by the system
owner [2], [6]. Traditionally, the performance of an HPC
system is defined based on the floating point operations it
executes per second (flops); hence, flops-per-watt has been
the primary metric of interest to improve power efficiency.
Even though flops is a useful metric in defining system per-
formance, it is not sufficient to quantify the productivity of
an HPC system [2]–[5]. This creates a necessity for a power-
aware scheduler that takes into account the system-wide

• N. Kumbhare, A. Akoglu, and S. Hariri are with The Department of
Electrical and Computer Engineering, University of Arizona, Tucson, AZ
85719.
E-mail: {nirmalk,akoglu,hariri}@email.arizona.edu

• A. Marathe, and G. M. Abdulla are with Lawrence Livermore National
Laboratory, 7000 East Ave., Livermore, CA 94550-9234.
E-mail: {marathe1,abdulla1}@llnl.gov

• H.J. Siegel is with The Department of Electrical and Computer Engineer-
ing, Colorado State University, Fort Collins, CO 80523.
E-mail: HJ@colostate.edu

Manuscript received July 3, 2019; revised August xx, xxxx.

constraints at the time of resource allocation to maximize
HPC productivity.

HPC productivity has been an area of concern since
the inception of peta-scale computing and it is expected to
become increasingly crucial in future exascale systems [1].
To measure the productivity of an HPC system, researchers
have proposed the use of time-dependent value (utility)
functions [2]–[5], [7]–[11]. These studies are inspired by
classical utility theory. The time-dependent value for a job is
a monotonically decreasing function of time, and it is used
to define the importance of completing the job within a
defined time constraint. In HPC domains, the time metric
is composed of two components: “time-to-solution” and
“time-to-develop” [1]. In our work, we only consider the
time-to-solution as our time metric because, for most of the
mission-critical HPC applications, their development time
can be amortized over their multiple executions during
the production phase [12]. Domains for different mission-
critical HPC applications can be put into categories includ-
ing climate prediction, physics simulation, environmental
management, nuclear energy, price fluctuation, and weapon
trajectory system [12]. These mission-critical applications
are sensitive to their completion time. Therefore, in our
study, time-to-solution corresponds to the time taken to
complete a job after it is submitted into the queue on an
HPC system.

Power consumption has emerged as one of the impor-
tant operating constraints (if not the critical constraint) to
improve the energy efficiency of future exascale systems
[1]. Traditional HPC systems are provisioned with sufficient
power to operate all the CPUs at their thermal design

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 2

power (TDP). With the present CPU technologies, the fu-
ture generation of HPC systems is estimated to cost $2.5
billion annually in power consumption to deliver exascale
performance [13]. The Department of Energy (DoE) has set
a power consumption target of 30 megawatts to support
efficient electricity generation and distribution, and also to
keep the operational cost of an exascale computing system
manageable. Further, due to the variability in electricity
pricing, HPC centers may have to register (with their elec-
tricity service providers) for programs like peak shedding,
peak shifting, or dynamic pricing to reduce the operational
cost for day to day operations [14].

In the past decade, researchers have proposed various
power allocation policies to improve the power efficiency
of HPC systems (measured in flops-per-watt) by increasing
the job completion rate subject to a system-wide power con-
straint [15]–[17]. However, improving flops-per-watt may
not be sufficient in improving HPC productivity. To im-
prove productivity, researchers have proposed value-based
heuristics for an oversubscribed system in which each job is
associated with a job-value function but they do not take the
system-wide power constraint into account while making
scheduling decisions [7]–[9], [18]–[22]. To the best of our
knowledge, our earlier conference paper is the only study
that addressed both power and productivity challenges
of an oversubscribed HPC system through power-aware
value-based resource management algorithms [23]. In that
work, we adapted two, commonly known, static power
allocation strategies into a value-based heuristic concept
introduced by Khemka et al. [8], and designed two power-
aware value-based algorithms called Value Per Time With
Common Power Capping (VPT-CPC) and Value Per Time With
Job Specific Power Capping (VPT-JSPC). We compared their
performances in terms of total system-value earning and job
completion rate under various power constraints on a real
but small-scale hardware platform. Our algorithms were de-
signed to use application-specific power-performance mod-
els to select and schedule the jobs. VPT-CPC uses a tradi-
tional power allocation strategy by distributing the system-
wide power budget uniformly across all the nodes. It is
designed to minimize the waiting time for the jobs by
increasing the node usage within the system. In contrast,
VPT-JSPC uses a power-allocation strategy that minimizes
the completion time of fewer but higher-value jobs by allo-
cating a system-wide power budget to a selected number of
nodes. As a result, it maximizes the power utilization in the
system. Through empirical evidence, we showed that under
different system-wide constraints on power, the resource
scheduler should use different power allocation strategies.

In this paper, we extend our prior work with the follow-
ing contributions:
• Hybrid algorithm: We introduce a new algorithm

(hybrid-VPT) that combines the benefits of two power-
aware algorithms presented in our prior work in a
complementary manner. Our hybrid algorithm adapts
to different system-wide power constraints. It is de-
signed to maximize system-value earnings by maxi-
mizing resource (both power and node) utilization.

• Application specific modeling: We propose a method-
ology with the online retraining capability to create
application-specific power-execution time models for a

class of applications that is used to solve Navier-Stokes
equations. These models are used to predict the execu-
tion time of an application for a given combination of
power constraint, node count, core count, and input
problem size.

• Evaluation: We emulate an HPC prototype of size 64
nodes on a real system and demonstrate the effective-
ness of our new hybrid algorithm in combining the
benefits of VPT-CPC and VPT-JSPC under different
power constraints.

The rest of this paper is organized as follows. We in-
troduce the mathematical model of the job-value functions
in Section 2, followed by a discussion on the metric used
in our work for comparing the performance of different
algorithms. In Section 3, we present the details of the HPC
environment for which our work is proposed, followed by a
description of our emulation testbed in Section 4. Next, we
describe our approach to create power-execution time mod-
els in Section 5. These models are employed by our power-
aware algorithms to estimate the execution time of the jobs
when making scheduling decisions. We discuss the details
of our design approach in creating power-aware value-
based algorithms in Section 6. We describe our workload
generation approach and scheduler architecture in Section
7. Later, we show the results of our emulation study on 64
nodes HPC prototype in Section 8. We review the existing
literature in Section 9, followed by conclusions and future
work in Section 10.

2 TIMING CONSTRAINTS AND VALUE FUNCTIONS

2.1 Importance of Timing Constraints in HPC
In the scientific computing domain, many applications are
time critical, e.g., weather prediction, missile path tracking,
aircraft control, stock price prediction, and surgical path
planning. For such time-sensitive applications, a missed
completion deadline can lead to either monetary loss or
human fatality. These time-constrained applications need
to complete on time. Otherwise, they completely lose their
value, and a scheduler needs to take that into account
to improve productivity. In traditional HPC systems, var-
ious studies have shown the importance of using time-
dependent job-value functions (discussed next) for quanti-
fying HPC or user productivity [2]–[5], [8], [9], [24], [25]. In
an HPC environment, a user submits a job with a specific
priority and then waits for an undefined amount of time
before resources are allocated for that job. It is not unusual
for a job to wait in the resource allocation queue for a
duration that is longer than its actual execution time. In
the study conducted by Wolter et al., on the HPC system
at the San-Diego Supercomputer Center (SDSC) [26], they
found that the maximum wait time for a 128 node job was
17 days (with an average wait time of 24 hours and an
average run-time of four hours) while for a single node job
it was 71 days (with an average wait time of nine hours and
an average run-time of 2.4 hours). In their discussion with
the HPC users, they observed that a majority of the users
do not worry about application execution time as long as
it meets their productivity requirements. This observation
encourages us to use a constraint on the completion time
as a parameter to define user productivity. Assigning a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 3

Fig. 1: Job value function.

constraint on the completion time will help a user to make a
suitable decision to migrate the application to another sys-
tem or relaunch with an alternate configuration to improve
their productivity instead of waiting in the queue for a long
duration.

2.2 Job-Value Function

In a job-value function, the value of a time-constrained job
represents the worth of completing a job from either a user’s
or a service provider’s perspective [7], [8], [27]. In an HPC
domain, Khemka et al. have proposed the use of monoton-
ically decreasing job-value functions that are created using
two important parameters: priority, and urgency [8]. Priority
is used to define the level of importance of the job to the
enterprise, and urgency indicates how quickly the job loses
its importance. In this work, we use a similar monotonically-
decreasing job-value function to specify the value earned
for completing a job at a specific time instance, as shown in
Figure 1 [9], [24], [25]. In the figure, the “completion time” axis
represents the completion time after the job submission and
the “value” axis represents the value a job can earn after its
successful completion. A job earns “V max” value as long
as it is completed before “T soft” (Equation 1). A job earns
zero value if it is completed after “T hard” (Equation 3). The
value earned from completion of a job decreases linearly
between “T soft” and “T hard” from “V max” to “V min”
(Equation 2). The slope of this linear decay indicates the
urgency of the job.

i = job id indicating ith job;
Ti = time of completion for ith job;

valuei(Ti) = value earned by ith job on its completion;
V maxi = maximum value the ith job can earn;
V mini = minimum positive value the ith job can earn;
T softi = soft completion deadline defined for ith job;
T hardi = hard completion deadline defined for ith job.

valuei(Ti) = V maxi, if (Ti ≤ T softi), (1)

valuei(Ti) = (Ti − T hardi)×
(V maxi − V mini)

(T softi − T hardi)

+ V mini, if (T hardi > Ti > T softi),

(2)

valuei(Ti) = 0, if (Ti ≥ T hardi). (3)

The system-value is calculated by accumulating job-
values for all the completed jobs over a period of time,
which we refer to as HPC productivity. Our aim is to
maximize the HPC productivity by maximizing system-
value earnings.

