

1 Persistence and plasticity in conifer water-use strategies

2 **M. Berkelhammer¹, C. Still^{2,3}, F. Ritter¹, M. Winnick^{4,5}, L. Anderson⁶, R. Carroll⁷, M.**
3 **Carbone⁸, & K. Williams^{2,9}**

4 ¹Dept. of Earth and Environmental Sciences, University of Illinois at Chicago

5 ²Rocky Mountain Biological Laboratory, Gothic, CO

6 ³Dept. of Forest Ecosystems and Society, Oregon State University

7 ⁴Dept. of Geological Sciences, Stanford University

8 ⁵Dept. of Geosciences, University of Massachusetts Amherst

9 ⁶United States Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO

10 ⁷Division of Hydrological Sciences, Desert Research Institute, Reno, NV

11 ⁸Dept. of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University

12 ⁹Lawrence Berkeley National Laboratory, Department of Energy

13 Key Points:

- 14 Cellulose isotope ratios were used to reconstruct the use of snowmelt for two common
15 conifer species in the southern Rocky Mountains.
- 16 The trees exhibited multi-year periods of preferential use of snowmelt and low tree growth
17 following low snowpack years.
- 18 During high snowpack periods the trees showed enhanced growth and utilized summer
19 precipitation to support their increased water demands.

20 **Abstract**

21 The selective use of seasonal precipitation by vegetation is critical to understanding the res-
 22 idence times and flow paths in watersheds, yet there are limited datasets to test how climate
 23 alters these dynamics. Here, we use measurements of the seasonal cycle of tree ring $\delta^{18}\text{O}$ for
 24 two widespread conifer species in the Rocky Mountains of North America to provide a multi-
 25 decadal depiction of the seasonal origins of forest water use. The results show that while the
 26 conifer tree stands had a dominant preference for use of snowmelt, there were multi-annual
 27 periods over the last 4 decades when use of summer precipitation was preferential. Utiliza-
 28 tion of summer rain emerged during years with increased snowfall and tree growth, suggest-
 29 ing that summer rain enhanced the transpiration stream only during the periods of highest wa-
 30 ter use. We hypothesize this could be explained through shallowing of the root profile during
 31 wetter periods and/or through the effects of the water table depth on the residence time of sum-
 32 mer precipitation in the root zone. We suggest the tree ring proxy approach used here could
 33 be applied in other watersheds to provide critical insight into the temporal dynamics of plant
 34 water use that could not be inferred from short measurement campaigns. These data on the
 35 seasonal origins of forest water are critical for understanding forest vulnerability to drought,
 36 the processes that affect precipitation pathways and residence time in watersheds and the in-
 37 terpretation of tree ring proxy data.

38 **1 Introduction**

39 Ecosystems often display multi-annual legacy effects as illustrated by the fact that tree
 40 ring widths tend to display lower frequency variability than limiting factors for productivity
 41 such as precipitation or temperature (Bunde, Büntgen, Ludescher, Luterbacher, & Von Storch,
 42 2013; Esper, Schneider, Smerdon, Schöne, & Büntgen, 2015). One interpretation of this low
 43 frequency behavior is that it reflects biotic processes such as the use of a previous year's non-
 44 structural carbon pool or changes in leaf area that affect photosynthesis for subsequent sea-
 45 sons (Bréda, Huc, Granier, & Dreyer, 2006; Franke, Frank, Raible, Esper, & Brönnimann, 2013;
 46 Sala, Gherardi, Reichmann, Jobbágy, & Peters, 2012). However, year-to-year persistence in above-
 47 ground productivity may also emerge abiotically through the dynamics of subsurface hydrolog-
 48 ogy such as the lagged and sustained response of water table depths or deep soil moisture con-
 49 tent to precipitation variability (Amenu, Kumar, & Liang, 2005; Bierkens & Van den Hurk,
 50 2007; Kumar, Newman, Wang, & Livneh, 2019; Maxwell & Kollet, 2008). It follows, if plants
 51 are relying on deeper soil moisture or water pools held in low matric potential pores with long
 52 residence times, then multi-annual persistence in ecosystem productivity could emerge through
 53 the delayed and sustained response of soil hydrology to surface climate (Ghannam et al., 2016;
 54 Rempe & Dietrich, 2018). A number of studies using water isotopic tracers (Dawson & Pate,
 55 1996; Zhang, Evaristo, Li, Si, & McDonnell, 2017) and root excavations (Fan, Miguez-Macho,
 56 Jobbágy, Jackson, & Otero-Casal, 2017) have observed that maximum rooting depths often track
 57 the water table depth suggesting plants actively subsidize their water demands with older and
 58 deeper water pools. These observations support modeling results, which indicate that in or-
 59 der to accurately capture spatial patterns in transpiration and the response of terrestrial ecosys-
 60 tems to precipitation variability, it is imperative to account for precipitation from previous sea-
 61 sons or years (Ferguson, Jefferson, Maxwell, & Kollet, 2016; Maxwell & Condon, 2016; Maxwell,
 62 Condon, Danesh-Yazdi, & Bearup, 2019).

63 Although the ability for plants to utilize deeper water pools is a widespread adaptation,
 64 the extent to which plants actively rely on these legacy water reservoirs is difficult to constrain.
 65 Some studies have suggested that trees can switch between use of deep and shallow water reser-
 66 voirs depending on water availability (Dawson & Pate, 1996), while other studies have shown
 67 that species consistently rely on deeper water to minimize competition (Anderegg, Anderegg,
 68 Abatzoglou, Hausladen, & Berry, 2013; Nardini et al., 2016). Attempts to understand the dy-
 69 namics of this behavior have periodically taken advantage of precipitation exclusion experi-
 70 ments to force surface soil moisture deficits (Romero-Saltos, Sternberg, Moreira, & Nepstad,
 71 2005), which have shown that root water uptake can have a threshold-like response to drying
 72 of surface soil moisture (Grossiord et al., 2017). The available observations suggest the wa-

ter use behaviors of trees can be diverse between sites and species, which likely reflects the interplay between subsurface hydrological characteristics, species competition, physical properties of the soil, physical and nutrient limitations on root growth, and the availability of carbon pools to invest in root development.

Much of the existing work on understanding plant water use has relied on the use of stable water isotopes ($\delta^{18}\text{O}$ and $\delta^2\text{H}$) to trace the depth and seasonal origins of water uptake. A rigorous assessment of the isotopic ratio of soil water in the Shale Hills Critical Zone Observatory by Thomas et al. (2013) showed that surface soil water had an isotopic ratio that closely followed recent precipitation and the seasonal signal attenuated and approached groundwater values with increasing depth. In regions such as the western US where recharge occurs from winter snowpack, a strong isotopic gradient emerges during the growing season because the surface and deep soil waters originate from summer and winter season precipitation, respectively (Hu, Moore, Burns, & Monson, 2010; Martin, Looker, Hoyleman, Jencso, & Hu, 2018). However, the idealized case where isotopically enriched summer precipitation is layered atop isotopically depleted winter precipitation is often disrupted by processes such as rapid penetration of rain through preferential flow paths, hydraulic redistribution, lateral flow and waters of distinct seasonal origins being held selectively according to pore size (Berry et al., 2018; Brooks, Barnard, Coulombe, & McDonnell, 2010; Dubbert & Werner, 2019; Sprenger, Llorens, Cayuela, Gallart, & Latron, 2019; Thomas et al., 2013). Furthermore, the presumably simple transfer of the isotopic ratio of precipitation to the surface soil water can be affected by evaporative enrichment of the surface water and precipitation throughflow effects as precipitation interacts with the canopy (Goldsmith et al., 2019).

These aforementioned studies capture a small cross section of new works that have collectively challenged the idea of using stable water isotopes in the xylem as a simple tracer for depth of water uptake (Sprenger, Leistert, Gimbel, & Weiler, 2016). Despite this evidence of complexity in depth and spatial pattern of soil water isotopes, other recent work has found more homogenous patterns in the isotopic ratio of plant water, suggesting some of the isotopic heterogeneity observable within soil water profiles might be buffered as the signal is transferred to plants (Goldsmith et al., 2019). The extensive survey of xylem waters across Switzerland by Allen, Kirchner, Braun, Siegwolf, and Goldsmith (2019), noted that across a large domain the trees appeared to rely almost exclusively on winter precipitation. This observation could reflect multiple interacting processes including: the ubiquitous reliance of trees on deeper water pools; deeper water from a previous season migrating upward into the root zone; winter precipitation being retained in micropores; or that summer precipitation evaporated or passed through the root zone in macropores. Nonetheless, the common use of winter precipitation by trees strongly supports the role of soil hydrology in adding a seasonal or even interannual legacy component to ecosystems (Kumar et al., 2019).

The existing studies on plant water use have generally taken advantage of spatial surveys or intensive studies over the course of a few growing seasons to infer the patterns of plant water use. There are limited data to test how these dynamics might evolve over longer timescales in response to stressors such as decreases in spring snowpack or rising evaporative demand (Mote, Li, Lettenmaier, Xiao, & Engel, 2018; Restaino, Peterson, & Littell, 2016). For example, existing data on water use by conifers in the western US have indicated that snowmelt, the predominant source of regional recharge, is the primary reservoir to support forest water demand (Bowling, Schulze, & Hall, 2017; Hu et al., 2010; Marshall & Monserud, 2006; Martin et al., 2018; Phillips & Ehleringer, 1995). However, the snapshots provided by these studies do not indicate how reliance on this water source has varied in response to region-wide changes in the snowpack or lengthening of the growing season. In one scenario, plants might conserve their total water use by modifying their water source, such as increasing use of summer rain. We refer to this as water-use *plasticity* where through either adjustments in the root systems or changes in the residence time and pathway of seasonal precipitation vectors, the seasonal origins of the water used by the trees evolves. In an alternative scenario, trees conserve their reliance on winter precipitation, which we refer to as the *persistence* scenario, and seems to be consistent with the ubiquitous use of winter precipitation as described by Allen et al. (2019). To study these dynamics, decadal length datasets of plant water use are needed

128 because many of the relevant subsurface processes such as residence time of deep water pools
 129 (Ghannam et al., 2016) and the turnover time of fine roots (Matamala, Gonzalez-Meler, Jas-
 130 trow, Norby, & Schlesinger, 2003) have multi-annual timescales. Therefore, the ecohydrolog-
 131 ical response time and/or adjustment to change may lag the forcing and persist for years af-
 132 ter the stressor has been removed.

133 One approach to studying longer term dynamics in plant water use is through measure-
 134 ments of $\delta^{18}\text{O}$ cellulose. Tree ring $\delta^{18}\text{O}$ captures a mixed signal of the vapor pressure deficit
 135 (VPD) at the leaf-atmosphere interface and the $\delta^{18}\text{O}$ of the plant's source water (Burk & Stu-
 136 iver, 1981; Gessler et al., 2014; Roden, Lin, & Ehleringer, 2000). Higher VPD (or lower RH)
 137 acts to enrich the isotopic ratio of the leaf water and cellulose whereas changes in the source
 138 water have a proportionate influence on the cellulose. In conditions where the source water
 139 is constant, timeseries' of cellulose $\delta^{18}\text{O}$ can provide a robust proxy for VPD (Kahmen et al.,
 140 2011). Alternatively, if VPD is held constant, such as for aquatic plants (DeNiro & Epstein,
 141 1981), the isotopic ratio of cellulose is a proxy for the isotopic ratio of the source water. In
 142 most terrestrial ecosystems, both of these variables change over time and the signal embed-
 143 ded in the cellulose is convolved. To address this, an estimate of one or the other variable (i.e.
 144 VPD or source water) is needed. In instances where an annual or multi-annual average of $\delta^{18}\text{O}$
 145 is used, it is often assumed that the relative variability of VPD is larger than $\delta^{18}\text{O}$ of source
 146 water. Therefore, changes in the isotopic ratio of signal are more strongly affected by canopy
 147 conditions than plant water use (Helliker et al., 2018). However, when annual growth rings
 148 are subsampled to produce seasonal cycles in $\delta^{18}\text{O}$, changes in the source water over the grow-
 149 ing season may be large enough to supersede the effects of changing VPD. In the western US,
 150 for example, the isotopic ratio of precipitation may vary by as much as 15‰ through the year
 151 (Buenning, Stott, Yoshimura, & Berkelhammer, 2012) and thus shifting use of winter or sum-
 152 mer precipitation would impart an isotopic difference between cellulose formed early and late
 153 in the growing season. Treydte et al. (2014), for example, found that seasonal trends in tree-
 154 ring $\delta^{18}\text{O}$ predominantly mirrored trends in the source water, including recent precipitation
 155 and soil water pools, while short term variations from needle-water ^{18}O enrichment had much
 156 less of an effect.

157 In the following study, we use stable isotopic measurements of tree-ring cellulose to look
 158 at 4 decades of plant water use for two dominant conifer species (*Abies lasiocarpa* and *Picea*
 159 *engelmannii*) in the Rocky Mountains of Colorado, USA. The study was motivated by the ques-
 160 tion of how recent declines in spring snowpack have modified the water use patterns of forests
 161 in the region. To accomplish this, we analyzed the seasonal cycle of cellulosic $\delta^{18}\text{O}$ at two
 162 nearby forest stands sites in Colorado, USA. We then used a clustering analysis to organize
 163 the seasonal cycles based on their shape and a mechanistic model to classify the shape of the
 164 seasonal cycle into the type of water use pattern used by the tree during that growing season.
 165 After classifying the water use pattern for each of the last 40 years, we analyzed how tree wa-
 166 ter use has varied in response to snowpack variations. We found that while snowmelt was the
 167 primary water source for these trees, summer rain emerged as a critical water source during
 168 the periods of highest snowpack. This suggests that selective uptake or outflow of summer pre-
 169 cipitation through watersheds will depend on the snowmelt inputs from the previous years. Al-
 170 though there are challenges to inferring plant water use from cellulose, the results show how
 171 this technique could be useful for understanding plant water use dynamics even in minimally
 172 instrumented watersheds.

173 2 Methods

174 2.1 Sampling of water isotope reservoirs

175 During the 2016 growing season, comprehensive isotope sampling was conducted in a
 176 mixed stand of trees (*Abies lasiocarpa*, *Picea engelmannii* and *Populus tremuloides*) along Cop-
 177 per Creek in Gothic, CO (38.9592°N, longitude: 106.9898°W and elevation: 2880 m) (Fig.
 178 1). During the field season, approximately weekly sampling of soils and stems was done within
 179 or nearby the tree stand. Living stems were cut from the tree, the material near the leaves was

180 removed and the remaining sample was debarked. Soils were generally dug from two depths
 181 (0-10 cm and 10-20 cm) and periodically deeper soils were sampled using a bucket auger. Stem
 182 and soil samples were bagged and frozen shortly after collection. Water was extracted from
 183 both soil and xylem using a batch extraction method where samples were sealed in a glass tube
 184 and placed between two bored-out aluminum blocks (Vendramini & Sternberg, 2007). One of
 185 the blocks was heated, which drove water off the sample, and the other side was cooled to con-
 186 dense the moisture. The method was modified for field deployment in the following ways: (1)
 187 instead of a liquid nitrogen cold trap, we used a peltier cold plate kept close to -10°C, (2) a
 188 pair of 1" glass tubes with threaded ends enclosed the sample using a teflon union, which re-
 189 moved the need to seal the samples with a torch and allowed the tubes to be cleaned and re-
 190 used and (3) after samples were sealed, vacuum was applied through a ball valve threaded into
 191 the union. The system was left overnight in this configuration to ensure all water was driven
 192 off the samples. Tests where soil was vacuum dried and then re-wet with a known quantity
 193 of water were used to ensure that this method produced greater than 95% water yield.

