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Abstract

Malware is one of the most persistent and costly cyber threats endangering reputation, confi-
dentiality, integrity, and availability for organizations and national security. Consequently, many
of the incident detection and prevention systems, and incident responders have begun to utilize
machine learning as a helper in the fight against malware and other cyber threats. However, cyber
defenders rely on interpretability and generalizability, yet the popular machine learning methods
are black-box and often use traditional supervised solutions that do not generalize to novel mal-
ware. Therefore, there is a need to improve the existing solutions. At the same time, the majority
of the prior research ignored essential evaluation criteria when reporting the results of their meth-
ods, which disables the safe reproducibility of the methods in a production environment. Tensor
decomposition, on the other hand, enables interpretable unsupervised analysis of the large-scale
data for the discovery of hidden patterns. Our findings, performed on real-world and large-scale
experiments, show that tensor factorization-based methods yield performance results that sur-
passes or competes with existing supervised solutions with the added benefit of interpretability
and generalizability. With the ability to analyse complex and large-scale data using tensors, we
report results that reflect real-world production environments. We propose to develop new game-
changing tools for malware identification and characterization that can trace malware evolution,
rank the infected or malicious hosts, and streamline the work of incident response teams, malware
analysts, and incident detection and prevention systems.

1 DMotivation

Malware continues to be one of the most prominent threats to organizations, the public, and national
security. The recent cyber reports point out that malware is one of the most frequent cyber threats
with the highest risk factor and costly incident resolution [5]. A single malware attack, on average,
costs $2.6 million, and average cost of a ransomware breach is $4.62 million in 2021 for the orga-
nizations in the USA [5, 13]. A data breach caused by a malware as the attack vector also places
personally identifiable information (PII) including employee and customer data, intellectual property,
and sensitive and classified information under risk. Manual analysis of malware by reverse engineers
often does not scale in production systems due to the ever-growing amount of malware in the wild, and
the increasing amount and complexity of the attacks. On average, 450,000 new malware is reported
daily [20]. Total malware in the wild has increased by 1178% past 10 years, and malware attacks have
increased by 11% in 2019 [5]. Basic incident detection and prevention systems rely on the signatures
of the known malware, often obtained from open-source intelligence (OSINT) or malware reputation
sources. However, signature-based security systems can be bypassed by malware authors that continu-
ously modify their code [14]. Therefore, organization and anti-virus (AV) vendors have begun to utilize
Machine learning (ML) and Artificial Intelligence (AI) based automated security systems to combat
against malware [15, 19, 18, 14]. While AI and ML based automation save up to $3.81 million on data
breaches, only about 25% of the organizations has fully-deployed automated incident detection and
prevention systems [13]. Thus, there is a need to improve current solutions and their deployability in
production systems.

The alerts generated from ML-based security systems need to be verified by human analysts;
therefore, the interpretability of the results is essential for security systems. However, many popular



ML models used to identify malware are black-box. These black-box models are often supervised
technologies with the need of an immense amount of labeled data during training to achieve good
performance. A large amount of up-to-date, or production quality, labeled malware is expensive to
obtain. Also, supervised methods need to be updated regularly as they poorly generalize to zero-day,
or novel, malware that carries different characteristics than the model saw during the training time.
To this end, supervised ML models suffer the same issue as the basic signature-based security systems
where the malware authors obfuscate or modify the code and behaviour of the malware to bypass these
systems [14], making the evasive actions performed by the adversaries part of the cyber kill chain [17].
Due to the growing importance, prior research has extensively studied the ML solutions to malware
identification and characterization. However, the majority of the prior research for ML-based malware
analysis had failed to include core evaluation criteria in their work for the past two decades [16]. For
example, the majority of ML solutions for malware family characterization are unrealistically limited
to identify, for instance, the top most populous families. This resulted in misleading high-performance
metrics that do not generalize to the production environment, as they have been limited to the analysis
of easiest malware. With the ever-growing quantity of malware, attacks, and their complexities there
is an urgent need to improve existing solutions and their operational architectures, along with the core
research evaluation to identify methods that can be deployed in production environments.