3 HPC ENVIRONMENT MODEL

In this work, we propose scheduling algorithms and a
resource manager for an HPC environment where:
• Each cluster consists of homogeneous nodes and each

node is composed of one or more computing units
(multi-core CPU), memory, secondary storage, and net-
work interface card.

• Depending on the operational cost, a resource man-
ager decides the constraint on the system-wide power
consumption. The system contains instrumentation to
monitor and control the power consumption of the
computing units. The power consumption of the re-
maining components is excluded from the system-
wide power budget.

• The scheduling algorithm is responsible for making
decisions on power and node allocation to each job.
Power allocated to a job is equally distributed among
its allocated nodes. The power constraint on a compute
node is distributed equally among its computing units.

• Along with a job, each user submits a value function
and the job’s input parameters (problem size and iter-
ation count for this study).

• For each job, the user also submits a set of valid
configurations for the job in terms of the number of
MPI ranks and OpenMP threads.

• The node is not oversubscribed, i.e., MPI ranks ×
OpenMP threads per rank should be less than or equal
to the number of cores on each node.

• Each empirical application power and performance
profile is collected offline for the generation of power-
execution time model. This power-execution time
model is made available to the resource manager at
runtime in the production system.

• Jobs are not preemptible. Once a job is scheduled, the
scheduler waits for its completion before placing other
jobs on the same nodes.

• A node in an HPC system is not shared among mul-
tiple jobs. This is a common trend in real systems
because resource sharing among multiple jobs can gen-
erate unpredictable resource contention and can cause
an increase in the execution time. This may lead to the
loss of value for a time-constrained job.

4 EMULATION TESTBED

4.1 Hardware Platform
For our emulations, we prototype an HPC system (of node
count 64) by using the nodes from a real HPC system avail-
able at Lawrence Livermore National Labs. Each compute
node is a dual socket with 125 GB of memory and InfiniBand
QDR for the network interface. Each socket on the node has
an CPU (Ivy Bridge-EP) with twelve cores and a maximum
frequency of 2.40 GHz. The TDP of each CPU is 115 watts in
our system. We access the power-specific registers on each
CPU to monitor and control the CPU power consumption.
We use this testbed to collect empirical power-performance
profiles for our test applications and to run our emulations.

4.2 Benchmarks
To create our HPC workload traces, we select the scientific
kernels from NAS parallel benchmarks suite [28] that are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 4

TABLE 1: Jobs in workload.

benchmark description

LU Lower-Upper Gauss-Seidel solver

SP Scalar Penta-diagonal solver

BT Block Tri-diagonal solver

TABLE 2: Memory requirements and iteration count of NAS-NPB classes [28].

class A B C D E F

memory
requirement

50
MB

200
MB

0.8
GB

12.8
GB

250
GB 5 TB

LU iterations 250 250 250 300 300 300

BT iterations 200 200 200 250 250 250

SP iterations 400 400 400 500 500 500

used to solve the discretized versions of the compressible
Navier-Stokes equations in three spatial dimensions. These
benchmarks are listed in Table 1. These benchmarks are
enabled with OpenMP and MPI to exploit the multi-level
parallelism in an HPC system. Furthermore, these bench-
marks are moldable, i.e., the number of MPI ranks and
OpenMP thread count can be selected during its launch
without changing the high-level problem. Default bench-
marks in the suite can be compiled for different classes (A to
F) based on problem size (defined by memory footprint) and
computation amount (defined by iteration count), as shown
in Table 2.

4.3 Power Capping
The power capping techniques are used for applying a limit
on the maximum power consumption of a CPU. Recent
studies on power-constrained computing have primarily
used running average power limit (RAPL) for power cap-
ping an individual CPU. The RAPL driver provides a user
space interface to limit the power consumption of a CPU
and DRAM by controlling the combination of P-states and
C-states using a built-in software power model [29]. We use
the application profiling tool Libpowermon [30] to monitor
and control the power consumption of an application on
a compute node. Libpowermon is built on top of libmsr,
which enables the APIs to interact with CPU’s RAPL regis-
ters [31].

5 APPLICATION-SPECIFIC MODELS

5.1 Overview
In this work, we create application-specific power-execution
time models to predict the execution time of the applications
under different power constraints. In reality, this approach
may not be feasible if the types of applications executed
on an HPC system are unknown in advance. However, the
study conducted by Antypas et al. is our motivation for cre-
ating and using the application-specific models [12]. They
analyzed the workload on the Hopper HPC at the National
Energy Research Scientific Computing Center (NERSC) and
found that 35 applications made up 75% of the HPC work-
load, whereas the remaining 25% of the workload comprises

600 applications. This finding on the repeatability of appli-
cations encourages us to create application-specific models
for HPC applications to achieve higher HPC productivity.

Traditionally, researchers have used either historical data
or job-specific models to predict the execution time of an
application on a given system under different resource
constraints [32]–[37]. In our current work, we propose an
approach to create models for a class of applications (Table
1). For each benchmark, we create an application-specific
model to predict the execution time for a given input prob-
lem size, thread count, power constraint, and node count.
We use a three-step approach for creating and updating
models. In step one, we collect exhaustive data on a small
number of resources using representative input problem
sizes for each application. We refer to this data as offline
data. This is a one-time process, which is performed before
application transitions into the production stage in its life
cycle. In step two, we use the offline data for training models
to predict execution time on the production system.We
use these models for making scheduling decisions. The
third step is online retraining and involves updating the
power-execution time model if the prediction error is out
of acceptable limits during run-time. In the next subsection,
we present our configuration space parameters, followed
by a brief discussion on the range of the configuration
parameters we select for offline data collection. Later, we
elaborate on our modeling approach.

5.2 Modeling Parameters
We use empirical execution time measurements over dif-
ferent combinations of application-specific parameters sub-
ject to several hardware-enforced constraints. We represent
hardware-enforced constraints as a combination of CPU
power cap (using RAPL), core counts per CPU, and the
number of nodes. Each unique combination is referred to
as a hardware configuration in this paper. We apply the
node and core constraints from a hardware configuration by
controlling the MPI ranks and the OpenMP counts of the job.
The application-specific parameters are the input problem
size and iteration count. We use this data to train a power-
execution time model that we use to predict application
execution time.

5.3 Offline Data Collection
Offline data collection is implemented by exhaustively scan-
ning over the multiple combinations of hardware config-
urations (node count, threads per rank, and power limit)
and application-specific input parameters (problem size and
iteration count) for each application on a smaller number
of resources to reduce training overhead. For application-
specific modeling, we use a proportionally smaller input
problem size and lower iteration count while ensuring that
the derived power-execution time models apply to the pro-
duction problem sizes on a large-scale system.

For data collection, we use 30 different problem sizes
that are evenly spaced in between problem sizes belonging
to class C and D. These problem sizes are less resource
intensive (Table 2) and are useful in training the application-
specific models to predict the execution time for our test
problem sizes that are randomly sampled in between class

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 5

Fig. 2: LU’s execution time per iteration for different power caps and problem
size on 16 nodes (24 OpenMP thread count per node). Each color represents
a power cap value and each circle represents the execution time per iteration
(Y-axis) for a given input problem size (X-axis).

C and E. For each application, we collect offline data by
iterating over each combination of input problem size, node
count (4, 8, and 16), thread count (8, 12, 16, 20, and 24), and
power limit (55, 60, 70, 85, 100, and 115).