194 To mitigate the effects of hydrocarbon contaminants on the isotope spectroscopy, acti-
 195 vated charcoal was added to the extracted water, which was covered with Parafilm and left for
 196 multiple hours. Following this, the samples were filtered to remove any particulates and then
 197 passed through a Solid Phase Extraction membrane to remove additional volatile compounds
 198 (Chang, Wolf, Gerlein-Safdi, & Caylor, 2016). Water samples were then analyzed on a Picarro
 199 Inc. L2130-i isotopic analyzer using an autosampler and vaporizer, which was maintained at
 200 110°C. Samples were analyzed 8 times and ChemCorrect software was used to remove any
 201 spectral interferences. Following this, a memory correction (in the form of a double exponen-
 202 tial fit) was applied to remove the influence of the previous sample and the final three injec-
 203 tions from each sample were then averaged and normalized to the VSMOW scale using three
 204 in-house standards that were run prior to and during each run. We ran numerous tests of the
 205 system by vacuum drying soils from the site and rewetting them with a water of a known iso-
 206 topic value. We determined an uncertainty of ~0.5‰ in $\delta^{18}\text{O}$ based on repeat analysis of the
 207 soil extraction system. An additional analysis was conducted where 26 soil samples were col-
 208 lected from a small grid nearby the field site. This was done to assess how both micro-scale
 209 hydrology affects the soil water isotopic ratios and the repeatability of the measurements con-
 210 sidering sample handling, extraction and isotopic analysis (Johnson et al., 2017). The standard
 211 deviation of these samples was 1.1‰, which is similar though slightly smaller than the value
 212 of 1.7‰ found in a similar experiment by Goldsmith et al. (2019). We use this value as the
 213 presumed uncertainty of the soil water isotopic measurements.

214 To quantify the effect of alcohols and other volatile compounds on the xylem water sam-
 215 ples, duplicate analysis on a subset of samples was done on both the laser system and with
 216 an isotope ratio mass spectrometry (IRMS). These samples were pyrolyzed at 1400°C in a ThermoFisher
 217 TC/EA and the resulting CO was introduced into a ThermoFisher Delta Plus IRMS
 218 through a Conflo II interface. Samples were calibrated using two in-house water standards. There
 219 was no systematic bias between the samples measured by the laser and the IRMS techniques.
 220 The observed differences were, on average, smaller than the repeatability uncertainty (i.e. ex-
 221 traction, processing and isotopic analysis). We take a conservative approach by averaging mul-
 222 tiple samples to generate aggregated estimates of isotopic ratios and focus discussion only on
 223 high amplitude signals (i.e. $\geq 1.1\text{‰}$ in $\delta^{18}\text{O}$). Because isotopic analysis on the IRMS was done
 224 for $\delta^{18}\text{O}$, we hereafter only discuss variability in terms of oxygen isotopes.

225 Weekly precipitation samples were obtained from the following nearby US Department
 226 of Agriculture, National Atmospheric Deposition Program (NADP) sites: Gothic, CO (NADP
 227 ID: CO10, latitude: 38.956°N, longitude: -106.986°W, elevation: 2915 m), Sunlight Peak (NADP
 228 ID: CO92, latitude: 39.4264°N, longitude: -107.3799°W, elevation: 3218 m) and Four Mile
 229 Park (NADP ID: CO08, latitude: 39.4025°N, longitude: -107.3454°W, elevation: 2502 m) (Fig.
 230 1 and Table S2). Samples from Gothic were obtained for the 2016 growing season whereas
 231 data from the other sites extended from 2007 to 2017 (Table S2). The accumulated annual April
 232 1 snowpack from 1993 through 2016 at Sunlight Peak, CO and Four Mile Park, CO were ex-
 233 tracted from the Anderson, Berkelhammer, and Mast (2016) database. Weekly stream water
 234 samples were collected from Copper Creek, which flows near the tree stand and groundwa-

235 ter was collected from regularly sampled from three wells in Gothic, CO. The isotopic ratio
 236 of snowpack, groundwater and precipitation were all determined using the same Picarro Inc.
 237 analyzer as used for the xylem and soil water samples. Water vapor isotopic ratios were
 238 measured continuously and binned to a 30-minute resolution from an inlet installed on a 10 m tower
 239 at the EPA instrument trailer in Gothic, CO during May and June of 2016. Details of the ap-
 240 proach to continuously measure the isotopic ratio of water vapor have been described elsewhere
 241 (Berkelhammer et al., 2016). The aggregated isotopic data discussed above was utilized in two
 242 ways. Firstly, we used the xylem and soil water isotopes for 2016 to develop direct observa-
 243 tional constraints on the reliance of winter and summer precipitation by the trees over the course
 244 of a single growing season. Secondly, we used the longer precipitation, snowpack and vapor
 245 samples as inputs to a mechanistic model (as described in Section 2.4) to understand how chang-
 246 ing water use patterns would influence the seasonal cycle of the isotopic ratio of cellulose.

247 2.2 Measurements of isotopic ratio of cellulose

248 During 2015 and 2016, 19 tree cores were collected using a 5 mm increment borer from
 249 stands near Copper Creek in Gothic, CO and nearby the Ziegler Reservoir in Snowmass, CO
 250 (39.2075°N, 106.9648°W) (Brown, Nash, & Kline, 2014) (Fig. 1). Cores were taken at each
 251 site from 4-5 mature *A. lasiocarpa* and *P. engelmannii* trees that were selected based on hav-
 252 ing similar diameters, occurring away from the edge of the stand and a healthy appearance.
 253 Cores were sanded, scanned, rings counted and widths measured using an image-processing
 254 script. Width chronologies were standardized by removing the geometric effect of increasing
 255 stem circumference using a low frequency filter. The resulting ring widths were normalized
 256 and all cores averaged to produce a composite ring width chronology. From the 19 tree cores
 257 collected and used for the ring width measurements, 9 were chosen for isotopic analysis based
 258 on having the highest correlation coefficient with the composite ring width chronology. This
 259 subsetting from the full collection was done to minimize analytical costs of isotopic analysis
 260 while still providing a large population of data for subsequent analysis. Tree cores were sliced
 261 starting from the most recent rings and working towards the inner ring (Fig. 2). Individual slices
 262 were combined until 1.0 to 1.2 mg of sample was accumulated, which was the minimum size
 263 that would allow sufficient material for isotopic analysis following cellulose extraction. Of the
 264 ~330 rings associated with the 9 tree cores from 1980-2016, 135 yielded a sufficient number
 265 of samples to be included in the analysis (≥ 5 per ring) (Schubert & Jahren, 2015). A regres-
 266 sion between the number of rings per year and ring width show that the analysis was not weighted
 267 towards use of years with wide rings (Fig. S1). Each wood sample was then powdered and
 268 the cellulose extracted from the whole wood using the Brendel method (Anchukaitis et al., 2008;
 269 Berkelhammer & Stott, 2012). Briefly, samples were heated in a mixture of acetic and nitric
 270 acid to remove non-cellulosic material and then subjected to subsequent washes with ethanol,
 271 deionized water and acetone. Samples were then dried for 1 hour in a drying oven, left overnight
 272 in a vacuum oven and stored in a desiccator. The cellulose yield was generally between 40-
 273 60% of the initial wood mass.

274 Isotopic analysis of the cellulose was conducted at Northwestern University, Northern
 275 Illinois University and University of Illinois at Chicago stable isotope labs following similar
 276 procedures. Between 0.2 and 0.5 mg of cellulose was weighed into a silver capsule and loaded
 277 into a Costech Zero Blank autosampler. The samples were then pyrolyzed at $\sim 1350^{\circ}\text{C}$ in a
 278 TC/EA using a ceramic column with an interior glassy carbon liner. The isotopic ratio of the
 279 resulting CO gas (i.e. $^{12}\text{C}^{18}\text{O}/^{12}\text{C}^{16}\text{O}$) was then analyzed on a ThermoFisher Delta series IRMS.
 280 A typical run would begin with analysis of three replicates of one organic reference standard
 281 (such as cellulose or sucrose), three replicate analysis of a second reference standard followed
 282 by sequential analyses of 8 samples and a single reference standard. The run would then ter-
 283 minate with duplicate analyses of each of the reference standards. A sample carousel with 49
 284 slots would thus typically include 36 samples and 13 standards, which were used for drift cor-
 285 rection and normalization to the VSMOW-scale. Duplicate analyses of reference standards showed
 286 an analytical uncertainty of $\leq 0.2\text{‰}$.

287 **2.3 Processing of the isotopic measurements**

288 The shape of the isotopic cycle in the annual growth ring reflects a combination of sea-
 289 sonal changes in leaf-atmosphere exchange, the trees' source water, and internal mixing of wa-
 290 ter and carbohydrates that generate lags and buffering effects (Ogée et al., 2009). Our *a priori*
 291 assumption was that if a tree relied exclusively on winter precipitation through the grow-
 292 ing season, this would generate a distinct isotopic cycle in the cellulose than if the tree relied
 293 on a seasonally evolving summer precipitation source. We can then extend the analysis of tree
 294 water use from the single season we monitored (i.e. 2016) by analyzing how the shape of the
 295 seasonal cycle in cellulose $\delta^{18}\text{O}$ has changed over time. To achieve this, we interpolated all
 296 annual cycles to a common resolution of 7 samples/year following the approach of Schubert
 297 and Jahren (2015). The mean of all values from each growth ring was then subtracted to gen-
 298 erate a seasonal cycle of isotopic anomalies. We used anomaly values instead of absolute iso-
 299 topic ratio to facilitate comparison between seasonal cycles of years with different mean iso-
 300 topic ratios. After generating these seasonal cycles for all available years, we aggregated all
 301 data from the two species (*A. lasiocarpa* and *P. engelmannii*) and two sites (Gothic, CO and
 302 Ziegler Reservoir) as part of a single population that included all 135 cycles over the period
 303 from 1980-2016. The decision to aggregate data provided a larger population of data for sub-
 304 sequent analyses and was justified based on the observation that the seasonal isotopic cycle
 305 and absolute isotopic values between species and sites were not statistically different (Fig. 3).
 306 This suggests that the trees at these nearby sites utilize similar water reservoirs and experience
 307 similar canopy conditions though future work could benefit from considering how small dif-
 308 ferences between species might reflect species-specific ecophysiology or ecohydrology.

309 To characterize the dominant isotopic cycles, a k-means clustering algorithm was utilized
 310 on the full population of seasonal cycles. The purpose of the clustering algorithm was to take
 311 the full population of seasonal isotopic cycles and partition them into a fixed number of groups
 312 (i.e. clusters) in a way that minimizes the difference between the cycles within a cluster and
 313 maximizes the difference between clusters. This is done using an iterative approach where iso-
 314 topic cycles are sorted randomly into a fixed number of clusters, the centroid (or average of
 315 the cluster) is calculated and the average difference between each member of the cluster and
 316 the centroid is calculated. This process is repeated until the sorting produces the smallest ac-
 317 cumulated difference between the members of each cluster and the mean of the cluster. Here,
 318 we used the Pearson's correlation coefficient to calculate the difference between each mem-
 319 ber of a cluster and the centroid and we ran the algorithm for 10,000 iterations. A critical as-
 320 pect of using k-means clustering is the *a priori* decision of how many clusters to sort the data
 321 into. After experimenting with a range of cluster sizes from 2-8, we chose to sort the seasonal
 322 cycles of the isotopic ratio of cellulose into three clusters. This choice was governed by the
 323 fact that as we increased the number of clusters, the same three dominant clusters persistently
 324 emerged while the additional clusters contained only a small number of cycles. An example
 325 of this analysis is illustrated in Figures S2 and S3. Lastly, after categorizing each cycle into
 326 one of the three clusters, we generated a timeseries of the relative frequency of each of the
 327 clusters over the period from 1980-2016 to assess how tree water use has shifted over recent
 328 decades.

329 **2.4 Modeling of isotopic ratio of cellulose**

330 In order to provide a mechanistic understanding of the dominant patterns in tree cel-
 331 lulose $\delta^{18}\text{O}$ that emerged from the cluster analysis, we used a model for the isotopic ratio of cel-
 332 lulose to explore how changes in seasonal water use influenced the shape of the annual cycle
 333 in tree ring cellulose. The model is based on the following equation:

$$\delta^{18}\text{O}_{\text{cellulose}} = \delta^{18}\text{O}_{\text{source}} + (1 - pe) * \Delta_{\text{leaf}} + \epsilon \quad (1)$$

334 Where the $\delta^{18}\text{O}_{\text{cellulose}}$ is modeled as a mixture between the isotopic ratio of the source
 335 water for the tree ($\delta^{18}\text{O}_{\text{source}}$) and the isotopic ratio of the leaf water (Δ_{leaf}) that has been

enriched by transpiration relative to $\delta^{18}\text{O}_{\text{source}}$. The photosynthates that form in the presence of the leaf water are further enriched in ^{18}O by a biochemical fractionation factor (ϵ , Equation S10). The relative importance of the source water and leaf water in defining the isotopic ratio of the cellulose is set by a mixing term defined as pe . The mixing term ranges from 0-1 and describes the efficiency with which isotopic exchange between photosynthates and xylem water occurs during cellulose metabolism. This model and close variants have been used in numerous studies and we refer readers to Barbour, Roden, Farquhar, and Ehleringer (2004); Evans (2007); Keel et al. (2016); Ogée et al. (2009); Roden et al. (2000) and references therein for additional details.

Detailed information on the isotopic ratio of xylem, soil, precipitation and groundwater were available from our 2016 field season, which provided a single season's constraint on $\delta^{18}\text{O}_{\text{source}}$. To estimate the source water over the full period when cellulose data was available (i.e. 1980-2016), we took advantage of the 20 years of the isotopic ratio of April 1 snowpack from Anderson et al. (2016) to provide a constraint on the winter precipitation and 10 years of weekly precipitation samples from nearby NADP sites to provide estimates of the summer rain input (Figs. 4 and 5). Both the snowmelt and summer precipitation inputs were estimated back to 1980 by calculating the climatological average from all available data and using this value for years when observations were not available. Using these summer and winter precipitation inputs, we tested how the relative utilization of these two water sources over this time period influenced the seasonal cycle of cellulose.

To estimate the other key term in Equation 1, Δ_{leaf} , we needed estimates of the physiological and canopy terms that influence isotopic exchange between leaf water and the atmosphere (e.g. transpiration, leaf VPD and canopy conductance). In the absence of direct canopy measurements, we inferred the canopy terms using the canopy model Soil Canopy Observation Photosynthesis Energy Model (SCOPE) (van der Tol, Verhoef, Timmermans, Verhoef, & Su, 2009; van der Tol, Berry, Campbell, & Rascher, 2014). SCOPE is a 1-D vertical model (40 canopy layers) that solves for the canopy energy budget, thermal properties of the canopy, radiative transfer of fluorescence, sensible and latent heat fluxes, resistance terms (from wind speed and canopy properties) and stomatal conductance and photosynthesis using the Farquhar-Berry model, which assumes photosynthesis is limited by light (electron transport) or Rubisco carboxylation and stomatal conductance, which together influence chloroplast CO_2 concentration (van der Tol et al., 2014). While this model lacks key ecosystem dynamics that are present in land surface models (such as the stomatal response to changing soil moisture), it is an efficient tool to estimate how canopy conditions respond to radiation, temperature and humidity changes. The model was run with a 30-minute time step from 1980-2016 using the following inputs mostly extracted from the North American Regional Reanalysis (NARR), which has a temporal resolution of 3 hours and spatial resolution of 32 km (Mesinger et al., 2006): incoming longwave and shortwave radiation, barometric pressure, relative humidity, windspeed, atmospheric CO_2 , canopy height and leaf area index (Table S1 and S4, Figs. S4 and S5). The climate forcing data from NARR was validated through a comparison with relative humidity and air temperature data from three nearby meteorological stations, referred to as billy barr (sic), Snodgrass and Mexican Cut (Figs. S6 and S7). We used the meteorological data to provide estimates of systematic bias and random uncertainty in the meteorological forcing that emerge from errors in NARR and the presence of subgrid cell variability in this topographically complex region. However, since these meteorological stations are neither maintained nor calibrated to National Weather Service standards, they are only used here to provide a point of comparison to assess model errors. The NARR data was interpolated from 3-hourly to 30-minute resolution, which was the timestep required to close the energy balance in the SCOPE simulations. Atmospheric CO_2 data was downloaded from the NOAA GMD flask measurements from Niwot Ridge. The Leaf Area Index and canopy height were set at fixed values of $3.0 \text{ m}^2 \text{ m}^{-2}$ and 10 m, respectively, based on estimates from satellite retrievals in Liang et al. (2013) and Simard, Pinto, Fisher, and Baccini (2011).