In comparison to the traditional ML models, tensor decomposition is a powerful unsupervised ML
method, capable of extracting latent (previously unseen) information from complex data and produce
interpretable results. Since tensor factorization is an unsupervised method, it produces results with
good generalizability to novel malware and requires less amount labeled data to achieve production-level
performance. Many cyber data including network traffic and malware are naturally multi-dimensional.
Therefore, they can be naturally represented as tensors. The higher dimensional representation of these
data allows the identification of extremely complex and hidden multi-faceted details that traditional
ML models cannot recognize. Therefore, we can develop solutions to malware identification and
characterization utilizing complex real-world data, allowing our results to be realistic and reflect how
they would perform in production environments. We have so far reported solutions that surpass
or compete with existing supervised methods for anomaly detection and malware classification, and
have preliminary results for large-scale malware family classification. Our results that establish new
benchmarks indicate a promising future for the utilization of tensors for cyberspace. More research in
this field will allow developing powerful tools that can streamline the work of cyber defenders in the
fight against the ever-growing malware threat.

2 Preliminary Results

2.1 Tensor Anomaly Detection and Malware/Benign-ware Classification

We have developed a general anomaly detection framework, based on non-negative tensor factorization,
that is capable of performing precise detection of anomalous activities [8]. This framework is further
expanded to include malicious activity identification on diverse set of tasks such as botnet traffic,
users with compromised credentials, fraudulent credit card transactions, and spam e-mails [9]. Our
unsupervised architecture has established state-of-the-art benchmarks on the datasets analysed, which
surpass or compete with prior supervised solutions.

For the botnet detection, our prior anomaly detection framework utilized the network activity
of the compromised devices. We have also analysed malware using static analysis based features to
perform classification. In this work, a novel ensemble tensors algorithm, named Random Forest of
Tensors (RFoT)?!, which exploits the philosophy ”wisdom of crowds” was developed [10]. In this work,
we show that RFoT is capable of performing accurate classification of malware and benign-ware in a
semi-supervised setting, using the Windows Portable Executables PE Header information as features
from the popular malware bench-marking dataset EMBER-2018 [4], with only a small quantity of
labeled data.

LRFoT poster is available at https://www.maksimeren.com/poster/Random_Forest_of_Tensors_RFoT_MTEM.pdf
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Table 1: EMBER-2018 dataset default train and test set split, and malware family and sample counts
are displayed. Novel families for the know (or train) set are the families that only exist in the training
set. The novel families for unknown (or test) set are the families that only exist in the test set (i.e.
we do not see these families during training, or we do not have known specimens for reference). Min
Family and Maz Family columns show the minimum and maximum number of samples exist for a
family in the dataset. For instance, there are malware families with single sample in both known and
unknown sets. Samples/Family column shows the average number of samples per family. We used the
entire dataset which contains the rare and novel families, making the classification task complex.

Set Families | Samples | Novel Families | Novel Samples | Min Family | Max Family | Samples/Family
Known (Train) 2,730 289,026 1,982 11,157 1 16,689 105.87
Unknown (Test) 916 99,216 168 363 1 19,260 315.53

2.2 High-Quality Semi-Supervised Classification of Malware Families

Our prior work has shown that tensor factorization is a powerful unsupervised machine learning tool
that can be effectively used to tackle prominent and challenging cyber-security problems. We have
preliminary results showing the application of our tools to identification of malware families, and
malware families that were not seen before.

In our preliminary work [7], we classify the entire malware families exist in the EMBER-2018
dataset. To do this, we have developed a novel semi-supervised framework, named HNMFFk Classifier,
which builds a hierarchical graph, using malware PE header as features, by taking non-negative matrix
factorization with the automatic model determination. At the leaves of this graph, we perform semi-
supervised classification where known samples are utilized to classify unknown specimens into their
respective families. HNMFk Classifier utilizes the NMFk algorithm which was introduced by us [3, 6,
22, 2]. NMFF is a non-negative matrix factorization method that enables the determination of optimal
number of latent topics. Using NMFk, we can determine the number of types of malware families in
a dataset. By performing this in a hierarchical manner, at each depth we can analyse finer-grained
details of the malware and archive better separability of different families even with extremely small
number of labelled data.