5.4 Modeling and Prediction
Modeling
We use the following parameters to mathematically repre-
sent our models.

N0 = fixed node count used to create models;
P0 = fixed power constraint per CPU;

Th0 = fixed thread count per node;
ps = input problem size;
tc = input thread count per node;
pc = input power constraint per CPU;
it = input application’s iteration count;
n = input node count;

LRN0 , P0 , Th0
(ps) = linear regression model to estimate the execution

time per iteration on the hardware configuration
(N0, P0, Th0) for the input problem size ps;

RFN0 , P0 , Th0
(ps, pc, tc) = random forest regression model to estimate the

ratio of increase in the execution time on the hard-
ware configuration (N0, pc, tc) compared to the
execution time on the hardware configuration (N0,
P0, Th0) for the input problem size ps;

EtN0 (ps, pc, tc) = estimated execution time per iteration for the input
problem size (ps) on the hardware configuration
(N0, pc, tc);

Et(ps, pc, tc, n, it) = estimated execution time on the hardware configu-
ration (n, pc, tc) for the input problem size (ps) and
the iteration count (it);

EtN0 (ps, pc, tc) = LRN0 , P0 , Th0
(ps)× RFN0 , P0 , Th0

(ps, pc, tc) (4)

Et(ps, pc, tc, n, it) = EtN0 (ps, pc, tc)× (N 0/n)× it (5)

In our experiments, for a given input problem size, we
observe a linear correlation between the iteration count
(it) and the execution time. Similarly, we find a linear
correlation between the node count and the execution time.
Because these two observations are intuitive, in the follow-
ing paragraphs we elaborate on the modeling techniques
used to capture the effects of other configuration parame-
ters (problem size, power constraint, and thread count) on
the execution time, while fixing the node count (N0) and
the iteration count to their default values of 16 and 100,
respectively.

We observe a linear correlation between the input prob-
lem size (ps) and the execution time per iteration for the

Fig. 3: LU’s clustering with problem size, power cap, and thread count. For all
problem sizes, execution time (on Y-axis) is normalized using the execution
time on the hardware configuration of 16 node, 24 threads, and 115 watts
power constraint per CPU. X-axis presents the power constraint per CPU. Input
problem size is represented using circles.

selected benchmarks for all the combinations of hardware
configuration parameters (thread count and power con-
straint). Figure 2 presents the execution time per iteration
for a subset of hardware configurations based on the LU
benchmark. In this figure, we fix the thread count per node
to 24 and only alter the power cap on each CPU to highlight
the linear correlation between the problem size and the
execution time per iteration.

Only using the linear regression-based models to capture
the correlation between the input problem size and the
execution time [38] for all the combinations of thread counts
and power caps will lead to the creation of a large number
of models for each application. To avoid this, we study
the effect of the thread count and the power constraint on
the normalized execution time for different problem sizes.
For normalization, we use the hardware configuration of 24
threads per node (Th0) and CPU power cap of 115 watts (P0)
as this configuration was the best-performing configuration
for all the problem sizes. Figure 3 presents the normalized
execution time for the different combinations of problem
size, thread count, and CPU power cap. The size of each
circle in the plot is inversely proportional to the size of the
input problem size, i.e., the smaller circle represents larger
input problem size. This representation allows us to avoid
overlapping during clustering and visualize the formation
of clusters clearly for larger problems sizes. We observe that
as the problem size increases, the normalized execution time
starts forming clusters for a given combination of power
cap and thread count. We capture this clustering behavior
using Random Forest regression [39]. Therefore, instead of
creating multiple linear regression models, we create two
models for each application. The first model captures the
linear trend between the input problem size (from training
data) and the execution time on a fixed hardware con-
figuration, (N0, P0, Th0), using a linear regression model
(LRN0, P0, Th0 (ps)). The second model captures the clustering
behavior using the Random Forest regression (RFN0, P0, Th0 (tc,
pc, ps)).

Prediction
To estimate the execution time for an unknown combina-
tion of problem size (ps), power constraint (pc), OpenMP

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 6

thread count (tc), node count (n), and iterations (it), we first
independently apply the linear regression model and the
random forest model on these inputs. Then we multiply
the outputs of these models, in Equation 4, to predict the
execution time per iteration on a 16 node configuration. We
then scale this execution time per iteration to the desired
input iteration count and the node count by using Equation
5 to compute the final estimated execution time for the given
inputs (ps, tc, pc, n, it).

Online Retraining
Our evaluation shows, as expected, that the accuracy of
our linear regression-based model reduces as we extrapolate
beyond the trained problem space. Therefore, our resource
manager monitors the execution of each job during its run-
time, and if the difference between the predicted execution
time and the actual execution time is greater than 15%,
the resource manager retrains the model. Based on the
actual execution time, iteration count, and nodes used, we
calculate the execution time per iteration and scale it for
the N0 node configuration using Equation 5. We refer to
this actual execution time as the new execution time. We
recompute the expected minimum execution time on a fixed
hardware configuration of (N0, P0, Th0) by dividing the new
execution time with the output of the random forest model.
This minimum execution time is the desired output of the
linear regression model; hence, we include this data point in
the training set to retrain the linear regression model. This
retraining of the linear regression model helps the resource
manager to increase the accuracy in future predictions.

6 POWER-AWARE VALUE-BASED SCHEDULING
HEURISTICS

6.1 Overview
In our earlier work, we used a value-based heuristic [8] as
a basis for constructing two power-aware algorithms (VPT-
CPC and VPT-JSPC) [23]. In both algorithms, the VPT metric
for a job is computed by dividing the value that the job can
earn on its completion with the estimated execution time of
the job. The VPT heuristic uses two stages for system-value
maximization. The first stage selects the application and its
configuration with the maximum VPT among all possible
node configurations. The second stage selects the job with
the maximum VPT among the outputs from the first stage.
We refer to the combination of these two stages as max-max
strategy for the remainder of this paper. Before we present
our scheduling algorithms, we describe the common steps
taken to select the jobs for resource allocation by all the al-
gorithms. We then present an overview of the baseline-VPT
and its power-aware variations, followed by a discussion on
their limitations. We finally introduce a new power-aware
algorithm that combines the strengths of our earlier two
power-aware algorithms [23] in a complementary manner,
and discuss our design decisions.

6.2 Scheduler Execution Flow
Algorithm 1 presents the basic execution flow used by the
scheduler to run the different algorithms that are presented
in this work. We execute Algorithm 1 at each mapping

Algorithm 1 Power-aware algorithms execution flow
at each mapping event:
1: Update the list of mappable jobs.
2: Update cluster resource status.
3: while (list of mappable jobs is not empty) and (idle

resources present): do
4: Estimate execution time for all mappable jobs on all

possible configurations.
5: Compute VPT for each configuration of all mappable

jobs.
6: Select the mappable job and its configuration with

maximum VPT.
7: Remove the selected job from the list of mappable

jobs.
8: Update the pool of idle resources by subtracting the

resources to be assigned to the job.
9: Configure the assigned nodes with the configuration of

the job that results in the maximum VPT.
10: Launch the selected job on the cluster.

event. A mapping event is an event at which the scheduling
decisions are made by the scheduler. In our scheduler, map-
ping events are triggered periodically. The jobs considered
for scheduling are referred to as the mappable jobs.

In step 1, we update the list of mappable jobs to include
the jobs from the waiting queue and the newly arrived jobs
since the previous mapping event. Then we monitor the
completion status of the running jobs, update the system-
value with the job-values earned by the completed jobs,
and update the trackers used for monitoring the resources
in terms of available power and nodes in step 2. In the
following sub-sections, we discuss how these resources are
used by each algorithm. If the mappable job list is empty
or the available resources are insufficient to schedule any of
the mappable jobs, then we break out of the while loop in
step 3. In step 4, we estimate the execution time for all the
mappable jobs on the possible node configurations defined
by the user. We compute the VPT metric in step 5 for all
the job and node configuration pairs using the outputs from
the previous step. In step 6, we filter out the pairs that will
need more resources than the number of idle resources in
the system, and apply the max-max strategy to select the
job and node configuration pair with the maximum VPT for
resource allocation. We remove the selected job from the list
of mappable jobs in step 7 followed by updating the unused
resource trackers in step 8. Then we configure the nodes that
are selected for running the job and start the job execution
in steps 9 and 10, respectively. A node is configured by
setting up the power caps and enabling the thread counts
on its CPUs. These steps are repeated over the remaining
mappable jobs. After exiting from the while loop (in step
3), we drop the jobs from the waiting queue that may
not earn any job-value even if they are scheduled on their
best requested configuration, and we wait for a predefined
interval before triggering the next mapping event.

6.3 Baseline-VPT

The study by Khemka et al. [8] introduces the Utility-Per-
Time algorithm. Their utility function is analogous to our
value function. Therefore, we refer to their algorithm as
Value-Per-Time (VPT). We implement this algorithm as our
baseline-VPT. At the start of an experiment, we equally
distribute the power constraint on the HPC system among
its nodes. Similar to original VPT, in step 4 of Algorithm 1,
our baseline-VPT uses the minimum execution time of a job

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 7

Fig. 4: Execution time (Y-axis) vs power cap per CPU (X-axis) for the BT
benchmark on 16 nodes, and 24 threads configuration. In region A, the impact
of the power budget on the execution time is less compared to the impact in
region B.

on a user requested node configuration as the estimated exe-
cution time, i.e., it uses the execution time estimates without
any power constraints applied to the CPUs. In the baseline-
VPT, the resources in Algorithm 1 refer to the nodes in the
HPC system. Therefore, a mappable job is scheduled only if
the system has enough available nodes to meet the timing
requirements of the job. This algorithm forms the basis
for demonstrating the benefits of using a power-execution
time model for making scheduling decisions in a power-
constrained HPC system. By not accounting for the effect
of the power constraint on the estimated execution time
for different jobs, this algorithm assumes that the execution
times of all the jobs suffer equally under a given system-
wide power constraint. This assumption may not hold as
different jobs may have different characteristics resulting in
different execution times under the same power constraint
[40].