To solve for Δ_{leaf} in Equation 1, the modeled estimates of transpiration, photosynthesis, leaf temperature, leaf VPD and canopy conductances from SCOPE were passed through Supplementary Equations 1-10 (Barbour et al., 2004; Keel et al., 2016; Ogée et al., 2009; Ro-

den et al., 2000). The cellulose model also required estimates of the path length of the leaf, which was set at a fixed value of 0.01 cm (Keel et al., 2016), and the exchange efficiency between xylem water and sugars during cellulose metabolism (i.e. pe), which was set at 0.42 (Roden et al., 2000). The model produced 30-minute estimates of the isotopic ratio of cellulose for all time-steps when photosynthesis was greater than 0 and the air temperature was above the critical threshold for xylogenesis (Rossi et al., 2008). To convert the model results into annual cycles for the isotope ratio of cellulose with comparable resolution as the observations, we took the total accumulated photosynthesis for the growing season and distributed it into 7 equal segments and then calculated weighted averages of $\delta^{18}\text{O}$ of cellulose (weighted by rate of photosynthesis) for each of the 7 segments. A visual depiction of the full modeling framework is shown in Figure 6.

The model described above was utilized here in two ways:

(1) To simulate seasonal cycles of $\delta^{18}\text{O}$ for each year from 1980-2016 with the same atmospheric forcing but with three different water use patterns; only winter precipitation, only summer precipitation, or a transition between use of winter to summer precipitation midway through the growing season (Fig. 5). The outcome of this modeling exercise was 37 annual isotopic cycles (1980-2016) for each of the three water use patterns. This analysis tested both how interannual changes in atmospheric forcing affected the seasonal cycle in cellulose even if the water use was held constant and how the average seasonal cycle would change if the water use pattern was altered.

(2) To simulate a single year (2016) with the three different water use scenarios while the following input parameters were varied using a Monte Carlo simulation: canopy temperature, $\delta^{18}\text{O}$ of the water vapor, $\delta^{18}\text{O}$ of the source water, relative humidity, transpiration, the exchange efficiency with xylem water during cellulose metabolism (i.e. pe) and the rate of photosynthesis. These terms were chosen for the Monte Carlo simulation because they have the largest impacts on the final estimates of the isotopic ratio of cellulose and are terms that are difficult to constrain. We altered each of these terms in two ways: (1) we added a uniformly distributed $\pm 20\%$ error to each 30 minute timestep and (2) we added $\pm 20\%$ bias to all the values of that term for the entire year. We then ran 10000 simulations producing a distribution of annual cycles in $\delta^{18}\text{O}$ for a single year for each of the three water use patterns. The goal of this exercise was to assess the extent to which random uncertainty or bias in the key terms of the cellulose model might influence the shape of the seasonal cycle.

3 Results

Through May and early June of 2016, the measured soil water was dominated by snowmelt and the isotopic ratio of the soil water was homogenous with depth and similar to both the isotopic ratio of groundwater and April 1 snowpack ($-18\text{‰} \pm 0.5$) (Fig. 4). During this period, the stable isotopic ratio of xylem waters from *A. lasiocarpa* and *P. engelmannii* were comparable to the depth-averaged soil water (Fig. 4). As the growing season progressed, the isotopic ratio of the xylem water was invariant while precipitation increased to $\sim 10\text{‰}$ and surface soil water increased to $\sim 12\text{‰}$. By July (day of year 180-200), it was evident from the low isotopic ratios in the xylem water that the trees remained reliant on winter precipitation and were likely drawing on a mixture of water that included sources at least 50 cm below the surface but could have been drawing on water as deep or deeper than 130 cm. Root excavations for *Abies* and *Picea* species elsewhere have found rooting depths of 240 cm and 160 cm, respectively (Fan et al., 2017), which are within the ranges suggested by the isotopic analysis presented at this site. Beginning late July (day of year 210), the isotopic ratio of the xylem waters began to increase, reaching isotopic ratios of $\sim 5\text{‰}$ by mid-August. These values were comparable to surface soil water and precipitation at that time. The transition from use of winter to summer precipitation occurred weeks after a ~ 2 m drop in the water table height and a 50% decline in soil moisture at 50 cm, perhaps a response to transpiration uptake, but occurred nearly simultaneously with a modest increase in both 5 cm and 15 cm soil moisture levels (Fig. S8).

443 The 2016 data provide evidence for a water use pattern characterized by a transition be-
 444 tween use of winter to summer precipitation midway through the growing season (Fig. 5). This
 445 behavior is consistent with observations of water use from previous studies in the region (e.g.
 446 Hu et al. (2010)) but is not of sufficient length to assess the long term persistence of this pat-
 447 tern. We thus utilized the cellulose $\delta^{18}\text{O}$ data to examine temporal variations in the water use
 448 pattern. The entire population of 780 cellulose $\delta^{18}\text{O}$ measurements span between 26 to 36‰,
 449 which encompasses the range found in other isotopic studies on conifers from the region (Belmecheri,
 450 Wright, Szejner, Morino, & Monson, 2018; Berkelhammer & Stott, 2012; Szejner et al., 2016)
 451 (Fig. 3). Since there was no significant difference in the isotopic range or shape of the aver-
 452 age annual cycle between sites (Ziegler Reservoir and Gothic) and species (*A. lasiocarpa*, *P.*
 453 *engelmanni*), we infer that they are responding to a common atmospheric forcing and water
 454 use pattern (Fig. 3). The average cellulose cycle observed at these sites is characterized by iso-
 455topic anomalies of +0.5‰ early in the season that transition to isotopic anomalies of -0.5‰ by
 456 the end of the growing season. This pattern is similar to what has previously been observed
 457 in trees in Arizona by Belmecheri et al. (2018) and in eastern California by Berkelhammer and
 458 Stott (2009). After partitioning all available cycles into three clusters, we found that the most
 459 common cycle (referred to as Cluster 1) was similar in structure to the average cycle (i.e. Fig.
 460 3) and this pattern accounted for 48% of all the observed cycles (Fig. 7a). The second most
 461 common cycle (referred to as Cluster 2), has a quasi-parabolic structure with isotopic anom-
 462 alies of -1‰ in the beginning and end of the season and a mid season maximum of +1‰ (Fig.
 463 7b). The years in this cluster accounted for 30% of all the observed cycles. The last cycle, re-
 464 ferred to as Cluster 3, was similar in structure to Cluster 1 during the first half of the growth
 465 ring but then deviated by showing a progressive rise through the latter half of the growing sea-
 466 son (Fig. 7c). The years that fell within this cluster accounted for 22% of the observed cy-
 467 cles. The growth rings and xylem water measurements from 2016 fell within the population
 468 included in Cluster 3 (Fig. S9).

469 To explore the processes that gave rise to the distinct clusters, we ran the cellulose model
 470 over the period from 1980-2016 with three distinct water use patterns: (1) exclusive reliance
 471 on snowmelt/winter precipitation as observed by Allen et al. (2019), (2) reliance on growing
 472 season precipitation (Belmecheri et al., 2018) and (3) the water use pattern observed from field
 473 observations during 2016, which was characterized by a mid season transition between reliance
 474 on winter to summer precipitation (Fig. 5). When the model was run with a winter precip-
 475 itation water source, the average seasonal cycle over the 37 year simulation closely followed
 476 the structure of Cluster 1 (Figs. 7a and 7e). In contrast, when the model was forced with a
 477 summer precipitation source, the pattern mirrored Cluster 2 (Figs. 7b and 7f) and when the
 478 model was run with the water source pattern of 2016, the modeled structure followed Clus-
 479 ter 3 (Figs. 7c and 7g). When comparing the modeled and observed cellulose cycles, it is im-
 480 portant to note that the tree ring measurements do not have a timestamp but rather a fractional
 481 position in the ring (Fig. 2). The similarity between modeled and observed cycles may allow
 482 us to place an absolute timestamp on when the cellulose layers were formed. However, this
 483 is contingent on the seasonal cycle in the model being accurate. We assessed this by compar-
 484 ing the modeled transpiration rate with sap flux from the Gothic tree stand (Fig. S10), which
 485 supports that the canopy conditions simulated by the model, were sufficient to reproduce the
 486 broad timing of when the trees were transpiring even though there was not sufficient informa-
 487 tion to quantitatively compare the absolute magnitude of the observed and modeled transpi-
 488 ration fluxes. An additional comparison was made between the modeled photosynthetic rate
 489 with satellite-derived gross primary production (GPP) from the monthly FluxSat product (Joiner
 490 et al., 2018), which is derived from a combination of MODIS reflectances, solar induced flu-
 491 orescence retrievals and a light use efficiency model. This comparison suggested the SCOPE
 492 model had effectively captured the seasonal cycle in tree activity (Fig. S11). We did not at-
 493 tempt to quantitatively compare the modeled and satellite GPP because the resolution of the
 494 satellite product is 0.5° and the grid cell in which the trees fall includes a mixture of open forests
 495 (44%) and grasslands (55%). Lastly, we compared the modeled seasonal cycle in GPP with
 496 tree expansion from manual dendrometer bands at the Gothic site, which indicated these trees
 497 seemed to allocate a smaller fraction of late season GPP towards radial growth (Fig. 8). For

example, radial growth reached 90% of its annual total by day of year 200 (i.e. mid-July) while total carbon fixation did not reach 90% of its annual total until August. This apparent discrepancy can be explained by the fact that wood cells form and expand radially significantly ahead of when the cell walls thicken with cellulose. Thus, the temporal lag between volumetric growth and carbon allocated to cellulose observed here is consistent with data from the global analysis by Cuny et al. (2015) (Fig. 8). The result is also consistent with recent work on the isotopic composition of cellulose from other conifers in the southwestern US, which found that the isotopic ratio of cellulose within a tree-ring correlated most strongly with climate a month or more after the cells formed (Monson, Szejner, Belmecheri, Morino, & Wright, 2018; Szejner et al., 2016). Taken together, the comparison of the modeled transpiration and photosynthesis with sap flux, satellite GPP and dendrometry data all indicate that the modeled seasonal cycle in cellulose is approximately accurate.

The similarity between the $\delta^{18}\text{O}$ cycles that emerged from the three modeled water use scenarios and three dominant clusters derived from the observations (Fig. 7), suggests that changes in tree water use may explain the observed variations in the shape of the seasonal cycles in cellulose $\delta^{18}\text{O}$. However, because of uncertainty in some of the key forcing terms and parameters in the model, we remain cautious to limit interpretations of differences in the modeled seasonal cycles strictly in terms of changing water use. Notably, the most sensitive term in the cellulose model is relative humidity or leaf VPD (Burk & Stuiver, 1981; Kahmen et al., 2011) and our comparisons between RH from the local meteorological stations and the NARR grid cell show the potential for 10-20% errors in this forcing term (Fig. S6). The results from the Monte Carlo simulations indicate that the absolute $\delta^{18}\text{O}$ values are in fact highly sensitive to 20% model bias and error, such that the modeled seasonal cycles derived with the same water use can differ by 10‰ (Fig. 9, top row). However, when the absolute $\delta^{18}\text{O}$ are subtracted from the seasonal cycle and we consider isotopic cycles as anomalies relative to that year, the shape of the seasonal cycle is robust against model error and bias (Fig. 9, bottom row). This is an important distinction because it illustrates how modeling the absolute $\delta^{18}\text{O}$ value requires tight constraints on model parameters while modeling the shape of the seasonal cycle can be achieved despite high levels of uncertainty in model forcing terms. In light of these results, we focus discussion primarily on the observed seasonal patterns in the isotopic anomalies. Importantly, however, the distribution of modeled $\delta^{18}\text{O}$ values are not different than the population of observations, indicating that model forcings were not likely biased in any systematic way (Fig. 3C).

Informed by the results from the model simulations, we interpret the three dominant isotopic cycles that we observed to reflect differences in water use that fall along a spectrum between exclusive reliance on winter or summer precipitation. A timeseries analysis of these three water use patterns back to 1980, shows evidence for systematic low frequency shifts in seasonal water use preference or *plasticity* (Fig. 10). From the late 1980s to mid 1990s, 2000 to 2005 and post 2012, 80% of the rings were associated with dominant reliance on winter precipitation. On the other hand, there were brief periods surrounding 1985 and 2010, when preferential reliance on summer precipitation accounted for more than half of the growth rings. The temporal changes in seasonal water use by the trees closely followed changes in snowpack but in a counterintuitive way. Following multiple years of low snowpack, the trees increased their relative reliance on winter precipitation whereas during periods of increased snowpack, the relative use of summer rain increased (Fig. 10a). We note also that changes in snowpack and tree water use follow variations in tree ring width, such that periods of low snowpack and reliance on winter precipitation were associated with reduced aboveground growth (Fig. 10b). The correlation observed between tree ring widths and snowpack has been previously noted and has been interpreted to reflect the impact of reduced snowmelt on moisture stress (Woodhouse, 2003).

4 Discussion

The results presented here provide a first depiction of decadal variability in the seasonal origins of water used by two common conifers in Colorado using a proxy-based approach. It

551 is known that acquisition of soil water by plants involves diverse strategies that include dimor-
 552 phic root systems (Dawson & Pate, 1996), preference for bound waters (moisture held at high
 553 matric potential) (Brooks et al., 2010), lateral and vertical scavenging (Grossiord et al., 2017)
 554 and hydraulic redistribution (Burgess, Adams, Turner, & Ong, 1998). Until now, limited datasets
 555 existed to test how the seasonal origins of plant water varied over timescales longer than 1-
 556 2 growing seasons, which hindered the ability to predict the response of ecosystem produc-
 557 tivity, watershed hydrology or soil biogeochemical cycles to long and short term climate forc-
 558 ing (Eissenstat, Wells, Yanai, & Whitbeck, 2000; Joslin, Wolfe, & Hanson, 2000). The approach
 559 takes advantage of the fact that reliance on snowmelt through the growing season would lead
 560 to reduced variance in the isotopic ratio of the plant's water source and isotopic cycles in cel-
 561 lulose that would be driven primarily from surface climate and physiological forcing (Barbour
 562 et al., 2004; Gessler et al., 2009; Roden et al., 2000; Szejner et al., 2016). Alternatively, uti-
 563 lization of growing season precipitation would lead to isotopic cycles in the cellulose that re-
 564 flect both an isotopically dynamic source water and changes in surface climate (Belmecheri
 565 et al., 2018; Treydte et al., 2014).