This architecture could be understood if we look at another dataset of news articles as an example.
Let us assume there are 3 higher-level topics of articles; sport, technology, and economy. If we cluster
these new articles with NMFk, we should expect to obtain 3 optimal clusters. At the same time,
however, NMFk might identify four clusters, where we have an additional topic that combines news
articles about sport and technology. To further separate this new topic, we can apply NMFk again
on this additional cluster of news articles on sport and technology. Similarly, we can further divide
the cluster containing sports news articles into sub-topics such as soccer, football, tennis, and skiing
by applying additional NMFk procedures. This is the idea behind the hierarchical approach, and
consequently our new algorithm HNMFE Classifier. How do we separate the malware specimens
further when we have a more heterogeneous cluster? We can continue applying NMFkE and build
a hierarchical graph where as we go deeper in the graph towards the leafs we begin to investigate
finer-grained details of the features, and achieve better separability of the malware specimens.

We report preliminary results obtained when using HNMFk Classifier to identify malware families
in EMBER-2018, [7]. In Table 1, we show the number of families and the corresponding number of
samples that exist in the default split of the dataset. Note that the entire dataset is used in this
experiment, which contains rare families, families that are only present in the known set (train), and
the novel families that are only present in the unknown set (test). This distribution of the data makes
this task complex, but at the same time makes our experiment realistic by resembling a production
environment. As far as our knowledge, we are the first to perform such scale experiment with a
realistic setting for malware family classification. In Table 2, we show the results of the HNMFEk
Classifier compared to other baseline models where prior research had reported benchmarks on.

HNMFE Classifier, a semi-supervised model, surpasses all the other models even though they are
supervised. Another feature of HNMFk Classifier is its ability to perform abstaining predictions (i.e.
it can say "I do not know” when it does not know instead of guessing). This allows HNMFk Classifier
to do abstaining classification on the specimens that it is not sure about, or for the novel families
(families that we did not see before, or was not part of the known/train set). In Table 2, we can



Table 2: HNMFk Classifier is compared against the state-of-the-art supervised classifiers. The ability
of the HNMFXk to discover novel families is also shown. HNMFk Classifier, a semi-supervised method,
surpasses the previous state-of-the-art models, which are supervised, in malware family classification.

Model F1 | Abstaining Seen (%) | Abstaining Novel (%)
HNMFk Classifier (semi-supervised) | 0.796 22.055 42.699

Light GBM (supervised) 0.115 NA NA

XGBoost (supervised) 0.737 NA NA

MLP (supervised) 0.652 NA NA

also see that the 22% of the specimens that existed in the known set were classified as abstaining.
Differently, 42% of the specimens from the novel families were classified as abstaining. This indicates
the ability of the HNMFFk Classifier to recognize zero-day specimens.

3 What we Propose to Develop:

3.1 New Malware Multi-phenomenological Signatures

We will utilize the latent features extracted by HNMFk Classifier for fast characterization of malware.
HNMFFE Classifier will allow us to find which malware families carry what features. These latent
features will then be used to create YARA? rules to identify malware, types of malware, and malware
families. Being able to discover the latent features, specifically in a hierarchical setting, could enable us
to develop classifiers that surpass the capabilities of existing solutions. Such methodology can further
gain strength by representing malware specimens as tensors. For instance, one example of such tensor
could have the dimensions (Family x Byte N-Grams x Location), with count of occurrence as the
tensor entries. In another example, we can have more dimensions in a binary tensor, such as (Family
X Num. of Strings x Num. of Sections x Num. of Imports x Num. of Exports x File Size). These are
only a few examples, but not a exhaustive list of possible tensor configurations for a such application.
The new multi-phenomenological signatures will be used for malware detection in real time.
Data: There are several public static malware datasets that are available to use:

e EMBER-2018%, a popular benchmarking dataset, contains static malware analysis based features
extracted from 1.1 Windows executables [4]. Specifically, the contents of the PE Header are
used as the feautures. The dataset contains both malware and benign-ware, and the malware
specimens contains family labels obtained form AVClass.