6.4 VPT with Common Power Capping (VPT-CPC)
In VPT-CPC, we extend the baseline-VPT to include the ef-
fect of power constraints on the job’s execution time in step
4 of Algorithm 1. We use the job-specific power-execution
time models to estimate execution time for each job. This
enables us to calculate the VPT metric with higher accuracy
than the baseline-VPT in step 5 and make informed deci-
sions during the job selection stage in step 6. The remaining
steps are similar to the steps of the baseline-VPT.

6.5 VPT with Job Specific Power Capping (VPT-JSPC)
In the VPT-CPC algorithm, when the power constraint
on the system gets tighter, the mappable jobs are either
restricted to use the hardware configurations that need a
higher node count, or run with an extended execution time.
For a given job, when the allocated power reduces below
a certain threshold, the percentage amount of decrease
in power budget results in higher percentage amount of
decrease in application performance [23]. To highlight this
point, we present an example in Figure 4 that shows the
impact of different power caps on the execution time of the
BT benchmark. Uniform power capping forces applications
to operate in region B when the system-wide power con-
straint gets tighter. This decrease in performance reduces
the completion rate of the jobs in the system for VPT-CPC.

For such cases, allocating the system power and nodes to
a subset of mappable jobs will allow completing these jobs
and releasing resources earlier for the subsequent mappable
jobs in the queue. This greedy allocation of resources pushes
application closer to region A in Figure 4. Patki et al. have
proposed such a resource allocation strategy called power-
aware backfilling for a power-constrained HPC environ-
ment [15]. In their work, the HPC jobs are moldable and
have user defined execution deadlines. Instead of making
a job wait for its best node configuration (naive policy)
under a system power bound, their approach executes the
job on an alternate node configuration that can be created
by greedily using the unused nodes and system power at
the time of its submission or as early as possible. They have
shown that their policy significantly helps in improving the
turnaround time and the resource utilization.

VPT-JSPC uses a similar greedy strategy for resource
allocation but our work differs from theirs as our objective is
to maximize HPC productivity by maximizing system-value
earnings as opposed to improving average turn around time
for all the jobs. We also consider that each job submitted on
our HPC system has a constraint on its completion time
instead of its execution time. This increases the limitations
on the configuration search space for the job as the current
run-time advances towards job’s completion time. In our
environment, each job has a time-dependent value function
whereas in their work all the jobs are assigned a constant
priority over time.

In VPT-JSPC, the resources in Algorithm 1 refer to the
power and nodes in the HPC system. In step 4, while esti-
mating the execution time, we consider all the unassigned
power and idle nodes are available to each mappable job. To
select a job in step 6, we apply the max-max strategy on the
job-configuration pairs whose resource requirements meet
the limitations on the available resources. The remaining
steps are similar to VPT-CPC.

6.6 Hybrid-VPT

Our earlier work [23] shows that VPT-CPC suffers from
lower HPC productivity due to decrease in its power ef-
ficiency when the constraint on the system-wide power
gets tight. Although VPT-JSPC improves HPC productivity
under tighter power constraints, it suffers from lower node
utilization. The disadvantage of lower node utilization be-
comes evident when the system-wide power constraint is
relaxed and VPT-JSPC under-performs VPT-CPC.

To overcome the aforementioned drawbacks of both
VPT-CPC and VPT-JSPC, we propose the hybrid-VPT, with
the aim of combining the benefits of power allocation
policies used by the other two algorithms into a single
algorithm. The hybrid-VPT is designed to be similar to VPT-
JSPC, but it differs in step 4 in the following way: if the esti-
mated execution time (predicted using job specific models)
of a job on its hardware configuration does not exceed its
soft threshold, then we replace it with the time remaining
to meet its soft threshold. If the predicted completion time
of the job falls between its soft and hard thresholds, then
its execution time estimation is not altered. The idea is to
slow down the jobs that can tolerate spending additional
time in the wait queue or can have extended execution

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 8

TABLE 3: Mean % for jobs with maximum job-values.

job-value bin [2,4] [4,6] [6,8] [8,10]

mean jobs (%) 27 22 24 27

on fewer resources before meeting their soft thresholds.
This enables the scheduler to save more resources per job.
Because the system is oversubscribed, the scheduler uses
remaining HPC resources to schedule more jobs to earn
more system-value. This is expected to improve the resource
utilization and completion rate at a more stringent power
constraint compared to VPT-CPC and VPT-JSPC. The poten-
tial drawback of this approach is under-utilization of power
when the system power constraint is more relaxed because
this approach tends to use all the nodes in the system
while a considerable amount of power in the system is left
unassigned. To bring the benefits of the power allocation
policies of VPT-CPC, in step 6, we only consider the node
configurations for a given job in which the power constraint
on each node is greater than or equal to the power constraint
applied by the VPT-CPC for the same system-wide power
constraint. With this design choice, our aim is to improve
the power utilization of the hybrid-VPT at the relaxed
power constraint. The hybrid-VPT is designed to be a single
algorithm to improve resource utilization (both, power and
nodes) under stringent and relaxed power constraints.

7 EMULATION ENVIRONMENT

7.1 Workload Generation
An HPC system is oversubscribed if, for a given workload,
it is not able to earn the maximum job-values for all the jobs
in the workload. The subscription level in an HPC system
depends on the system-wide power budget and workload
characteristics. In this section, we provide an overview of
our workload generation approach to ensure the oversub-
scription in the system under no power constraints. Later,
we give a brief overview of our scheduler architecture.

In our study, a synthetic workload trace is a list of jobs in
the order of arrival time. We randomly select a scientific rou-
tine from Table 1 to form a job in the workload trace. Each
job entry in the workload trace consists of job arrival time,
job name, maximum job-value, job’s input problem size,
iteration count, node configuration range, OpenMP thread
configuration range, soft threshold, and hard threshold. A
combination of all these parameters can affect the over-
subscription level in an HPC system. We experimentally
select the sampling range for these parameters to ensure
our unconstrained HPC system is oversubscribed.

We create 15 unique workload traces. Each trace is com-
posed of 60 jobs in the order of their arrival time. In all the
traces, we use an inter-arrival duration of 200 seconds be-
tween consecutive jobs and randomly sample the maximum
job-value from the range [2-10] using a uniform distribution.
The mean percentage of jobs in all the workload traces is
evenly distributed among four different job-value bins, as
shown in Table 3. The sampling range for the problem size
is in between class C and class E with a memory footprint
between 0.8 and 250 GB, respectively. We randomly sample
the iteration count for each job from [50,150]. We randomly

select the range for possible node configurations for each
job while ensuring that its maximum node count does not
exceed the system size. Similarly, we randomly choose the
range of OpenMP thread count in between 8 and 24. In
a real HPC environment, the selection of soft and hard
thresholds is user-dependent. Because our workload trace
is artificial, we first estimate the job execution time on an
intermediate node count (geometric mean of the maximum
and minimum nodes requested by the job). We then use 1.2
and 4.0 times of this estimated execution time as job’s soft
and hard thresholds, respectively.

7.2 Scheduler Design

We create a 64-node HPC prototype on the testbed presented
in Section 4. We have a single master node and multiple
slave nodes. The master node is only used for running the
central scheduler, and it is excluded from the HPC system
size. We use the central scheduler to (1) monitor the status of
the running jobs, (2) track resource usage, (3) track system-
value earnings, (4) retrain application-specific models, (5)
execute scheduling algorithms, and (6) launch new jobs on
available resources. The scheduler executes these actions at
the occurrence of a mapping event in the aforementioned
order. For emulation, we set mapping events to occur peri-
odically at an interval of 60 seconds. Slave nodes are used
for running real HPC jobs. At the start of our experiments,
we launch a light-weight daemon process on each of the
slave nodes. This daemon process is used to monitor and
report the node and job status to the central scheduler. At the
occurrence of each mapping event, for each job, the central
scheduler communicates with the slave nodes to collect the
running job and node status.

8 EMULATION RESULTS

8.1 Overview

In Section 8.2, we begin by analyzing and comparing the
system-value earnings of four resource allocation strategies
(baseline-VPT, VPT-CPC, VPT-JSPC, and hybrid-VPT) on a
64-node HPC system under different system-wide power
constraints. We then investigate the effect of these algo-
rithms on the utilization of the system resources (power
and compute nodes) in Section 8.3. Finally, we demonstrate
the strength of the hybrid-VPT algorithm over the other
two power-aware algorithms by performing a comparative
analysis in Section 8.4.