566 The field observations and tree-ring cellulose data from 2016 both suggest a transition
 567 from use of winter to summer precipitation midway through the growing season that likely re-
 568 reflected the response to reduced water content at depth along with moistening of surface soil
 569 during the onset of summer rains (Figs. 4 and S8). This behavior could be interpreted either
 570 as an illustration of the trees shifting from a deeper to shallower water source as the surface
 571 soil was moistened and the deeper soil dried (Dawson & Pate, 1996; Grossiord et al., 2017;
 572 White, 1989). The change in the isotopic ratio of the source water could also reflect penetra-
 573 tion of summer rains to depth along preferential flow paths (Thomas et al., 2013). Our soil
 574 moisture measurements did not detect preferential flow of summer rains at depth but the sam-
 575 pling strategy was also not optimized to capture this phenomenon. The cellulose data, how-
 576 ever, showed that the nearly equal use of summer and winter precipitation during 2016 was
 577 rather uncommon in the context of the last 37 years (22% of measured years), highlighting the
 578 presence of plastic behavior and the limitations of using one or two field seasons of xylem and
 579 soil water data to infer the seasonal origin of water used by trees.

580 The longer timeseries generated here indicated it was more common for the trees to pref-
 581 erentially rely on precipitation from either summer or winter sources rather than switching be-
 582 tween the two during a growing season. One implication of this finding is that during years
 583 when snowmelt was the dominant water source, summer rain only minimally contributed to
 584 transpiration and was either evaporated or contributed to recharge and streamflow. Alterna-
 585 tively, during years of reliance on summer rain, snowmelt was only minimally transpired. We
 586 interpret this behavior to illustrate that trees are generally predisposed to preferential use of
 587 summer or winter precipitation as opposed to displaying higher frequency responses to evol-
 588 ing seasonal soil moisture conditions. It is important to note that preferential use of summer
 589 or winter precipitation was not simply a reflection of more or less snowmelt flooding the sys-
 590 tem as increased use of snowmelt actually occurred during periods of reduced snowfall. The
 591 inverse relationship between plant use of snowmelt and winter snowfall amount suggests the
 592 seasonal origins of water use is determined by interactions between vadose zone hydrology
 593 and root systems, rather than being controlled solely by the relative contributions of seasonal
 594 water to the watershed.

595 One possible way to interpret the observed variability in water use documented here is
 596 that it reflects changes in the soil depth that trees draw water from. If we presume the fine root
 597 distribution shifts over time in response to variations in the water table depth (Fan et al., 2017),
 598 this could set the condition for preferential reliance on deeper soil moisture (i.e. snowmelt)
 599 or shallower soil moisture (summer precipitation) (Drewniak, 2019; Iversen, 2010). The multi-
 600 year turnover time of fine roots (Matamala et al., 2003) could thus generate annual to inter-
 601 annual persistence in the depth that water is drawn from, which may explain why the seasonal
 602 origin of tree water use reconstructed here appears to retain a legacy for multiple years (Fig.
 603 10). This explanation could be summarized by the following sequence: (1) the water table depth
 604 and deep soil moisture content change in response to the previous years' snowpack (Amenu
 605 et al., 2005), (2) as the water table drops, the trees respond by deepening their root systems,

606 which has the effect of increasing reliance on deeper waters (i.e. snowmelt) and (3) after mul-
 607 tiple years of high snowpack and recharge, the water table rises and investment in shallow fine
 608 roots increases, which leads to increased reliance on near-surface soil moisture. A longer dataset
 609 of water table depths and root profiles along with more precise information on canopy con-
 610 ditions would be needed to test this hypothesis.

611 However, changes in seasonal origins of plant water do not necessarily imply that trees
 612 are changing the depth they are drawing water from. Rather, the changes in the seasonal ori-
 613 gins of the water could be a reflection of changes in the downward mobility of summer pre-
 614 cipitation through the root zone or upward mobility of snowmelt from deeper soil layers into
 615 the root zone (Kumar et al., 2019). During periods of increased snowfall, anomalously wet soil
 616 conditions can persist at depth for multiple years. The higher soil moisture content at depth
 617 has the effect of reducing the downward transport of surface soil moisture during the grow-
 618 ing season and, consequently, summer precipitation remains in the root zone longer (Ghan-
 619 nam et al., 2016). In contrast, during periods of low snowpack when the soil moisture at depth
 620 is reduced, the summer rain moves downward rapidly which, in turn, dries out the surface soils
 621 and leads to reduced transpiration. As shown in Figure 10, periods of reduced snowpack and
 622 increased reliance on snowpack were also periods of low tree growth and thus decreased trans-
 623piration. If antecedent snowpack affects the residence time of summer rain in the root zone,
 624 it seems likely that snowmelt provides a baseline water source for the trees and during wet-
 625 ter periods when total transpiration increases, summer rain remains in the root zone longer and
 626 supports the increased water demand. During some years, the summer rain contribution be-
 627 gins early in the growing season and gives rise to the cellulose patterns in Cluster 2 whereas
 628 in other years the use of summer rain does not begin until later in the growing season as we
 629 observed during the 2016 field season (Fig. 7).

630 It also may be the case that changes in both the root profiles and hysteresis of deep soil
 631 moisture may explain the apparent multi-annual persistence of the seasonal water use prefer-
 632 ence. These two mechanisms, the former biotic and the latter abiotic, are not mutually exclu-
 633 sive and may feedback to each other giving rise to the large shifts between 30% to 80% re-
 634 liance on winter precipitation over the last 4 decades (Fig. 10). There are also other plausi-
 635 ble mechanisms that may be relevant such as the effect of reduced snowpack on the exposure
 636 of surface roots to frost damage. This could inhibit use of shallow waters (i.e. summer pre-
 637 cipitation) for multiple years following low snowpack conditions (Inouye, 2008; Song, Zhu,
 638 Li, Zhang, & Li, 2018). However, the timeseries of frost exposure we derived from nearby me-
 639 teorological data do not suggest this was a critical process in determining temporal changes
 640 in plant water use (Fig. S12). Alternatively, competition for surface waters between conifers
 641 and co-located deciduous trees (i.e. *P. tremuloides*) (Anderegg et al., 2013) and herbaceous
 642 species (Nippert & Knapp, 2007) could shift over time and drive variations in access to sum-
 643 mer precipitation (West, Hultine, Jackson, & Ehleringer, 2007; Williams & Ehleringer, 2000).
 644 Stable isotopic measurements of xylem and soil water from a meadow nearby the Gothic site
 645 showed that two dominant forb species, *Helianthella quinquenervis* and *Erigeron speciosus* drew
 646 water from deeper (≥ 20 cm) and shallow soil horizons (≤ 10 cm), respectively (S. Saleska, un-
 647 published). Understory plant species thus compete for water pools at different depths though
 648 their impact on the transpiration budget of the forest canopy is presumably small relative to
 649 the mature trees. The co-located species may also influence hydraulic redistribution and in-
 650 crease the upward mobility of winter precipitation to the root zone.

651 Our interpretation of how these trees modified their water use relies on the assumption
 652 that changes in the shape of the seasonal cycle in cellulose reflect shifts in the source water.
 653 While this interpretation is supported by the model simulations, it is important to note that there
 654 remain key sources of uncertainty in the method that limit quantitative inferences on seasonal
 655 water use (Allen et al., 2019). We lacked long in situ meteorological records of humidity and
 656 radiation that would have enabled more accurate forcing to the cellulose and canopy models.
 657 Furthermore, flux records of evapotranspiration or CO_2 and thermal imaging of the canopy would
 658 have allowed us to optimize the canopy model, SCOPE. Both of these datasets would have pro-
 659 vided better constraints on how surface-atmosphere exchange influences the cellulose, which
 660 would have yielded better constraints on our estimates of trees' source water. In addition, the

661 canopy model lacked key ecosystem dynamics including the effect of changing soil moisture
 662 on stomatal conductance. The absence of this particular process may have led the model to
 663 miss changes in canopy exchange and temperature during sub-seasonal droughts. This could
 664 have led to an underestimation of the effect of VPD on the season cycle of cellulose. Addi-
 665 tionally, the absence of a soil moisture-stomatal conductance feedback may have artificially
 666 extended the growing season during dry years. Indeed, we see that growing season length be-
 667 tween years was likely artificially stable in the simulations (Fig. S13). Lastly, the cellulose model
 668 presumed that after carbon was fixed, it was immediately converted to cellulose. In reality, there
 669 are short lags (~week timescale) associated with translocating these sugars to the trunk and
 670 long lags if the tree utilized a prior year's carbohydrate pool for cellulose metabolism (Gessler
 671 et al., 2014). We did not include these processes because we lacked data to place a reason-
 672 able constraint on the necessary timescales. Failing to account for these lag processes likely
 673 means there is an offset in the seasonal timing of the cellulose timestamps and there may be
 674 some interannual carry-over effects in the observations that were not accounted for in the mod-
 675 eling. This issue becomes important if one is attempting to use cellulose data to precisely dis-
 676 tinguish when in the growing season a transition between water sources actually occurred. Fu-
 677 ture work that will include measurements of the rate of biomass accumulation in cells layers
 678 (Cuny et al., 2015) and timeseries' of the isotopic ratio of leaf and trunk sugars, would be nec-
 679 essary to place quantitative timestamps on cellulose layers. Nevertheless, it is encouraging that
 680 the Monte Carlo simulations suggest that the three dominant cycles observed in the cellulose
 681 likely represent distinct water use scenarios (Fig. 9). We envision variants of this approach
 682 could be broadly applied in other watersheds where there is a strong seasonal cycle in the iso-
 683 topic ratio of precipitation.

684 5 Conclusion

685 Abundant evidence shows that plants do not simply utilize the precipitation that recently
 686 fell but rather use legacy water reservoirs available from the multi-seasonal to multi-annual
 687 residence time of soil moisture. The use of this water from previous seasons, in turn, adds legacy
 688 to ecosystems by buffering the response of transpiration and primary productivity to current
 689 surface forcing. This study provides a proxy approach to study temporal dynamics of water
 690 use based on the seasonal cycle of the isotopic ratio of cellulose. Using a cluster analysis along
 691 with a mechanistic model for the isotopic ratio of cellulose, we were able to distinguish three
 692 broad classes of water use defined as: (1) exclusive reliance on winter precipitation, (2) sum-
 693 mer precipitation, or (3) a mid season transition between water sources. The results indicate
 694 that over the last 4 decades, the forests exhibited a high degree of water use plasticity but also
 695 multi-annual persistence. Our observations suggest that once a preference for a seasonal wa-
 696 ter use was established, it remained for multiple years providing evidence for legacy effects
 697 in plant water use. These variations in water use were driven by changes in winter snowpack
 698 such that periods of highest snowpack were associated with a reduction in the relative reliance
 699 on this water source. One interpretation of this behavior is that during high snowpack peri-
 700 ods there was increased tree growth and summer rain supported the increased water demands.
 701 Possible mechanisms to explain this may include high recharge from snow led to soil mois-
 702 ture anomalies at depth that increased the residence time of summer rain in the root zone. How-
 703 ever, other mechanism(s) linking snowpack to water use may also be relevant including changes
 704 in the root profile or changing competition with co-existing species. Future work could use
 705 information on water use from cellulose isotope measurements to test processes in land sur-
 706 face models that are difficult to constrain such as dynamic roots (Drewniak, 2019), interactions
 707 between groundwater and soil moisture (Maxwell & Condon, 2016) or species competition.
 708 The results presented here nonetheless provide important new insights for watershed models
 709 and interpretations of isotope hydrographs. Specifically, depending on the multi-annual con-
 710 text of when an analysis is conducted, summer precipitation may be selectively routed through
 711 a watershed or utilized by plants. Lastly, this approach has the capacity to provide a broad spa-
 712 tial and temporal picture of how plants influence streamflow and recharge because it can be
 713 applied in other watersheds where instrumental observational are limited.

714 6 Captions

715 **Figure 1:** Topographic map showing the primary locations discussed in the manuscript
 716 and the approximate location and size of the grid cell associated with the North American Re-
 717 gional Reanalysis data used as inputs to canopy model (SCOPE) and cellulose model.

718 **Figure 2:** A high-resolution scan from one of the tree cores used for the isotopic anal-
 719 yses along with a typical annual cycle in the isotopic ratio of cellulose. The x-axis is defined
 720 here as the fractional position relative to the total length of the individual growth ring.

721 **Figure 3:** (A) The average annual cycle in cellulose anomalies broken up by site (ZR
 722 referring to Ziegler Reservoir) and species. The error bars capture one standard deviation around
 723 the mean. (B) The distribution of $\delta^{18}\text{O}$ for each site and species. (C) The distribution of $\delta^{18}\text{O}$
 724 as aggregated from the modeling exercise described in Section 2.4.

725 **Figure 4:** (A) The stable oxygen isotopic ratios of various surface reservoirs during the
 726 2016 growing season from Gothic, CO. Data presented with lines and uncertainty clouds are
 727 averages from multiple years of data with one standard deviation of uncertainty. The isotopic
 728 ratio of snowpack is derived from an integrated snowpack sample taken on April 1 and so rep-
 729 resents only a single moment in time but was extended through the timeseries for compari-
 730 son with the other pools. The isotopic ratio of the xylem water is shown as the average of all
 731 samples taken within that period of time. (B) Stable oxygen isotope ratio of soil and ground-
 732 water as a function of depth and time. The black dots represent the depth and time of soil wa-
 733 ter measurements while the blue and brown dots show the timing of precipitation (0 cm) and
 734 well-water measurements (3 m), respectively. A kriging method was used to interpolate the
 735 point measurements to provide the stable oxygen isotope surfaces (in color). The locations as-
 736 sociated with the measurements are shown in Fig. 1 and data sources are listed in Tables S2
 737 and S3.

738 **Figure 5:** (A) Three water use models shown as the relative fraction of snowmelt in the
 739 xylem stream. The green line and bar captures the specific mixture of snowmelt and summer
 740 rain used by the trees during the 2016 growing season based on a two end member mixing
 741 model. (B) The stable isotopic ratio of xylem water that emerged from each of the three mod-
 742 els of seasonal water use patterns shown in Panel A. The green dots (as shown in Figure 4)
 743 were used to generate the model for seasonal water use as represented by the green line.

744 **Figure 6:** Flow chart showing the model sub-components and data streams used as in-
 745 puts to both the SCOPE and cellulose biogeochemical models. In sequence from left to right:
 746 data streams are input into SCOPE to solve for canopy-atmosphere exchange. The outputs from
 747 the SCOPE model are used along with information on the isotopic ratio of source water and
 748 water vapor, as inputs to a model to predict the isotopic ratio of cellulose (Roden et al., 2000).
 749 The model was run with three different possible water use scenarios, which are color-coded
 750 as blue (snowmelt), green (snowmelt to summer precipitation) and red (summer precipitation).
 751 We show the approximate shape of the isotopic cycles in cellulose that emerged from forcing
 752 the model with the three different water sources. The model inputs, parametrizations and as-
 753 sociated data sources are listed in Tables S1-S4.

754 **Figure 7:** (A-C) Results from the k-means clustering analysis of all the observed cel-
 755 lulose cycles. Gray lines are the individual cycles that fell into that cluster, the solid colored
 756 lines show the mean of all cycles and the dotted lines show the 25th and 75th percentiles around
 757 the mean. (D) The frequency of the three clusters shown in Panels A-C. (E-G) Results from
 758 the model simulations using the three difference water use patterns. The colors correspond di-
 759 rectly to the colors used in Figure 6. The solid lines here show the mean of the 37 annual cy-
 760 cles and the gray bar shows the 25th and 75th percentiles around the mean.