e A well knowm malware repository, VirusShare* dataset [11], is also available to our use.

e Sophos Reversing Labs has recently released a new large scale malware dataset, SOREL-20M?,
consisting about 8TB of metadata, labels and features from 20 million Windows Portable Exe-
cutable files [12]. The dataset also contains 10 million production scale malware specimens.

e A new dataset named MOTIF®, which contains accurate malware family labels, compared to
AVClass, will be published by DREAM Lab in the coming months.

3.2 Description of Malware Dynamics, Source Identification, and Hosts
Ranking

Another open area of research involves the analysis of malware dynamics. We will use malware network
traffic data and our RESCALF tensor factorization method [21] to build the tensors describing malware
dynamics and hosts interaction. For instance, we will build a tensor with dimensions (IPsuyrce X
I Ppestination X Time) to identify latent communities and ranking via centrality measures the roles

2YARA: https://github.com/virustotal/yara

SEMBER-2018: https://github.com/elastic/ember

4VirusShare: https://virusshare.com/

5SOREL-20M: https://github.com/sophos-ai/SOREL-20M

SMOTIF (under review): https://openreview.net/forum?id=A1yBi6zg3_C
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of malicious hosts (for example C&C servers and compromised users), the evolution of the bastion
devices, and lateral movement of a threat actor or insider threat at an organization network in time.
Our understanding to latent malicious communities and their dynamics in a network can shed a light
into ways to reduce long and expensive recovery and identification times. This approach can further be
extended to the analysis of malware dynamics in a host device, using dynamic malware analysis-based
features instead.

Take, for example, a tensor with dimensions (Family x API Call x Time) to be used to characterize
different malware behaviors in a host device, which can later be used as an anti-virus scheme. This
can be further extended into a multi-modal setting for behaviour analysis, where we fuse information
across multiple tensors such as (Family x API Call x Time), (Family x Network Activity x Time),
and (Family x Memory Activity x Time).

Similarly, the evolution of malware families can be analyzed, using static malware analysis-based
features, via a tensor with dimensions (Sample/family x Features x Timestamp). This can help us
with identifying what features are modified for the malware families in time, as we did for scientific
literature [1]. In addition, this can enable for us to understand authorship attribution of malware
families, as we can see which families carry correlation or share similarities in time.

Finally, static malware analysis and dynamic malware analysis-based features can both be combined
in a multi-modal approach. For example, take the tensors build using dynamic features; (Family x
API Call x Time), (Family x Network Activity x Time), and (Family x Memory Activity x Time),
together with the tensor build using static features (such as using Windows Executable PE Header,
or Android application based features); (Family x Features) (two example tensors which we may use;
(Family x Permissions X Activities X Services) for Android, and (Family x Num. of Strings x
Num. of Sections x Num. of Imports x Num. of Ezxports x File Size x Timestamp) for a Windows
malware). Multi-modal-based approach could enable us to gain a deeper understanding of the evolution
and behavioral patterns of malware characteristics, and identification of malware.

Data: Several malware network traffic based datasets are available by Canadian Institute for
Cybersecurity by the University of New Brunswick’. Additionally, several malware traffic with back-
ground traffic records are available by Stratosphere Labs®. Below is a list of specific datasets that can
be used:

e CCCS-CIC-AndMal-2020° contains static and dynamic analysis based features for Android mal-
ware. Alongside the family labels, this dataset also includes labels for 14 different malware
categories such as adware, backdoor, ransomware, etc..

e CICMalDroid 2020'° also includes static and dynamic analysis based features for Android mal-
ware.

e CIRA-CIC-DoHBrw-2020'! is a dataset consist of DNS over HTTPS (DoH) flow records of
malicious and benign traffic.
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