8.2 Performance Analysis

For each algorithm, we run 15 workload traces on our
64-node HPC prototype under three different system-wide
power constraints. We apply these power constraints by
limiting the system power consumption to a fraction of its
maximum power consumption. We choose the three fraction
values as 55%, 70%, and 85% to represent tightest, interme-
diate, and relaxed availability of the power as a resource.
This analysis is based on a total number of 180 emulations
(four algorithms × 15 traces × three power constraints),
where each emulation takes anywhere between four to six
hours to complete.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 9

Fig. 5: The system-value versus system-wide power constraint on the 64 node
HPC. The X-axis presents the % constraint on power consumption of the 64
node HPC system, which is a measure of the percentage of the maximum
power available for a system. The Y-axis represents the normalized system-
value earned by different algorithms. Each box presents the distribution of the
normalized system-value for 15 workload traces for a given combination of
algorithm and power constraint. The triangle in each box indicates the mean
for the normalized system-value.

Fig. 6: The percentage of completed jobs versus system-wide power constraint
on the 64 node HPC. The X-axis presents the % constraint on power consump-
tion for the 64 node HPC system. The Y-axis presents the % of submitted
jobs that complete their execution. Each box presents the distribution for the
completed jobs in 15 workload traces for a given combination of algorithm and
power constraint. The triangle in each box indicates the mean % for completed
jobs among 15 workload traces.

In Figure 5, we compare the system-value earnings for
the baseline-VPT and our power-aware algorithms under
three unique power constraints. The lower magnitude on
the X-axis indicates a tighter power constraint. For a given
workload trace, the system-value is normalized with respect
to the baseline-VPT performance at the 55% power con-
straint. In Figure 5, at the system-wide power constraint
of 55%, the baseline-VPT performs worst compared to
other algorithms. At this power constraint, VPT-JSPC earns
higher mean system-value (≈38%) compared to VPT-CPC.
This behavior reverses at the intermediate power constraint
(= 70%) when VPT-CPC earns higher mean system-value
(≈6%) compared to VPT-JSPC. These observations highlight
the point that the power allocation strategy needs to be
more adaptive to the system-wide power constraint. While
the mean system-value for the hybrid-VPT is higher (≈35%)

than VPT-CPC at the tightest power constraint, it performs
similar to VPT-CPC at the intermediate power constraint.
Similarly, the hybrid-VPT earns higher mean system-value
(≈5%) than VPT-JSPC at the intermediate power constraint,
and it performs comparably well at the tightest power
constraint. In Figure 5, as the system-wide power constraint
is relaxed to 85%, the mean system-value becomes equal for
all the algorithms.

To explain the trend in Figure 5, it is important to under-
stand Figures 6, 7, and 8. In Figure 6, we compare the effects
of system-wide power constraints on the job completion rate
of the presented algorithms. We use Figure 7 to highlight the
impact of system-wide power constraints on the job-values
earned by the completed jobs. We then derive Figure 8
based on Figure 7 by computing mean system-value (per 100
jobs) of the algorithms under different system-wide power
constraints.

Baseline-VPT
As shown in Figure 7(a), the percentage of submitted jobs
earning zero value is higher for the baseline-VPT compared
to VPT-JSPC at the tightest power constraint (= 55%). Fur-
thermore, the lower completion rate of the baseline-VPT
worsens its system-value compared to VPT-JSPC, as shown
in Figure 6. In contrast, the percentage of completed jobs
is higher for the baseline-VPT as compared to VPT-CPC
but the mean system-value is lower because the number
of jobs earning zero value is higher for the baseline-VPT
in Figure 7(a). Furthermore, the percentage of jobs earning
any positive value by the baseline-VPT is lower than VPT-
CPC for the job-value bins in between two and eight. We
attribute this poor performance of the baseline-VPT to the
fact that it does not account for the job’s power budget while
estimating the job’s execution time. By not accounting for
the effect of power limits on the estimated execution time,
the baseline-VPT makes an inaccurate estimation of the VPT
at the time of making scheduling decisions.

In Figure 8, at the 70% power constraint, the system-
value for the baseline-VPT is still lower than VPT-CPC
even though the mean percentage of completed jobs is
comparable in Figure 6. This is because VPT-CPC has a
higher percentage of jobs earning job-value from the bin
[6,8) compared to the baseline-VPT. In Figure 8, we observe
that the mean system-value earned by the baseline-VPT
is slightly better than VPT-JSPC because the baseline-VPT
completes a higher percentage of jobs as shown in Figure
6. The performance of the baseline-VPT tends to improve
and becomes comparable to VPT-CPC as the constraint on
the system-wide power is relaxed to 85%. This is primarily
because the effect of limiting the power consumption on the
execution time diminishes with relaxing power constraint
[23].

VPT-CPC and VPT-JSPC
At the tightest power constraint (= 55%), the mean percent-
age of completed jobs is lower for VPT-CPC as compared
to VPT-JSPC (Figure 6). Although the percentage of jobs
earning job-value in the interval [0.5,2) is higher for VPT-
CPC (Figure 7(a)), this is over-shadowed by the higher
percentage of jobs earning job-values from bins [6,8) and
[8,10] for VPT-JSPC. As a result, VPT-JSPC has a higher

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 10

(a) power constraint = 55% (b) power constraint = 70% (c) power constraint = 85%

Fig. 7: The percentage of jobs in the workload earning job-values from the different bins for the system power constraint set to (a) 55%, (b) 70%, and (c) 85%.
The X-axis shows the binning range for job-value. The Y-axis presents the % of submitted jobs. Each box presents the distribution for the data collected by
emulating 15 workload traces.

Fig. 8: Mean system-value per 100 jobs versus power constraint on 64 node
HPC system. The X-axis presents the % constraint on power consumption of
the 64 node HPC system. The Y-axis presents the mean system-value earned
by different algorithms for a workload trace containing 100 jobs.

mean system-value compared to VPT-CPC as shown in
Figure 8.

At the intermediate power constraint (= 70%), in Figure
7(b), more jobs are earning higher job-values (from bins [4,6)
and [6,8)) for VPT-CPC as compared to VPT-JSPC. VPT-
CPC also has a higher percentage of submitted jobs getting
completed as shown in Figure 6. Hence, it outperforms
VPT-JSPC at the intermediate power constraint. We have
discussed the reasons for this behavior while introducing
the hybrid-VPT in Section 6.

As we move from the intermediate power constraint
to the most relaxed power constraint (= 85%), the mean
system-value becomes comparable for all the algorithms as
shown in Figure 8. We observe this behavior at the 85%
power constraint because allocating a power budget beyond
80% to 90% of the CPU’s TDP has a negligible effect on
the execution time of our selected benchmarks. A Similar
trait is also observed by other researchers in real life HPC
applications, e.g., [41], [42]. This loose correlation reduces
the variability in the completion time of a job and its VPT
estimation in the presented algorithms (Figure 7(c)).

(a) unused nodes (b) unused power

Fig. 9: Unused resources versus power constraints on the 64 node system. The
X-axis presents the constraint on the power consumption of the 64 node HPC
system. The Y-axis presents the average (a) number of unused nodes, and (b)
amount of unused power during each emulation. For a given combination of the
algorithm and power constraint, each box presents the distribution of unused
resources for 15 workload traces and the triangle represents the mean for the
unused resources.

Hybrid-VPT
In Figure 6, the job completion rate for the hybrid-VPT is
higher than the baseline-VPT and VPT-JSPC due to more
efficient resource utilization at the tightest power constraint
(= 55%) (Section 8.3). Even with a higher completion rate, we
observe that the system-value for the hybrid-VPT is slightly
smaller than VPT-JSPC at the 55% power constraint (Figure
8). Although the hybrid-VPT performs slightly worse than
the VPT-JSPC in terms of mean system-value, we will show
the superiority of the hybrid-VPT in the next sub-section
in terms of resource utilization. As shown in Figure 7(a), a
slightly higher number of jobs earns value from higher job-
value bins ([4,6) and [8,10]) for VPT-JSPC as compared to the
hybrid-VPT, hence this leads to slightly higher system-value
for VPT-JSPC in Figure 8. The mean system-value for the
hybrid-VPT tends to be same or closer to VPT-CPC than the
VPT-JSPC at the 70% power constraint as shown in Figure
8.

8.3 Resource Utilization
For this analysis, we only include the emulation data until
the submission of the last job because the HPC system will
eventually transition into under-subscription after the last
job is submitted. In Figure 9, we compare the effects of
our proposed power allocation strategies under different
system-wide power constraints on the utilization of the
system resources (nodes and power). The average number

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 11

TABLE 4: Number of times an algorithm performs best in terms of system-value
gain under a given system-wide power constraint.

power constraint VPT-CPC VPT-JSPC hybrid-VPT

55% 0 10 5

70% 9 0 6

85% 6 5 4

of unused nodes and the amount of unused power in Figure
9(a) and 9(b), respectively, indicate the unavailability of a
compatible job-configuration pair among the waiting jobs to
run on idle resources.