761 **Figure 8:** (A) Cumulative annual growth measured from dendrometer bands (colored
 762 lines) and photosynthesis from the SCOPE model (Methods). The growth measurements were
 763 made monthly (as indicated by the points) from 2004-2010. The average and best-fit regres-
 764 sion line over this period is shown. For photosynthesis, the model was run from 1980-2016
 765 and the average over that period is shown. The dots mark 7 evenly-spaced increments (in terms
 766 of carbon fixation), which represents how the seasonal cellulose measurements were incremented.
 767 The uncertainty bars show the range of possible days when each increment was reached over
 768 the 37-year simulation. (B) The lag in days between when cumulative volume and carbon fix-

769 ation reach progressive increments as indicated by the gray area between curves in panel A.
 770 Growth and carbon fixation begin and end near the same time of the year but volumetric growth
 771 occurs more rapidly early in the season whereas carbon fixation occurs later (Cuny et al., 2015).

772 **Figure 9:** (A-C) The range of seasonal cycles in $\delta^{18}\text{O}$ that emerge from the Monte Carlo
 773 simulations using the three difference water use patterns described in the text. The colors as-
 774 sociated with the different water use correspond to those used in Figs. 6 and 7. The shading
 775 captures the relative density of data at a given place on the graph. (D-F) Same as for A-C but
 776 the y-axes are now anomalies relative to each year. Note the difference in the range of isotopic
 777 variability (y-axes) between A-C and D-F.

778 **Figure 10:** (A) Timeseries showing the proportion of annual isotopic cycles that fell within
 779 Cluster 1, which is the pattern that emerged from reliance on snowmelt (colored wedges). This
 780 is plotted alongside the timeseries of snowfall for the previous three winters. (B) Timeseries
 781 of tree-ring widths averaged for all conifers from the two stands. Gray bars denote one stan-
 782 dard deviation around the mean for each year.

783 Acknowledgments

784 The authors would like to thank Wendy Brown for collecting Copper Creek and groundwa-
 785 ter samples for isotopic analysis as well as the entire staff of the Rocky Mountain Biological
 786 lab including billy barr for field support and providing weather data. The authors would like
 787 to thank Peter Brown from the Rocky Mountain Tree Ring Lab, Steve Nash from the Denver
 788 Museum of Nature and Science and Rebecca Brice from USGS and University of Arizona for
 789 field support in collecting the Snowmass tree ring samples. We thank Scott Saleska for pro-
 790 viding the unpublished xylem water isotope data from the RMBL Research Meadow. We also
 791 acknowledge Jenny Bueno, Blanca Escutia and Ioana Stefanescu for their assistance in pro-
 792 cessing cellulose samples. The work was partially supported through NSF grant 1502776 to
 793 MB and the Johnson Family Memorial Fellowship Endowment to FR. MW was partially sup-
 794 ported by DOE-DE-SC0014556. This material is partially based upon work supported through
 795 the Lawrence Berkeley National Laboratory's Watershed Function Scientific Focus Area. The
 796 U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmen-
 797 tal Research funded the work under contract DE-AC02-05CH11231 (Lawrence Berkeley Na-
 798 tional Laboratory; operated by the University of California). The data associated with this study
 799 are archived and accessible from through the Rocky Mountain Biological Lab (<http://www.rmbi.org/scientists/databases/>)
 800 and through the DOE East River Watershed data portal (<http://watershed.lbl.gov/data/>).

801 References

802 Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T., & Goldsmith, G. R. (2019). Seasonal
 803 origins of soil water used by trees. *Hydrology and Earth System Sciences*, 23(2),
 804 1199–1210.

805 Amenu, G. G., Kumar, P., & Liang, X.-Z. (2005). Interannual variability of deep-layer hy-
 806 drologic memory and mechanisms of its influence on surface energy fluxes. *Journal of
 807 climate*, 18(23), 5024–5045.

808 Anchukaitis, K. J., Evans, M. N., Lange, T., Smith, D. R., Leavitt, S. W., & Schrag, D. P.
 809 (2008). Consequences of a rapid cellulose extraction technique for oxygen isotope and
 810 radiocarbon analyses. *Analytical chemistry*, 80(6), 2035–2041.

811 Anderegg, L. D., Anderegg, W. R., Abatzoglou, J., Hausladen, A. M., & Berry, J. A. (2013).
 812 Drought characteristics' role in widespread aspen forest mortality across colorado, usa.
 813 *Global Change Biology*, 19(5), 1526–1537.

814 Anderson, L., Berkelhammer, M., & Mast, M. A. (2016). Isotopes in North American Rocky
 815 Mountain Snowpack 1993–2014. *Quaternary Science Reviews*, 131, 262–273.

816 Barbour, M. M., Roden, J. S., Farquhar, G. D., & Ehleringer, J. R. (2004). Expressing leaf
 817 water and cellulose oxygen isotope ratios as enrichment above source water reveals
 818 evidence of a péclet effect. *Oecologia*, 138(3), 426–435.

819 Belmecheri, S., Wright, W. E., Szejner, P., Morino, K. A., & Monson, R. K. (2018). Carbon
 820 and oxygen isotope fractionations in tree rings reveal interactions between cambial

phenology and seasonal climate. *Plant, cell & environment*.

Berkelhammer, M., Noone, D., Wong, T., Burns, S., Knowles, J., Kaushik, A., . . . Williams, M. (2016). Convergent approaches to determine an ecosystem's transpiration fraction. *Global Biogeochemical Cycles*, 30(6), 933–951.

Berkelhammer, M., & Stott, L. (2012). Secular temperature trends for the southern Rocky Mountains over the last five centuries. *Geophysical Research Letters*, 39(17).

Berkelhammer, M., & Stott, L. D. (2009). Modeled and observed intra-ring δ 18 O cycles within late holocene bristlecone pine tree samples. *Chemical Geology*, 264(1), 13–23.

Berry, Z. C., Evaristo, J., Moore, G., Poca, M., Steppe, K., Verrot, L., . . . others (2018). The two water worlds hypothesis: Addressing multiple working hypotheses and proposing a way forward. *Ecohydrology*, 11(3), e1843.

Bierkens, M. F., & Van den Hurk, B. J. (2007). Groundwater convergence as a possible mechanism for multi-year persistence in rainfall. *Geophysical Research Letters*, 34(2).

Bowling, D. R., Schulze, E. S., & Hall, S. J. (2017). Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source? *Ecohydrology*, 10(1).

Bréda, N., Huc, R., Granier, A., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. *Annals of Forest Science*, 63(6), 625–644.

Brooks, J. R., Barnard, H. R., Coulombe, R., & McDonnell, J. J. (2010). Ecohydrologic separation of water between trees and streams in a mediterranean climate. *Nature Geoscience*, 3(2), 100–104.

Brown, P. M., Nash, S. E., & Kline, D. (2014). Identification and dendrochronology of wood found at the Ziegler Reservoir fossil site, Colorado, USA. *Quaternary Research*, 82(3), 575–579.

Buennning, N. H., Stott, L., Yoshimura, K., & Berkelhammer, M. (2012). The cause of the seasonal variation in the oxygen isotopic composition of precipitation along the western us coast. *Journal of Geophysical Research: Atmospheres*, 117(D18).

Bunde, A., Büntgen, U., Ludescher, J., Luterbacher, J., & Von Storch, H. (2013). Is there memory in precipitation? *Nature climate change*, 3(3), 174–175.

Burgess, S. S., Adams, M. A., Turner, N. C., & Ong, C. K. (1998). The redistribution of soil water by tree root systems. *Oecologia*, 115(3), 306–311.

Burk, R., & Stuiver, M. (1981). Oxygen isotope ratios in trees reflect mean annual temperature and humidity. *Science*, 211(4489), 1417–1419.

Chang, E., Wolf, A., Gerlein-Safdi, C., & Taylor, K. K. (2016). Improved removal of volatile organic compounds for laser-based spectroscopy of water isotopes. *Rapid Communications in Mass Spectrometry*, 30(6), 784–790.

Cuny, H. E., Rathgeber, C. B., Frank, D., Fonti, P., Mäkinen, H., Prislan, P., . . . others (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. *Nature Plants*, 1(11), 15160.

Dawson, T. E., & Pate, J. S. (1996). Seasonal water uptake and movement in root systems of Australian phreatophytic plants of dimorphic root morphology: a stable isotope investigation. *Oecologia*, 107(1), 13–20.

DeNiro, M. J., & Epstein, S. (1981). Isotopic composition of cellulose from aquatic organisms. *Geochimica et Cosmochimica Acta*, 45(10), 1885–1894.

Drewniak, B. (2019). Simulating dynamic roots in the energy exascale earth system land model. *Journal of Advances in Modeling Earth Systems*, 11(1), 338–359.

Dubbert, M., & Werner, C. (2019). Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces. *New Phytologist*, 221(4), 1754–1763.

Eissenstat, D., Wells, C., Yanai, R., & Whitbeck, J. (2000). Building roots in a changing environment: implications for root longevity. *The New Phytologist*, 147(1), 33–42.

Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R., & Büntgen, U. (2015). Signals and memory in tree-ring width and density data. *Dendrochronologia*, 35, 62–70.

Evans, M. (2007). Toward forward modeling for paleoclimatic proxy signal calibration: A case study with oxygen isotopic composition of tropical woods. *Geochemistry, Ge-*

physics, *Geosystems*, 8(7).

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., & Otero-Casal, C. (2017). Hydrologic regulation of plant rooting depth. *Proceedings of the National Academy of Sciences*, 201712381.

Ferguson, I. M., Jefferson, J. L., Maxwell, R. M., & Kollet, S. J. (2016). Effects of root water uptake formulation on simulated water and energy budgets at local and basin scales. *Environmental Earth Sciences*, 75(4), 1–15.

Franke, J., Frank, D., Raible, C. C., Esper, J., & Brönnimann, S. (2013). Spectral biases in tree-ring climate proxies. *Nature Climate Change*, 3(4), 360–364.

Gessler, A., Brandes, E., Buchmann, N., Helle, G., Rennenberg, H., & Barnard, R. L. (2009). Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. *Plant, Cell & Environment*, 32(7), 780–795.

Gessler, A., Ferrio, J. P., Hommel, R., Treyte, K., Werner, R. A., & Monson, R. K. (2014). Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. *Tree physiology*, 34(8), 796–818.

Ghannam, K., Nakai, T., Paschalis, A., Oishi, C. A., Kotani, A., Igarashi, Y., ... Katul, G. G. (2016). Persistence and memory timescales in root-zone soil moisture dynamics. *Water Resources Research*, 52(2), 1427–1445.

Goldsmith, G. R., Allen, S. T., Braun, S., Engbersen, N., González-Quijano, C. R., Kirchner, J. W., & Siegwolf, R. T. (2019). Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest. *Ecohydrology*, 12(2), e2059.

Grossiord, C., Sevanto, S., Dawson, T. E., Adams, H. D., Collins, A. D., Dickman, L. T., ... McDowell, N. G. (2017). Warming combined with more extreme precipitation regimes modifies the water sources used by trees. *New Phytologist*, 213(2), 584–596.

Helliker, B. R., Song, X., Goulden, M. L., Clark, K., Bolstad, P., Munger, J. W., ... others (2018). Assessing the interplay between canopy energy balance and photosynthesis with cellulose δ 18 O: large-scale patterns and independent ground-truthing. *Oecologia*, 187(4), 995–1007.

Hu, J., Moore, D. J., Burns, S. P., & Monson, R. K. (2010). Longer growing seasons lead to less carbon sequestration by a subalpine forest. *Global Change Biology*, 16(2), 771–783.

Inouye, D. W. (2008). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. *Ecology*, 89(2), 353–362.

Iversen, C. M. (2010). Digging deeper: fine-root responses to rising atmospheric CO₂ concentration in forested ecosystems. *New Phytologist*, 186(2), 346–357.

Johnson, J., Hamann, L., Dettman, D., Kim-Hak, D., Leavitt, S., Monson, R., & Papuga, S. (2017). Performance of induction module cavity ring-down spectroscopy (IM-CRDS) for measuring δ 18O and δ 2H values of soil, stem, and leaf waters. *Rapid Communications in Mass Spectrometry*, 31(6), 547–560.

Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., ... Tucker, C. (2018). Estimation of terrestrial global gross primary production (gpp) with satellite data-driven models and eddy covariance flux data. *Remote Sensing*, 10(9), 1346.

Joslin, J., Wolfe, M., & Hanson, P. (2000). Effects of altered water regimes on forest root systems. *The New phytologist*, 147(1), 117–129.

Kahmen, A., Sachse, D., Arndt, S. K., Tu, K. P., Farrington, H., Vitousek, P. M., & Dawson, T. E. (2011). Cellulose δ 18O is an index of leaf-to-air vapor pressure difference (vpd) in tropical plants. *Proceedings of the National Academy of Sciences*, 108(5), 1981–1986.

Keel, S. G., Joos, F., Spahni, R., Saurer, M., Weigt, R. B., & Klesse, S. (2016). Simulating oxygen isotope ratios in tree ring cellulose using a dynamic global vegetation model. *Biogeosciences*, 13(13), 3869–3886. doi: 10.5194/bg-13-3869-2016

Kumar, S., Newman, M., Wang, Y., & Livneh, B. (2019). Potential reemergence of seasonal soil moisture anomalies in north america. *Journal of Climate*.

Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., ... others (2013). A long-term

931 global land surface satellite (glass) data-set for environmental studies. *International*
 932 *Journal of Digital Earth*, 6(sup1), 5–33.

933 Marshall, J. D., & Monserud, R. A. (2006). Co-occurring species differ in tree-ring $\delta^{18}\text{O}$
 934 trends. *Tree physiology*, 26(8), 1055–1066.

935 Martin, J., Looker, N., Hoylman, Z., Jencso, K., & Hu, J. (2018). Differential use of winter
 936 precipitation by upper and lower elevation douglas fir in the northern rockies. *Global*
 937 *change biology*, 24(12), 5607–5621.

938 Matamala, R., Gonzalez-Meler, M. A., Jastrow, J. D., Norby, R. J., & Schlesinger, W. H.
 939 (2003). Impacts of fine root turnover on forest npp and soil c sequestration potential.
 940 *Science*, 302(5649), 1385–1387.

941 Maxwell, R. M., & Condon, L. E. (2016). Connections between groundwater flow and trans-
 942 spiration partitioning. *Science*, 353(6297), 377–380.

943 Maxwell, R. M., Condon, L. E., Danesh-Yazdi, M., & Bearup, L. A. (2019). Exploring
 944 source water mixing and transient residence time distributions of outflow and evap-
 945 otranspiration with an integrated hydrologic model and Lagrangian particle tracking
 946 approach. *Ecohydrology*, 12(1), e2042.

947 Maxwell, R. M., & Kollet, S. J. (2008). Interdependence of groundwater dynamics and land-
 948 energy feedbacks under climate change. *Nature Geoscience*, 1(10), 665–669.

949 Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., . . . others
 950 (2006). North American Regional Reanalysis. *Bulletin of the American Meteorological*
 951 *Society*, 87(3), 343–360.

952 Monson, R. K., Szejner, P., Belmecheri, S., Morino, K. A., & Wright, W. E. (2018). Finding
 953 the seasons in tree ring stable isotope ratios. *American journal of botany*.

954 Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M., & Engel, R. (2018). Dramatic declines in
 955 snowpack in the western us. *npj Climate and Atmospheric Science*, 1(1), 2.

956 Nardini, A., Casolo, V., Dal Borgo, A., Savi, T., Stenni, B., Bertoncin, P., . . . McDowell,
 957 N. G. (2016). Rooting depth, water relations and non-structural carbohydrate dynam-
 958 ics in three woody angiosperms differentially affected by an extreme summer drought.
 959 *Plant, cell & environment*, 39(3), 618–627.

960 Nippert, J. B., & Knapp, A. K. (2007). Linking water uptake with rooting patterns in grass-
 961 land species. *Oecologia*, 153(2), 261–272.

962 Ogée, J., Barbour, M. M., Wingate, L., Bert, D., Bosc, A., Stievenard, M., . . . others (2009).
 963 A single-substrate model to interpret intra-annual stable isotope signals in tree-ring
 964 cellulose. *Plant, Cell & Environment*, 32(8), 1071–1090.

965 Phillips, S. L., & Ehleringer, J. R. (1995). Limited uptake of summer precipitation by big-
 966 tooth maple (*Acer grandidentatum* Nutt) and Gambel's oak (*Quercus gambelii* Nutt).
 967 *Trees*, 9(4), 214–219.

968 Rempe, D. M., & Dietrich, W. E. (2018). Direct observations of rock moisture, a hidden
 969 component of the hydrologic cycle. *Proceedings of the National Academy of Sciences*,
 970 115(11), 2664–2669.

971 Restaino, C. M., Peterson, D. L., & Littell, J. (2016). Increased water deficit decreases Dou-
 972 glas fir growth throughout western US forests. *Proceedings of the National Academy of*
 973 *Sciences*, 113(34), 9557–9562.

974 Roden, J. S., Lin, G., & Ehleringer, J. R. (2000). A mechanistic model for interpretation of
 975 hydrogen and oxygen isotope ratios in tree-ring cellulose. *Geochimica et Cosmochim-
 976 ica Acta*, 64(1), 21–35.

977 Romero-Saltos, H., Sternberg, L. d. S., Moreira, M. Z., & Nepstad, D. C. (2005). Rainfall
 978 exclusion in an eastern Amazonian forest alters soil water movement and depth of
 979 water uptake. *American Journal of Botany*, 92(3), 443–455.

980 Rossi, S., Deslauriers, A., Griçar, J., Seo, J.-W., Rathgeber, C. B., Anfodillo, T., . . . Jalkanen,
 981 R. (2008). Critical temperatures for xylogenesis in conifers of cold climates. *Global*
 982 *Ecology and Biogeography*, 17(6), 696–707.

983 Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbagy, E., & Peters, D. (2012). Lega-
 984 cies of precipitation fluctuations on primary production: theory and data synthesis.
 985 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 367(1606),

986 3135–3144.

987 Schubert, B. A., & Jahren, A. H. (2015). Seasonal temperature and precipitation recorded in
988 the intra-annual oxygen isotope pattern of meteoric water and tree-ring cellulose. *Qua-*
989 *tertary Science Reviews*, 125, 1–14.

990 Simard, M., Pinto, N., Fisher, J. B., & Baccini, A. (2011). Mapping forest canopy height
991 globally with spaceborne lidar. *Journal of Geophysical Research: Biogeosciences*,
992 116(G4).

993 Song, L., Zhu, J., Li, M., Zhang, J., & Li, D. (2018). Water use strategies of natural pi-
994 nus sylvestris var. mongolica trees of different ages in hulunbuir sandy land of inner
995 mongolia, china, based on stable isotope analysis. *Trees*, 32(4), 1001–1011.

996 Sprenger, M., Leistert, H., Gimbel, K., & Weiler, M. (2016). Illuminating hydrological pro-
997 cesses at the soil-vegetation-atmosphere interface with water stable isotopes. *Reviews*
998 *of Geophysics*, 54(3), 674–704.

999 Sprenger, M., Llorens, P., Cayuela, C., Gallart, F., & Latron, J. (2019). Mechanisms of
1000 consistently disconnected soil water pools over (pore) space and time. *Hydrology and*
1001 *Earth System Sciences Discussions*, 1–18.

1002 Szejner, P., Wright, W. E., Babst, F., Belmecheri, S., Trouet, V., Leavitt, S. W., . . . Monson,
1003 R. K. (2016). Latitudinal gradients in tree ring stable carbon and oxygen isotopes
1004 reveal differential climate influences of the North American Monsoon System. *Journal*
1005 *of Geophysical Research: Biogeosciences*, 121(7), 1978–1991.

1006 Thomas, E. M., Lin, H., Duffy, C. J., Sullivan, P. L., Holmes, G. H., Brantley, S. L., & Jin, L.
1007 (2013). Spatiotemporal patterns of water stable isotope compositions at the shale hills
1008 critical zone observatory: Linkages to subsurface hydrologic processes. *Vadose Zone*
1009 *Journal*, 12(4).

1010 Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., . . . others (2014).
1011 Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source
1012 water versus needle water enrichment. *New Phytologist*, 202(3), 772–783.

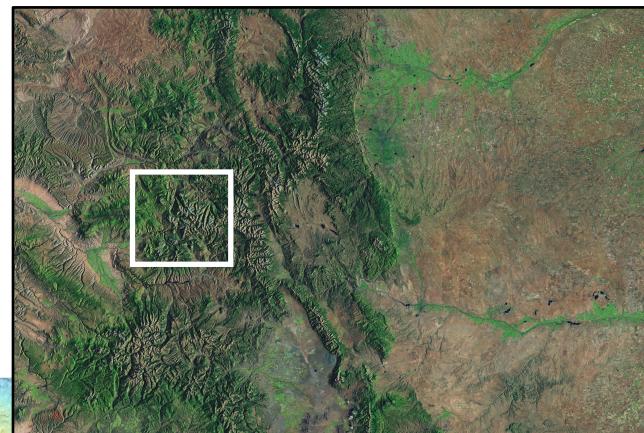
1013 van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., & Su, Z. (2009). An integrated
1014 model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and
1015 energy balance. *Biogeosciences*, 6(12), 3109–3129.

1016 van der Tol, C., Berry, J., Campbell, P., & Rascher, U. (2014). Models of fluorescence and
1017 photosynthesis for interpreting measurements of solar-induced chlorophyll fluores-
1018 cence. *Journal of Geophysical Research: Biogeosciences*, 119(12), 2312–2327.

1019 Vendramini, P. F., & Sternberg, L. d. S. (2007). A faster plant stem-water extraction method.
1020 *Rapid Communications in Mass Spectrometry*, 21(2), 164–168.

1021 West, A., Hultine, K., Jackson, T., & Ehleringer, J. (2007). Differential summer water use by
1022 *Pinus edulis* and *Juniperus osteosperma* reflects contrasting hydraulic characteristics.
1023 *Tree Physiology*, 27(12), 1711–1720.

1024 White, J. (1989). Stable hydrogen isotope ratios in plants: a review of current theory and
1025 some potential applications. In *Stable isotopes in ecological research* (pp. 142–162).
1026 Springer.


1027 Williams, D. G., & Ehleringer, J. R. (2000). Intra-and interspecific variation for summer pre-
1028 cipitation use in Pinyon–Juniper woodlands. *Ecological Monographs*, 70(4), 517–537.

1029 Woodhouse, C. A. (2003). A 431-yr reconstruction of western Colorado snowpack from tree
1030 rings. *Journal of Climate*, 16(10), 1551–1561.

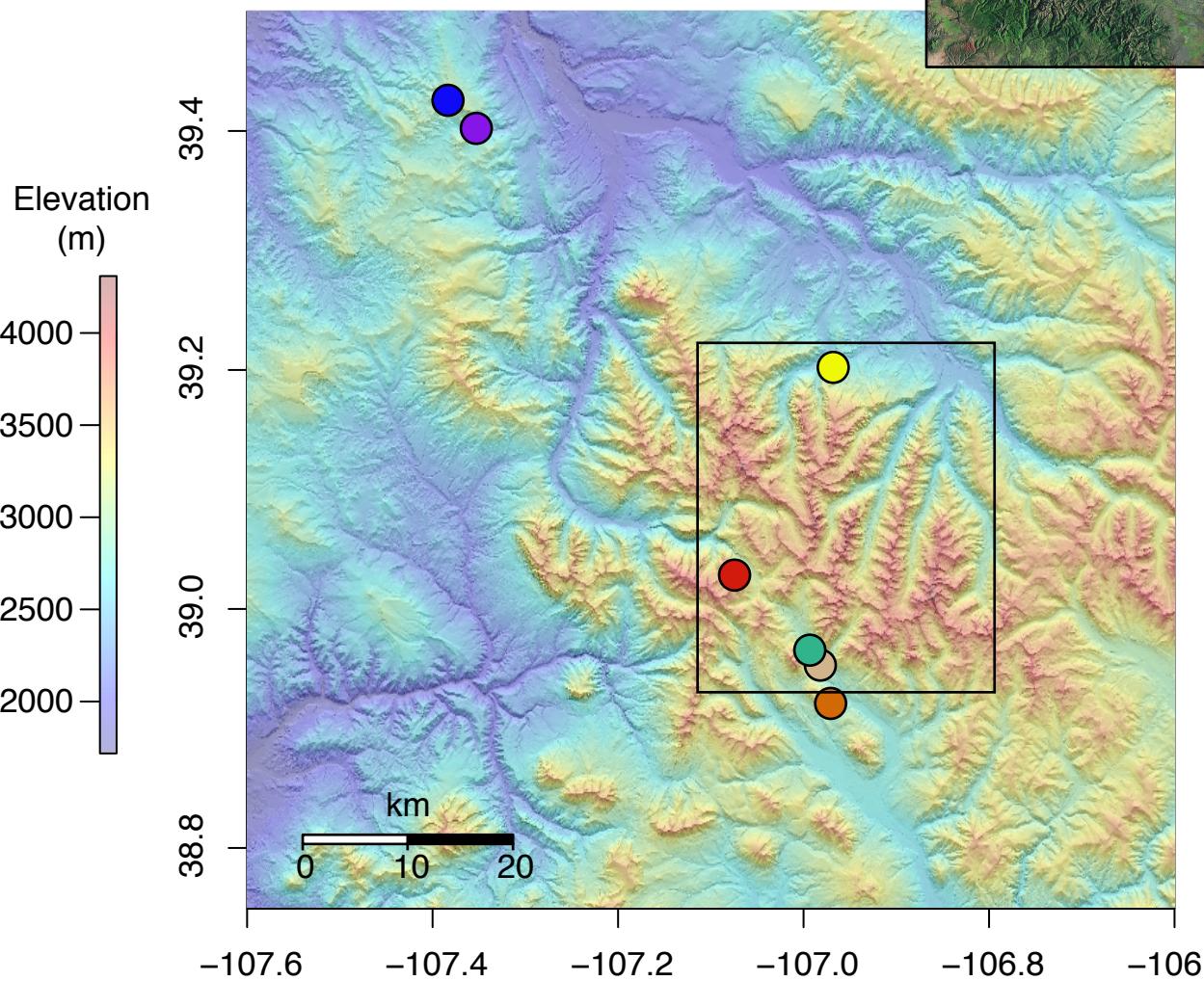
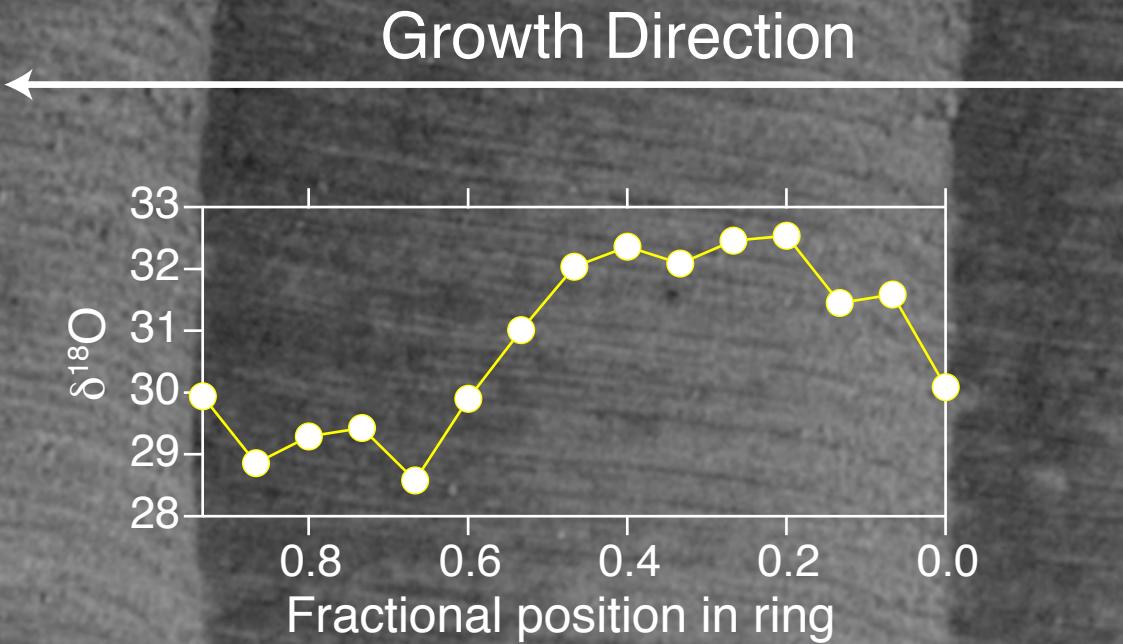

1031 Zhang, Z. Q., Evaristo, J., Li, Z., Si, B. C., & McDonnell, J. J. (2017). Tritium analysis
1032 shows apple trees may be transpiring water several decades old. *Hydrological Pro-
1033 cesses*, 31(5), 1196–1201.

Figure 1.

Colorado, USA



Site Map

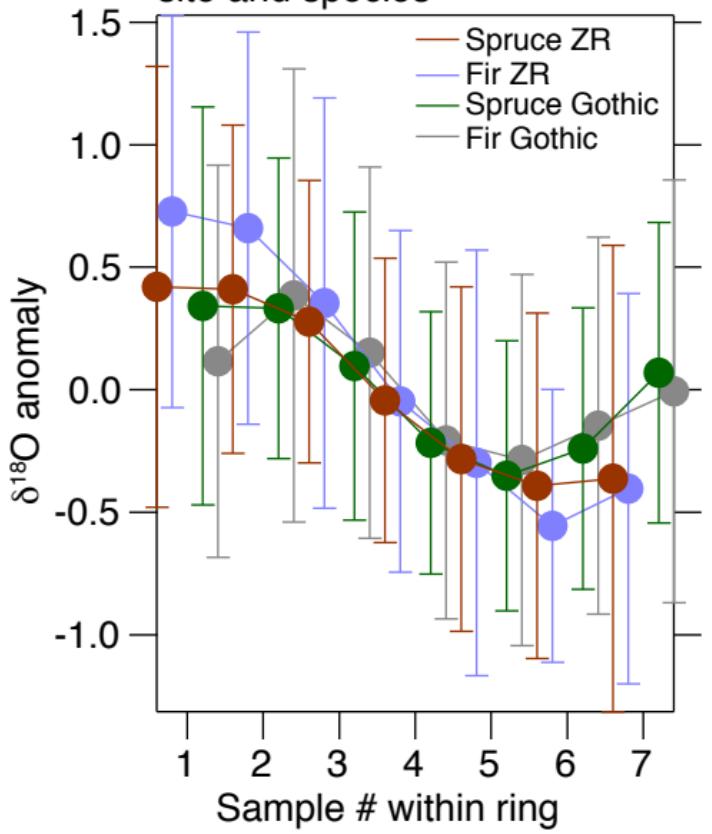

- Gothic, CO
(cellulose and primary field site)
- Ziegler Reservoir (cellulose site)
- Sunlight Peak
(snowpack and precip. isotopes)
- Fourmile Park
(snowpack and precip. isotopes)
- Snodgrass (Met. Station)
- Mexican Cut (Met. Station)
- b. barr (Met. Station)
- NARR grid cell

Figure 2.