At the tightest power constraint (55%), the average num-
ber of unused nodes is higher for VPT-JSPC compared to
other algorithms. VPT-JSPC accelerates the execution of few
high value jobs by allocating more power to them on fewer
nodes, and therefore leads to having insufficient amount of
power (in Figure 9(b)) to schedule any new jobs from the
waiting queue on the idle nodes. In the case of the baseline-
VPT and VPT-CPC, the average number of unused nodes
is less than the other two algorithms. This is due to the
fact the scheduler selects a job-configuration pair that needs
a higher number of nodes but suffers from a significant
degradation in execution time and job-value because of the
equal allocation of power across the HPC nodes. The aver-
age amount of unused power is higher for VPT-CPC and
the baseline-VPT compared to others because even the idle
nodes are allocated a power budget that remains unused
whereas other two algorithms allocate system-wide power
to the running nodes only. We observe an improvement
in the node utilization with the hybrid-VPT compared to
VPT-JSPC as shown in Figure 9(a). The hybrid-VPT allows
slowing down of a job with higher VPT to meet its soft
completion threshold instead of meeting its best execution
time (like VPT-JSPC). In return, it saves some amount of
unassigned power to schedule more jobs on idle nodes.
Hence, we observe more jobs getting completed with the
hybrid-VPT as shown in Figure 6.

As the constraint on the system-wide power is relaxed
to 70%, the node utilization improves for the hybrid-VPT
and VPT-JSPC due to the availability of more unassigned
power to schedule new jobs. Whereas, the node utilization
for the baseline-VPT and VPT-CPC slightly decreases due
to the unavailability of any compatible job-configuration
pair. Even though the unused power for the baseline-VPT
and VPT-CPC is higher than the hybrid-VPT and VPT-JSPC,
their higher node utilization results in a higher percentage
of jobs getting completed as shown in Figure 6. The higher
system-value earnings of VPT-CPC in Figure 5, compared to
the others, indicates its efficient use of system resources.

For the system power constraint of 85%, the unused
nodes are comparable for all the algorithms. Even though
the power usage of the hybrid-VPT and VPT-JSPC is higher
than the others, all the algorithms perform similarly in
terms of job completion and system-value gain as shown
in Figures 5 and 6, respectively. This is because the selected
jobs operate in region A of Figure 4, where the power and
performance have a weak correlation.

Fig. 10: Comparative performance of algorithms in terms of % loss of system-
value (Y-axis) as compared to the best performing algorithm under different
power constraints (X-axis).

8.4 Comparative Analysis

In this section, we present a comparative analysis among
our proposed power-aware algorithms using Figure 10 and
Table 4. For the comparative analysis of an algorithm with
others, we compute the percentage difference (or degrada-
tion) in its system-value with respect to the best performing
algorithm (Equation 6) for a given combination of power
constraint and workload trace by using Equation 7. Each
box in Figure 10 represents the distribution for the observed
performance degradation on the workload traces that are
used in this study. A lower degradation indicates that an
algorithm’s performance is close to the best performing
algorithm. We show the number of times an algorithm
outperforms others in terms of system-value for each power
constraint in Table 4.

P = set of system-wide power constraints;
spc = system-wide power constraint in %;
W = set of workload traces;
i = workload trace index;

algo = algorithm under consideration (VPT-CPC, VPT-JSPC, or
hybid-VPT);

svalgo(i, spc) = system-value earnings of algo for ith workload trace at
system-wide power constraint of spc;

svdalgo(i, spc) = % degradation in system-value earnings for algo compared
to best performing algorithm for ith workload trace at
system-wide power constraint of spc;

svmax(i, spc) = max(svV PT -CPC(i, spc), svV PT -JSPC(i, spc),

svhybrid-V PT (i, spc)); ∀i ∈ W, ∀spc ∈ P
(6)

svdalgo(i, spc) = (svmax(i, spc)− svalgo(i, spc))

×100/svmax(i, spc); ∀i ∈ W, ∀spc ∈ P
(7)

In Figure 10, at the system-wide power constraint of
55%, the mean system-value for VPT-CPC is 28% lower than
the best performing algorithm. VPT-CPC under-performs
compared to the other two algorithms for all the traces.
For ten traces (in Table 4), the hybrid-VPT under-performs
compared to VPT-JSPC with the worst observed degrada-
tion of 12% relative to the best case of VPT-JSPC. For the
remaining five traces, VPT-JSPC under-performs compared
to the hybrid-VPT with the worst observed degradation
of 6% relative to the best case of hybrid-VPT. The median
for our hybrid-VPT is close to zero. This demonstrates the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 12

effectiveness of the hybrid-VPT in delivering a system-value
close to VPT-JSPC under the tightest power constraint.

At the system-wide power constraint of 70%, the VPT-
CPC algorithm outperforms the hybrid-VPT for nine traces.
For the remaining six traces, the performance of VPT-CPC
is lower than the hybrid-VPT by less than 5%. VPT-JSPC
never outperforms the other algorithms. Its worst case
degradation is 10% with the median at 5%. Even though the
hybrid-VPT outperforms VPT-CPC for six traces, the VPT-
CPC’s median and the mean are close to zero. The worst
case degradation of 7% is seen for the hybrid-VPT with
its median and mean less than 2%. For the system power
constraint of 85%, all the proposed algorithms perform
equally well.

Based on the observations presented above, we make
following conclusions:
• Under the tightest power constraint of 55%, VPT-JSPC

and hybrid-VPT are more favorable in improving the
HPC productivity as compared to VPT-CPC.

• When the power constraint is 70%, VPT-CPC and
hybrid-VPT are more favorable than VPT-JSPC.

• Unlike VPT-JSPC and VPT-CPC, the hybrid-VPT offers
an adaptive resource allocation policy under different
power constraints.

9 RELATED WORK

Time-dependent value functions similar to the ones studied
in this paper have been proposed in the literature to improve
system productivity [7]–[9], [18], [43]–[47]. Researchers in
the cloud computing domain represent the monetary or
service level agreement (SLA) value of a job using job-value
functions [43]–[47] while the researchers in the HPC domain
use job-value functions to represent the importance of com-
pleting a job to meet the HPC mission [6]–[9], [18], [20],
[21]. In these earlier studies, it is assumed that the expected
execution time of the job is known at the time of job sub-
mission. This execution time is then used by the scheduler
to compute the VPT metric. Most of these earlier studies on
value-based heuristics use a greedy approach, similar to the
baseline-VPT, to maximize the productivity of the system.
However, none of these studies consider the system-wide
power as a constrained resource. In our work, we assume
that the jobs submitted by the users are malleable and we
estimate the execution time at runtime depending on the
available resources in the system and input problem size.
The performance evaluation approach for most of the earlier
work is limited to simulation based experiments whereas
we evaluate our algorithms on a real HPC system using
real applications. Furthermore, our hybrid-VPT significantly
differs from the scheduling algorithms in the literature as
we incorporate the time-to-soft-threshold in the VPT metric
estimation to improve resource utilization under different
system-wide power constraints.

Yeo et al. [43] propose a heuristic metric that combines
a job’s VPT with its completion deadline. In their schedul-
ing algorithm, for each job, they compute the scheduling
metric (return) by dividing the job’s expected VPT with its
completion deadline and select the job with the maximum
return. Their motivation behind this metric is to priori-
tize a job with the shorter deadline as it needs a shorter

commitment, which enables resource manager to accept a
later arriving job with a larger return value. For a given
set of malleable jobs, their approach will always prioritize
a job-configuration pair with the shorter execution time
and earlier deadline. This will lead to a greedy allocation
of the resources (power and node) for the scheduled jobs
(similar to VPT-JSPC). As we have shown in our evaluation,
under varying system-wide power constraints a system
administrator must choose a more flexible power allocation
strategy (hybrid-VPT) to achieve higher system-value and
job completion count.

In HPC domain, Khemka et al. [8], [9] propose multiple
greedy heuristics to maximize the total system-value that
can be earned by completing jobs. In their work, they
use utility functions that are analogous to the job-value
functions presented in our study. They do not consider
the system-wide power as a constrained resource. Machovec
et al. [22] propose utility based algorithms for an energy-
constraint HPC system. They introduce energy filters for
each job to control the rate of energy consumption in the
HPC system. In their algorithm, they equally distribute the
system-wide energy constraint over the time duration for
which the constraint is defined and the scheduler controls
the rate of energy consumption by passing each job in the
mappable queue through an energy filter to ensure that
a selected job-configuration does not exceed the system-
wide rate of energy consumption during its execution. If the
multiple job-configuration pairs successfully pass through
the filter then the one with the maximum Utility-Per-Energy
(UPE) metric is used for scheduling. The system adminis-
trator selects the time period over which the rate of energy
consumption is controlled. However, an energy-constraint
system is different than a power-constrained system. The
power consumption of an energy constraint HPC system
may fluctuate significantly during that controlled time pe-
riod [34]. In our work, we apply an explicit power cap on
each node while ensuring that the total system power con-
sumption stays below the system-wide power constraint.
Furthermore, our application modeling and heuristics eval-
uations are conducted on a real HPC system.

For power-constrained systems, researchers have ex-
plored job-specific power allocation strategies (similar to
VPT-JSPC) to improve the turn-around time and eventu-
ally the completion rate (alternatively FLOPS) of the HPC
system [15], [16], [48], [49]. These studies assume that the
jobs have equal priority and their completion times are not
constrained. As we discussed earlier, FLOPS is a useful
metric in defining system performance but it is not sufficient
to quantify the productivity of an HPC system [2]–[5]. To
quantify productivity of a power-constrained system, we as-
sign job-values and completion deadlines to submitted jobs.
Furthermore, the important takeaway from our study is the
necessity of a flexible power allocation strategies (hybrid-
VPT) to improve system productivity under varying system-
wide power constraint.