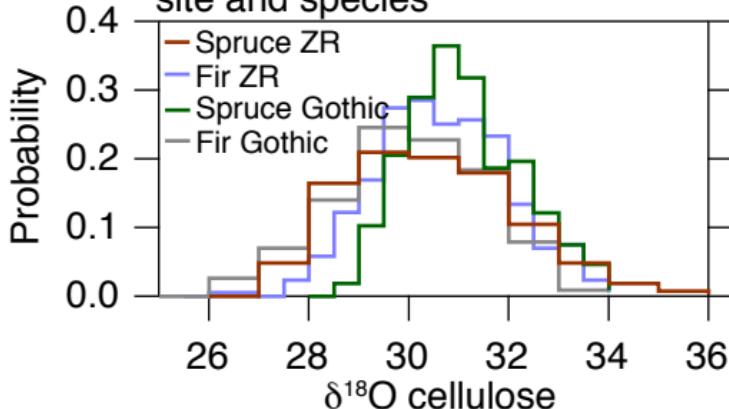
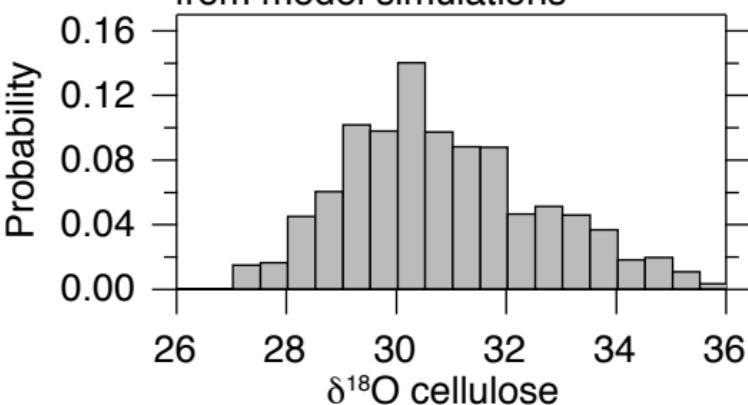
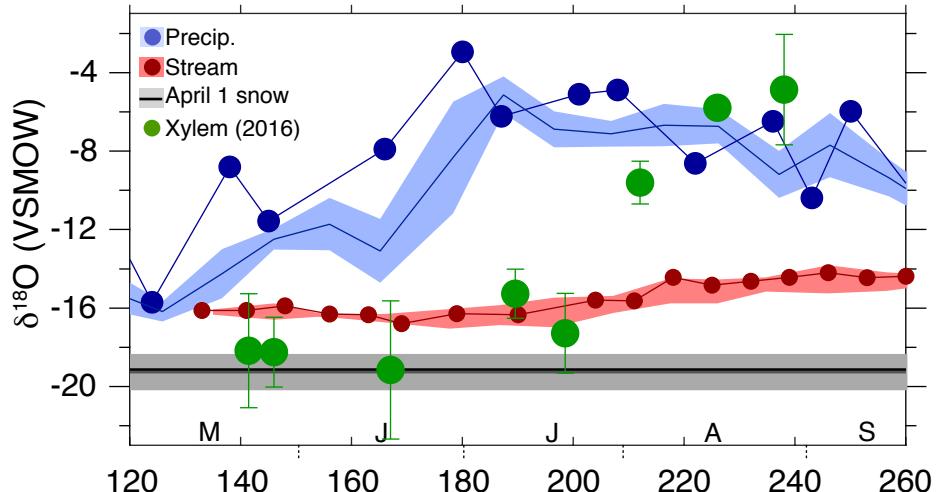


Figure 3.


(A) Average seasonal cycle by site and species

(B) Distribution of isotope ratios by site and species



(C) Distribution of isotope ratios from model simulations

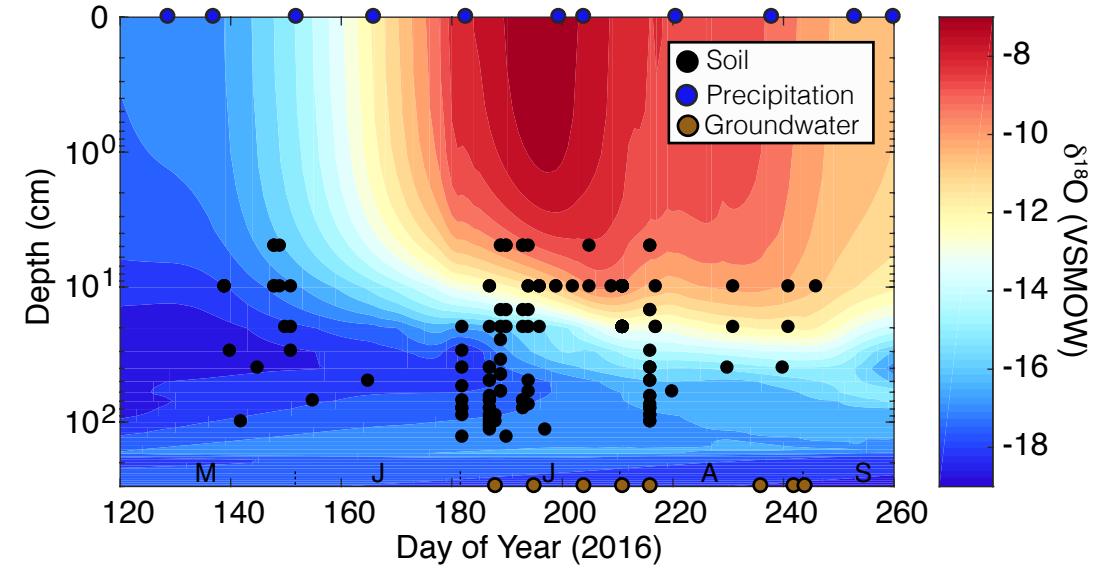
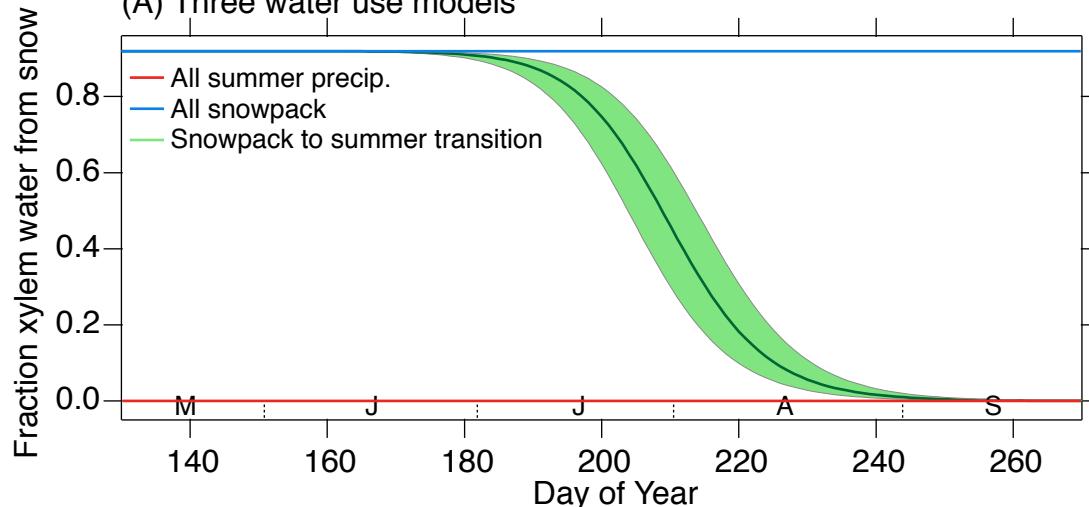


Figure 4.

(A) Surface Isotope Hydrology



(B) Subsurface Isotope Hydrology

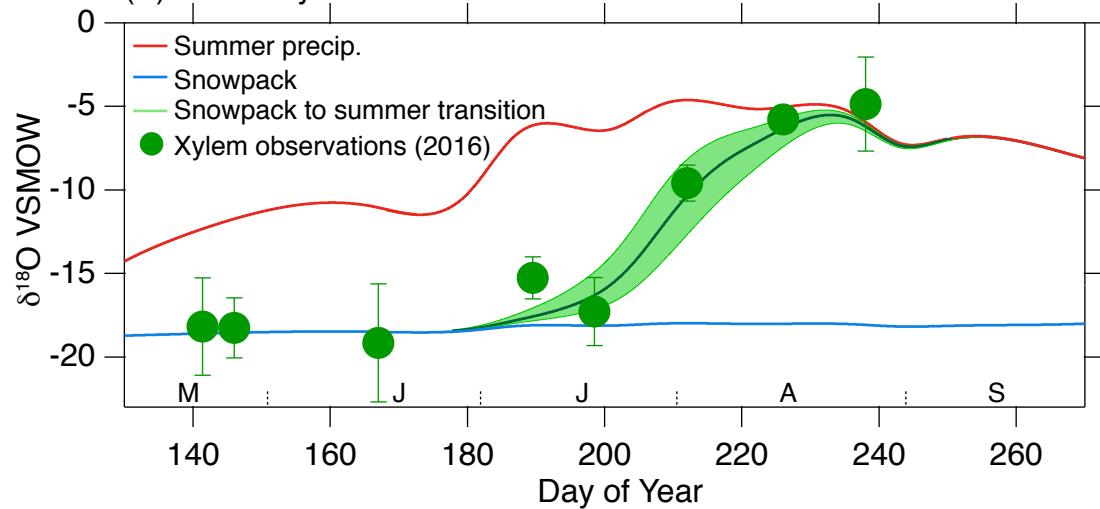
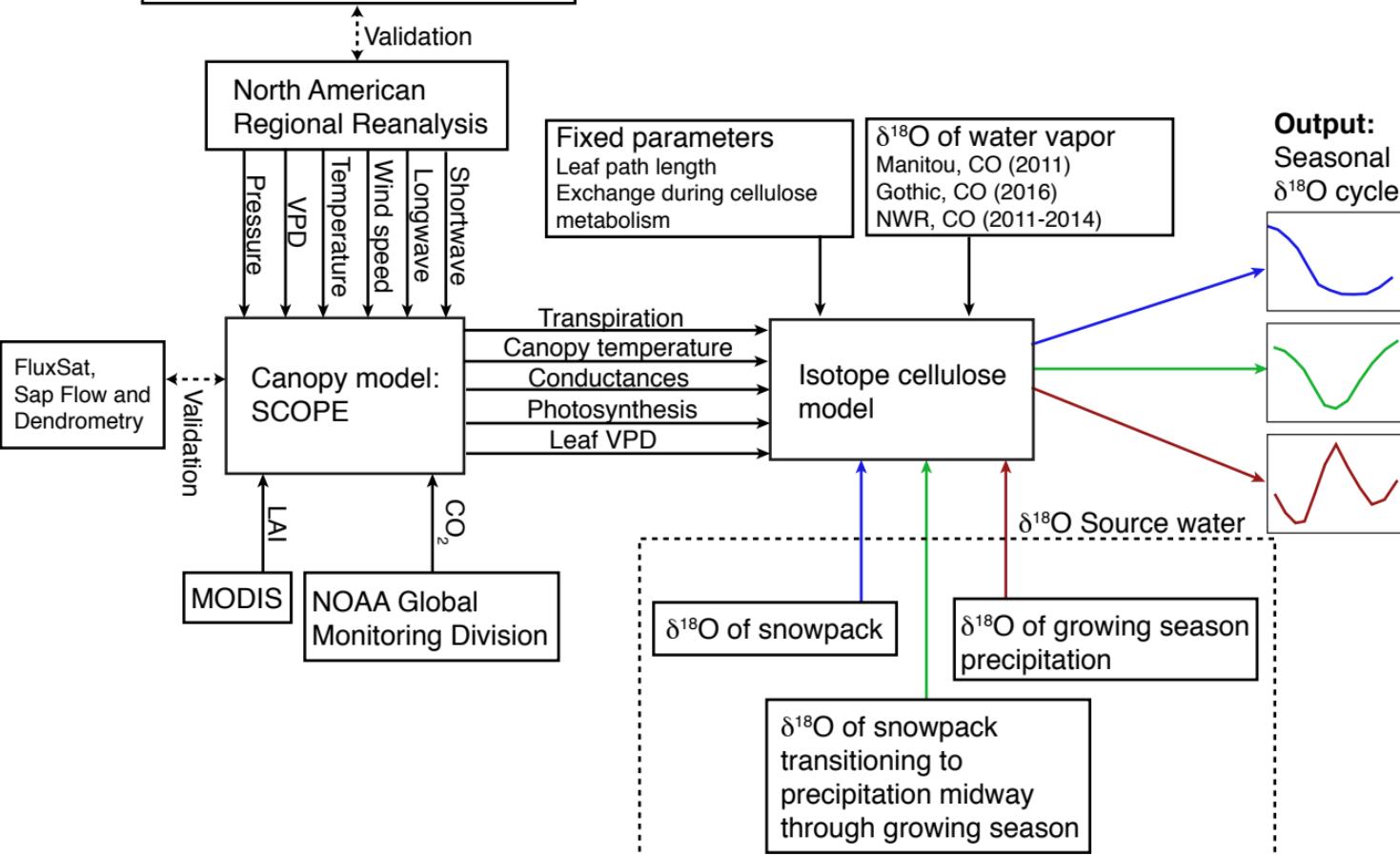


Figure 5.

(A) Three water use models



(B) $\delta^{18}\text{O}$ of xylem water associated with the three water use models

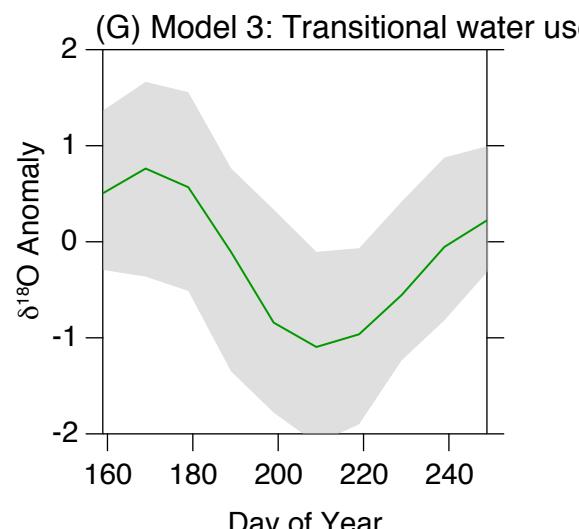
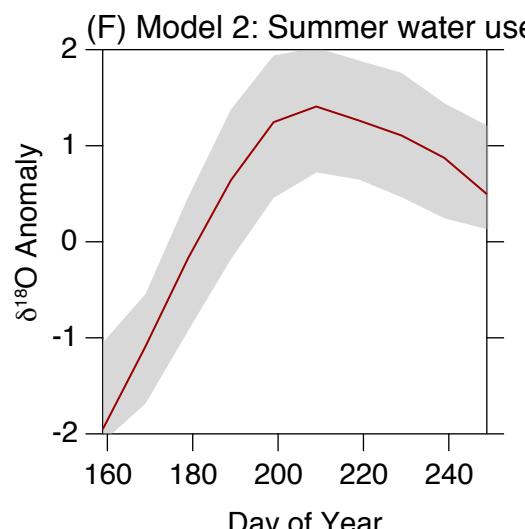
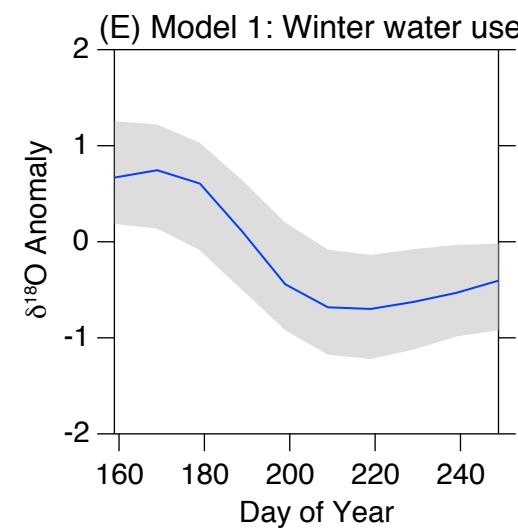
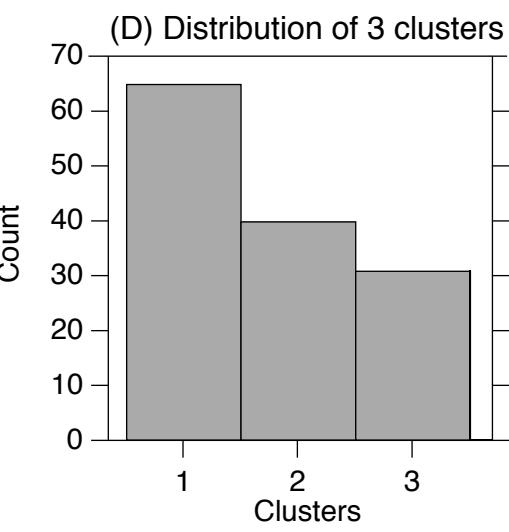
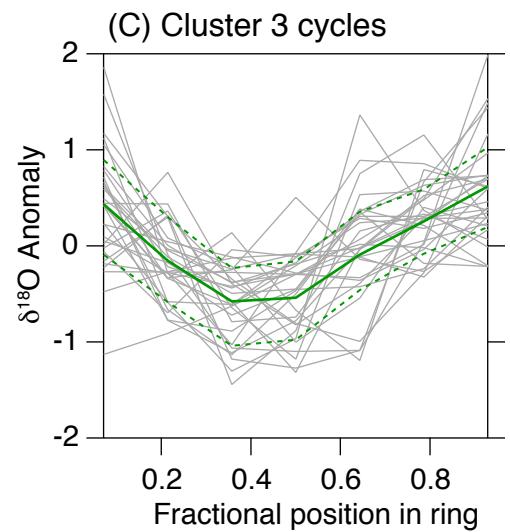
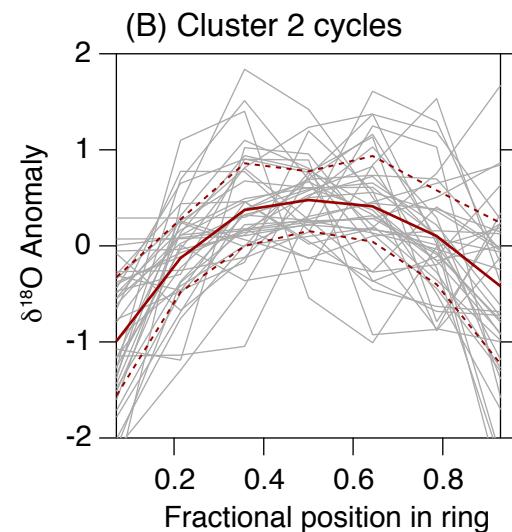
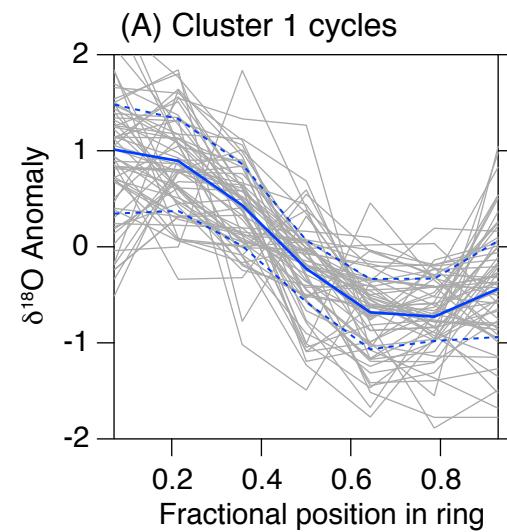








Figure 6.

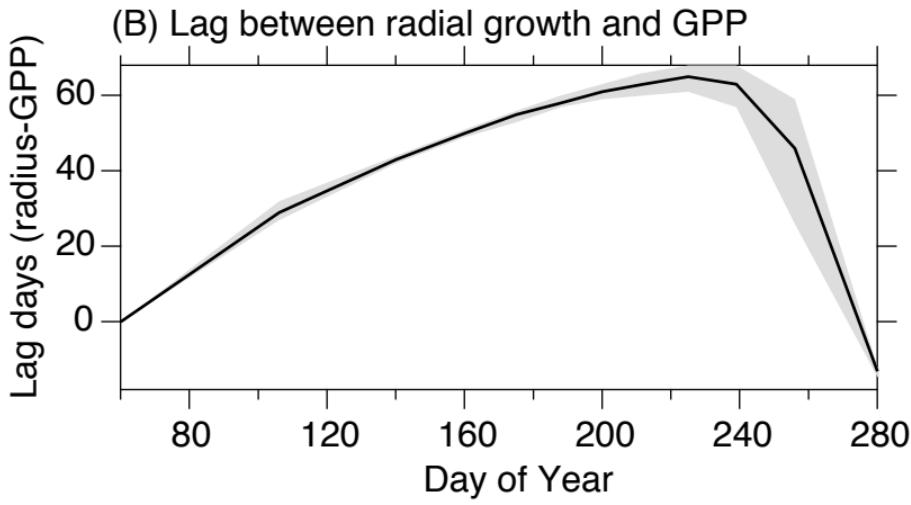
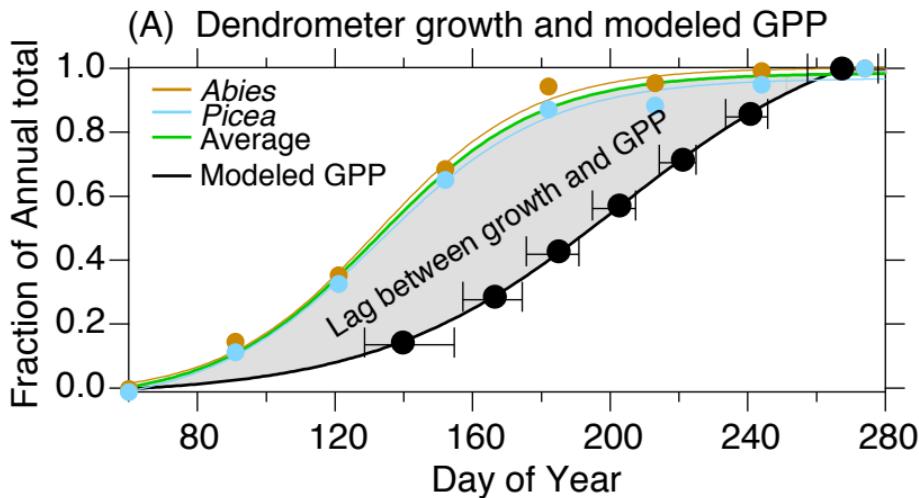


RH, Temperature and Solar from
Snodgrass, Mexican Cut and b. barr

Figure 7.

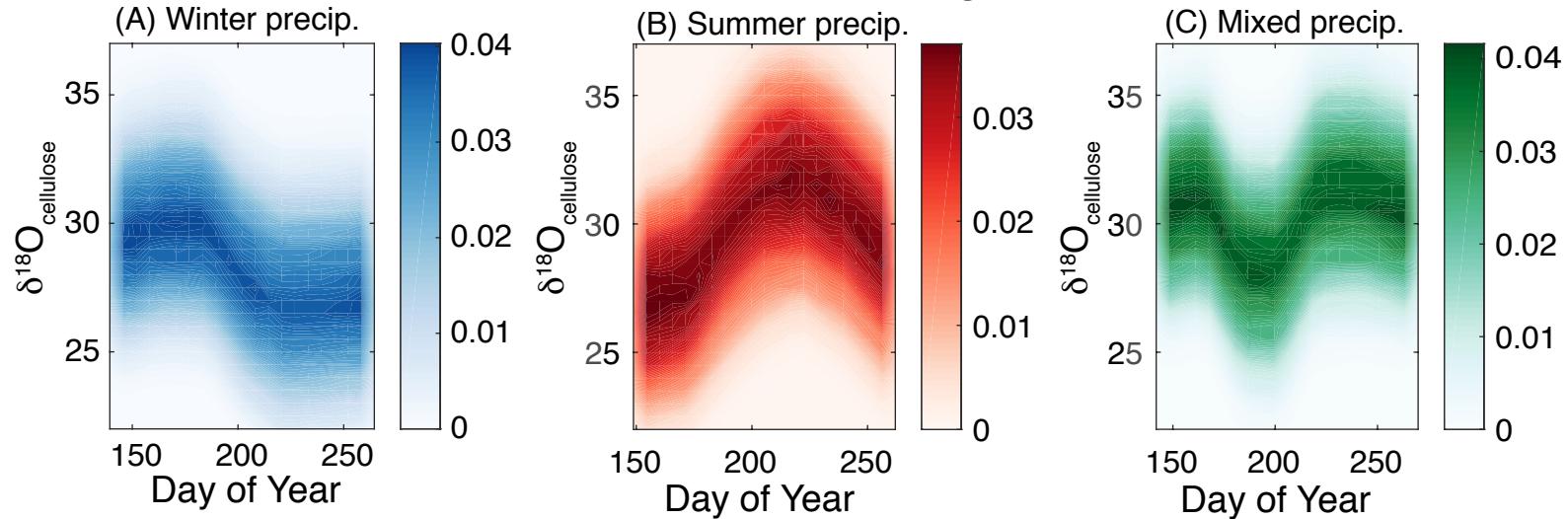


Figure 8.

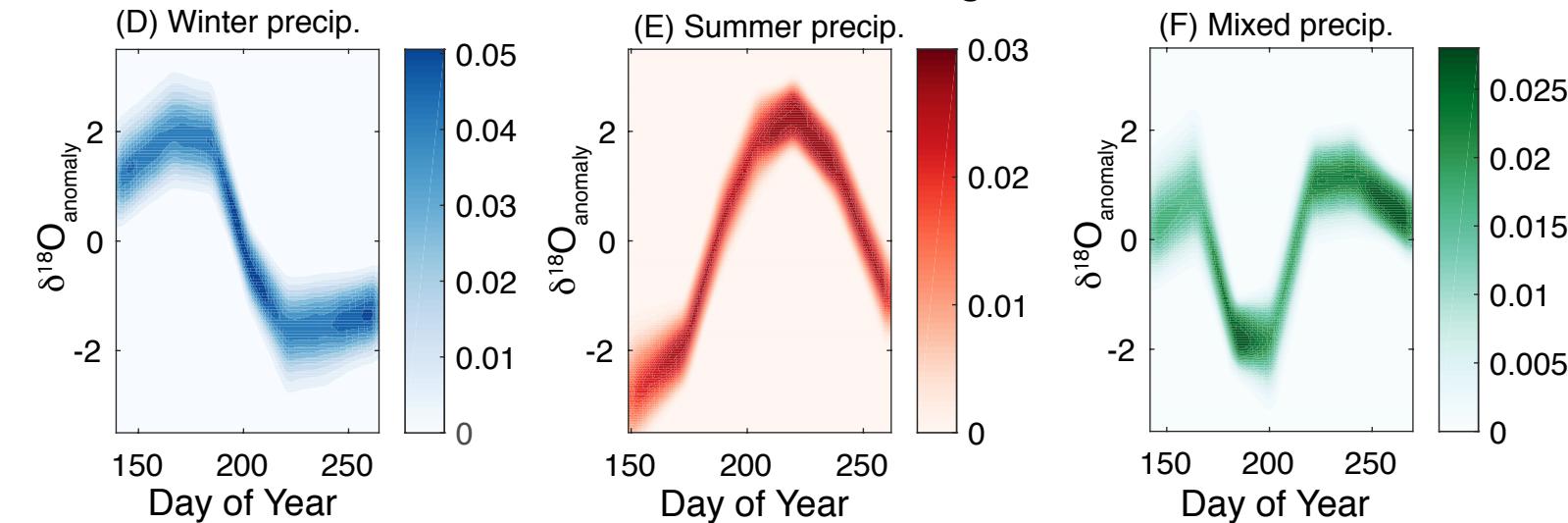
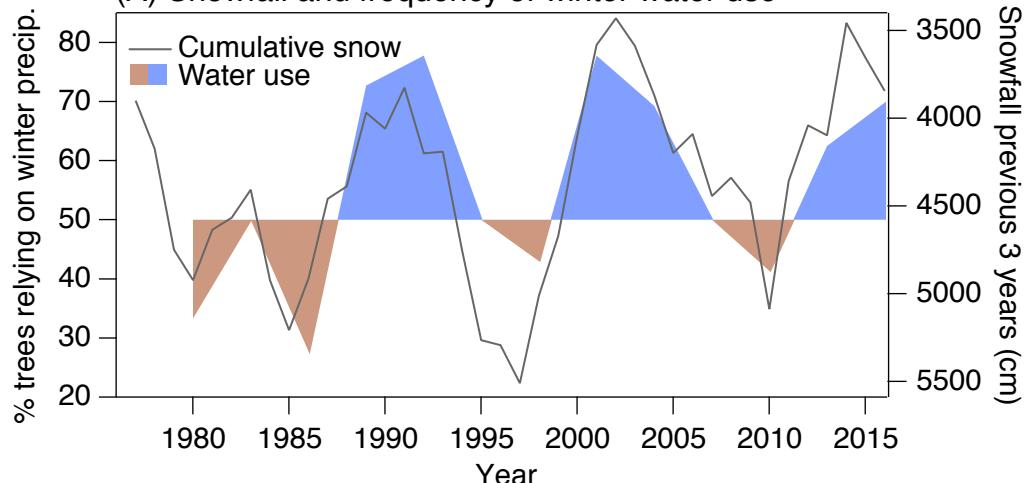


Figure 9.

Monte Carlo simulations showing absolute $\delta^{18}\text{O}$



Monte Carlo simulations showing $\delta^{18}\text{O}$ anomalies

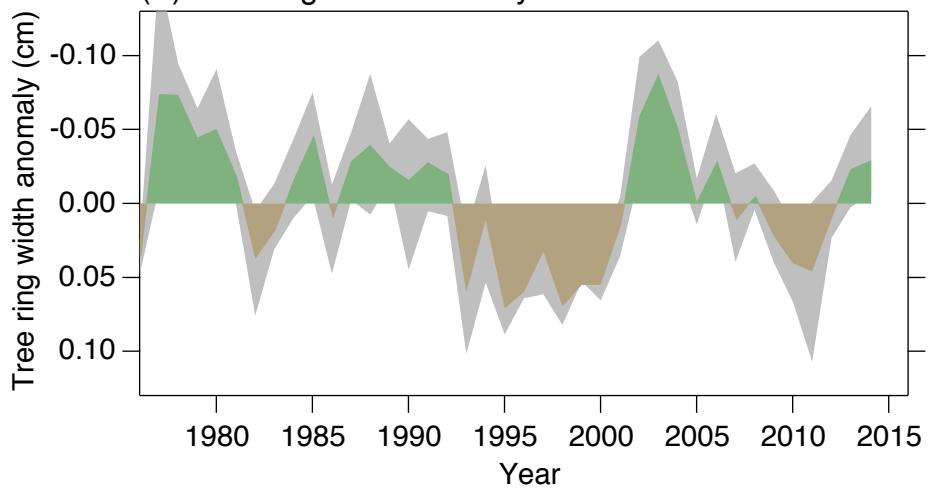


Figure 10.

(A) Snowfall and frequency of winter water use

(B) Tree ring width anomaly