10 CONCLUSION AND FUTURE WORK

In this study, we introduced a new power allocation strategy
(hybrid-VPT) to improve the productivity and resource uti-
lizaiton of the value-based heuristics in a power-constrained

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 13

HPC environment. To realize our proposed allocation strat-
egy, we developed a methodology for creating power-
execution time models for a class of HPC applications. These
models were integrated with our emulation platform to
experimentally compare different power allocations strate-
gies for our VPT algorithms using a real HPC system. We
demonstrated the need of a more adaptive power allocation
strategy under different system wide power constraints.
Later, we successfully addressed this need with our hybrid-
VPT.

The power allocation strategies presented in this work
are static in nature, i.e., the power budget for a task is
allocated at its launch time and it remains constant during
its execution. Due to this static allocation, the number of
unused nodes increases and the unused power decreases
as the system-wide power constraint becomes tighter. This
limited amount of power in the system causes newly arrived
high value jobs to starve for resources to complete their
execution. To overcome this limitation and extract more
system-value, we will extend our current research by ex-
ploring the impact of dynamic power allocation strategies
on value-based heuristics. Our current validation approach
is based on a emulation framework executed on a real HPC
system. To test our hypothesis on HPC configurations at
larger scales, we plan to develop a simulation environment
for scheduling algorithms. Such an environment will allow
us to reduce the timescale for evaluating new algorithms.

11 ACKNOWLEDGMENTS

This work is partly supported by National Science Foun-
dation (NSF) research projects NSF CNS-1624668 and CCF-
1302693. Part of this work is performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-JRNL-775437).

REFERENCES

[1] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, and J. Dongarra, “Top ten
exascale research challenges,” accessed date: Mar. 17, 2019,
pp. 1-86. [Online]. Available: https://science.energy.gov/ /me-
dia/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf

[2] M. Snir and D. A. Bader, “A framework for measuring supercom-
puter productivity,” in The International Journal of High Performance
Computing Applications, vol. 18, no. 4, Nov. 2004, pp. 417–432.

[3] S. Faulk, J. Gustafson, P. Johnson, A. Porter, W. Tichy, and L. Votta,
“Measuring high performance computing productivity,” in The
International Journal of High Performance Computing Applications,
vol. 18, no. 4, Nov. 2004, pp. 459–473.

[4] J. Kepner, “High performance computing productivity model syn-
thesis,” in The International Journal of High Performance Computing
Applications, vol. 18, no. 4, Nov. 2004, pp. 505–516.

[5] T. Sterling, “Productivity metrics and models for high perfor-
mance computing,” in The International Journal of High Performance
Computing Applications, vol. 18, no. 4, Nov. 2004, pp. 433–440.

[6] P. C. Broekema, V. L. Allan, and H. E. Bal, “On optimising cost
and value in eScience: Case studies in radio astronomy,” in arXiv
preprint arXiv:1806.06606, June 2018, 14 pp.

[7] B. Ravindran, E. D. Jensen, and P. Li, “On recent advances in
time/utility function real-time scheduling and resource manage-
ment,” in 8th IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC), May 2005, pp. 55–60.

[8] B. Khemka, R. Friese, L. D. Briceno, H. J. Siegel, A. A. Maciejewski,
G. A. Koenig, C. Groer, G. Okonski, M. M. Hilton, R. Rambharos,
and S. Poole, “Utility functions and resource management in an
oversubscribed heterogeneous computing environment,” in IEEE
Transactions on Computers, vol. 64, no. 8, Sep. 2015, pp. 2394–2407.

[9] B. Khemka, D. Machovec, C. Blandin, H. J. Siegel, S. Hariri,
A. Louri, C. Tunc, F. Fargo, and A. A. Maciejewski, “Resource
management in heterogeneous parallel computing environments
with soft and hard deadlines,” in 11th Metaheuristics International
Conference (MIC), June 2015, 10 pp.

[10] T. Sterling and C. Dekate, “Productivity in high-performance
computing,” in Advances in Computers, vol. 72, Jan. 2008, pp. 101–
134.

[11] Z. Marvin, B. Victor, A. Sima, H. Lorin, H. Jeff, and N. Taiga,
“Measuring productivity on high performance computers,” in 11th
IEEE International Software Metrics Symposium (METRICS), Sep.
2005, pp. 6–15.

[12] K. Antypas, B. Austin, T. Butler, R. Gerber, C. Whitney, N. Wright,
W.-S. Yang, and Z. Zhao, “NERSC workload analysis on Hopper,”
in Lawrence Berkeley National Laboratory Technical Report, vol. 6804,
Mar. 2013, 15 pp.

[13] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford,
J. Dongarra, D. Kothe, R. Lusk, and P. Messina, “The opportu-
nities and challenges of exascale computing,” in Summary Report
of the Advanced Scientific Computing Advisory Committee (ASCAC)
Subcommittee, Nov. 2010, 72 pp.

[14] N. Bates, G. Ghatikar, G. Abdulla, G. A. Koenig, S. Bhalachandra,
M. Sheikhalishahi, T. Patki, B. Rountree, and S. Poole, “Electrical
grid and supercomputing centers: An investigative analysis of
emerging opportunities and challenges,” in Informatik-Spektrum,
vol. 38, no. 2, Apr. 2015, pp. 111–127.

[15] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L.
Rountree, M. Schulz, and B. R. De Supinski, “Practical resource
management in power-constrained, high performance comput-
ing,” in 24th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC), June 2015, pp. 121–132.

[16] H. Zhang and H. Hoffmann, “Maximizing performance under
a power cap: A comparison of hardware, software, and hybrid
techniques,” in 21st International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Mar.
2016, pp. 545–559.

[17] A. Marathe, P. E. Bailey, D. K. Lowenthal, B. Rountree, M. Schulz,
and B. R. de Supinski, “A run-time system for power-constrained
HPC applications,” in 22nd International Conference on High Perfor-
mance Computing (HiPC), July 2015, pp. 394–408.

[18] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven schedul-
ing model for real-time operating systems,” in 6th IEEE Real-Time
Systems Symposium (RTSS), Dec. 1985, pp. 112–122.

[19] K. Chen and P. Muhlethaler, “A scheduling algorithm for tasks
described by time value function,” in Real-Time Systems, vol. 10,
no. 3, May 1996, pp. 293–312.

[20] M. Kargahi and A. Movaghar, “Performance optimization based
on analytical modeling in a real-time system with constrained
time/utility functions,” in IEEE Transactions on Computers, vol. 60,
no. 8, Aug. 2011, pp. 1169–1181.

[21] C. B. Lee and A. E. Snavely, “Precise and realistic utility func-
tions for user-centric performance analysis of schedulers,” in 16th
International Symposium on High Performance Distributed computing
(HPDC), June 2007, pp. 107–116.

[22] D. Machovec, B. Khemka, N. Kumbhare, S. Pasricha, A. A.
Maciejewski, H. J. Siegel, A. Akoglu, G. A. Koenig, S. Hariri,
C. Tunc, M. Wright, M. Hilton, R. Rambharos, C. Blandin, F. Fargo,
A. Louri, and N. Imam, “Utility-based resource management in an
oversubscribed energy-constrained heterogeneous environment
executing parallel applications,” in Parallel Computing, vol. 83, Apr.
2019, pp. 48–72.

[23] N. Kumbhare, C. Tunc, D. Machovec, A. Akoglu, S. Hariri, and
H. J. Siegel, “Value based scheduling for oversubscribed power-
constrained homogeneous HPC systems,” in International Confer-
ence on Cloud and Autonomic Computing (ICCAC), Sep. 2017, pp.
120–130.

[24] D. Machovec, C. Tunc, N. Kumbhare, B. Khemka, A. Akoglu,
S. Hariri, and H. J. Siegel, “Value-based resource management
in high-performance computing systems,” in 7th Workshop on
Scientific Cloud Computing, June 2016, pp. 19–26.

[25] C. Tunc, D. Machovec, N. Kumbhare, A. Akoglu, S. Hariri,
B. Khemka, and H. J. Siegel, “Value of service based resource man-
agement for large-scale computing systems,” in Cluster Computing,
vol. 20, no. 3, Sep. 2017, pp. 2013–2030.

[26] N. Wolter, M. O. McCracken, A. Snavely, L. Hochstein, T. Naka-
mura, and V. Basili, “What‘s working in HPC: Investigating HPC

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 14

user behavior and productivity,” in CTWatch Quarterly 2, vol. 2,
no. 4A, Nov. 2006, pp. 9–17.

[27] B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J.
Siegel, G. A. Koenig, S. Powers, M. Hilton, R. Rambharos, and
S. Poole, “Utility maximizing dynamic resource management in
an oversubscribed energy-constrained heterogeneous computing
system,” in Sustainable Computing: Informatics and Systems, vol. 5,
Mar. 2015, pp. 14–30.

[28] “NAS-NPB benchmark,” accessed date:
Mar. 17, 2019. [Online]. Available:
https://www.nas.nasa.gov/publications/npb problem sizes.html

[29] “RAPL,” accessed date: Mar. 17, 2019. [Online]. Available:
https://lwn.net/Articles/ 545745/

[30] A. Marathe, H. Gahvari, J.-S. Yeom, and A. Bhatele, “Libpow-
ermon: A lightweight profiling framework to profile program
context and system-level metrics,” in IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), May 2016,
pp. 1132–1141.

[31] “Libmsr RAPL,” accessed date: Mar. 17, 2019. [Online]. Available:
https://github.com/LLNL/libmsr

[32] A. Marathe, R. Anirudh, N. Jain, A. Bhatele, J. Thiagarajan,
B. Kailkhura, J.-S. Yeom, B. Rountree, and T. Gamblin, “Perfor-
mance modeling under resource constraints using deep transfer
learning,” in International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), Nov. 2017, 12 pp.

[33] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer,
B. L. Rountree, and M. E. Femal, “Analyzing the energy-time
trade-off in high-performance computing applications,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 6, June
2007, pp. 835–848.

[34] Z. Liu, J. Lofstead, T. Wang, and W. Yu, “A case of system-wide
power management for scientific applications,” in International
Conference on Cluster Computing (CLUSTER), Sep. 2013, 8 pp.

[35] B. Subramaniam and C. Feng, Wu, “Statistical power and perfor-
mance modeling for optimizing the energy efficiency of scientific
computing,” in International Conference on Green Computing and
Communications & International Conference on Cyber, Physical and
Social Computing, Dec. 2010, pp. 139–146.

[36] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and
A. Baldini, “Statistical profiling-based techniques for effective
power provisioning in data centers,” in 4th ACM European con-
ference on Computer Systems (EuroSys), Apr. 2009, pp. 317–330.

[37] Y. Jiao, H. Lin, P. Balaji, and C. Feng, Wu, “Power and perfor-
mance characterization of computational kernels on the GPU,” in
International Conference on Green Computing and Communications &
International Conference on Cyber, Physical and Social Computing, Dec.
2010, pp. 221–228.

[38] D. A. Freedman, Statistical Models: Theory and Practice. Cambridge
University Press, 2009, vol. 2.

[39] A. Liaw and M. Wiener, “Classification and regression by random
forest,” in R news, vol. 2, no. 3, Dec. 2002, pp. 18–22.

[40] D. A. Ellsworth, A. D. Malony, B. Rountree, and M. Schulz, “Dy-
namic power sharing for higher job throughput,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Nov. 2015, 11 pp.

[41] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R.
de Supinski, “Exploring hardware overprovisioning in power-
constrained, high performance computing,” in 27th International
Conference on Supercomputing (ICS), June 2013, pp. 173–182.

[42] A. Marathe, Y. Zhang, G. Blanks, N. Kumbhare, G. Abdulla, and
B. Rountree, “An empirical survey of performance and energy effi-
ciency variation on Intel processors,” in 5th International Workshop
on Energy Efficient Supercomputing (E2SC), Nov. 2017, 9 pp.

[43] C. S. Yeo and R. Buyya, “Service level agreement based allocation
of cluster resources: Handling penalty to enhance utility,” in
International Conference on Cluster Computing, Sep. 2005, 10 pp.

[44] B. N. Chun and D. E. Culler, “User-centric performance analysis
of market-based cluster batch schedulers,” in 2nd International
Symposium on Cluster Computing and the Grid (CCGRID), May 2002,
9 pp.

[45] B. N. Chun and D. Culler, “Market-based proportional resource
sharing for clusters,” in Berkeley Computer Science Division Technical
Report, University of California, Jan. 2000, 19 pp.

[46] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing risk and reward
in a market-based task service,” in 13th International Symposium
on High performance Distributed Computing (HPDC), June 2004, pp.
160–169.

[47] D. Dib, N. Parlavantzas, and C. Morin, “Meryn: Open, SLA-
driven, cloud bursting PaaS,” in 1st Workshop on Optimization
Techniques for Resources Management in Clouds, June 2013, pp. 1–
8.

[48] T. Cao, Y. He, and M. Kondo, “Demand-aware power management
for power-constrained HPC systems,” in 16th IEEE International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), May
2016, pp. 21–31.

[49] N. Gholkar, F. Mueller, and B. Rountree, “Power tuning HPC jobs
on power-constrained systems,” in 18th International Conference on
Parallel Architectures and Compilation (PACT), Sep. 2016, pp. 179–
191.

Nirmal Kumbhare is a Ph.D. candidate at the
University of Arizona under the supervision of
Dr. Ali Akoglu. His research interests involve re-
configurable and heterogeneous systems, high
performance computing, and power-aware re-
source management. Prior to joining the Ph.D.
program, he worked with Intel for four years as
an emulation and validation engineer. He earned
his M.Tech in Electronic systems from the In-
dian Institute of Technology, Mumbai in 2010 and
Bachelor Degree in Electronics and Instrumen-

tation Engineering from the Institute of Engineering and Technology in
2008.

Aniruddha Marathe is a Computer Scientist
at the Center for Applied Scientific Comput-
ing (CASC) at the Lawrence Livermore Na-
tional Laboratory (LLNL). His research focuses
on developing performance-optimizing run-time
systems for HPC applications on resource-
constrained clusters, power-aware computing,
trade-offs in HPC cooling systems, and perfor-
mance variability. Before joining LLNL, he was
a Postdoctoral Research associate at the De-
partment of Computer Science at The University

of Arizona. He received his Doctorate in Computer Science from the
Department of Computer Science at The University of Arizona in August
2014 under the supervision of Dr. David Lowenthal.

Ali Akoglu received his Ph.D. degree in Com-
puter Science from the Arizona State University
in 2005. He is an Associate Professor in the
Department of Electrical and Computer Engi-
neering and the BIO5 Institute at the University
of Arizona. He is the site-director of the National
Science Foundation (NSF) Industry-University
Cooperative Research Center on Cloud and Au-
tonomic Computing. His research interests lie in
the fields of high performance computing, recon-
figurable computing, and cloud computing with

the goal of solving the challenges of bridging the gap between the do-
main scientist, programming environment, and highly-parallel hardware
architectures. He is a member of the IEEE.

Howard Jay (”H.J.”) Siegel is a Professor
Emeritus and Senior Research Scientist/Scholar
at Colorado State University (CSU). From 2001
to 2017, he was the George T. Abell Endowed
Chair Distinguished Professor of Electrical and
Computer Engineering at CSU, where he was
also a Professor of Computer Science. He was
a professor at Purdue University from 1976 to
2001. He received two B.S. degrees from the
Massachusetts Institute of Technology (MIT),
and the M.A., M.S.E., and Ph.D. degrees from

Princeton University. He is a Fellow of the IEEE and a Fellow of the ACM.
Prof. Siegel has co-authored over 460 published technical papers in the
areas of parallel and distributed computing and communications, which
have been cited over 18,000 times. He was a Coeditor-in-Chief of the
Journal of Parallel and Distributed Computing, and was on the Editorial
Boards of the IEEE Transactions on Parallel and Distributed Systems
and the IEEE Transactions on Computers. For more information, please
see www.engr.colostate.edu/ hj.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, JULY 2019 15

Dr. Ghaleb Abdulla earned his Ph.D. in com-
puter science from Virginia Tech in 1998 and
M.S. in computer science from the same insti-
tution in 1993. He earned his Bachelor Degree
in Electrical Engineering from Yarmouk Univer-
sity in Jordan. Before joining LLNL, Dr. Abdulla
worked for the Dow Chemical Company as an
Information Technology Specialist. Since joining
LLNL in 2000, Ghaleb Abdulla has embraced
projects that depend on teamwork and data
sharing. His tenure includes establishing part-

nerships with universities seeking LLNL’s expertise in HPC and large-
scale data analysis. He supported approximate queries over large-scale
simulation datasets for the AQSim project and helped design a multi-
petabyte database for the Large Synoptic Survey Telescope. Abdulla
used machine learning (ML) to inspect and predict optics damage at the
National Ignition Facility, and leveraged data management and analytics
to enhance HPC energy efficiency. Recently, he led a Cancer Registry
of Norway project developing personalized prevention and treatment
strategies through pattern recognition, ML, and time-series statistical
analysis of cervical cancer screening data. Today, Abdulla is co-PI
of the Earth System Grid Federationan international collaboration that
manages a global climate database for 25,000 users on 6 continents.

Salim Hariri received the MSc degree from Ohio
State University in 1982 and the Ph.D. degree
in computer engineering from the University of
Southern California in 1986. He is a professor
in the Department of Electrical and Computer
Engineering, University of Arizona and the di-
rector of the NSF center for Cloud and Auto-
nomic Computing. His current research focuses
on autonomic computing, Cybersecurity, Cyber
Resilience, Secure Critical Infrastructures, and
Cloud Security.

