¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-TR-826004

Implementation of Plot File Testing in the
DYNA3D/ParaDyn Software Quality
Assurance Suite

E. Zywicz, R. Hathaway

August 23, 2021



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.



Implementation of Plot File Testing
in the DYNA3D/ParaDyn
Software Quality Assurance Suite

Edward Zywicz and Ryan Hathaway
Methods Development Group
Defense Technologies Engineering Division

March 8, 2021

1 Summary

Automated testing of DYNA3D/ParaDyn plot files was added to the DYNA3D/ParaDyn
software quality assurance (SQA) test suite. The new capability extracts select data from the plot
files generated during each verification run and compares it to the same baseline answers used to
verify the problem. Deviations between baseline answers and plot file values are reported in the
same manner as solution discrepancies, and differences in precision levels between the baseline
answers and plot file results are accounted for. The new testing leverages the existing SQA test
suite framework and test problems and the Python Mili reader and minimally increases the
overall run time (< 5%) of the SQA test suite. This new capability provides incremental end-to-
end testing of the most common DYNA3D/ParaDyn simulation workflows.

2 Background

The typical DYNA3D (Zywicz et al., 2020) analysis workflows involve three main steps
performed sequentially: 1) mesh generation, 2) simulation and 3) post processing, i.e., result
extraction and visualization. ParaDyn (DeGroot et al., 2020) workflows includes two additional
steps - a partitioning step performed prior to simulation and, depending upon how results are post
processed, a plot file combining step performed after the simulation. Each step involves one or
more software packages and accompanying libraries. While it is highly desirable to verify the
entire workflow as a single process, continuous software development by different teams makes
it extremely challenging; the primary difficultly is determining causality and accountability when
final results change. As an alternative, each tool involved in the workflow independently verifies
its functionality and output with its own SQA test suite. Since the output from mesh generation, a
DYNAS3D input deck, is the input to simulation and the output from simulation, a plot file



database, is the input for post processing, end-to-end testing of the entire analysis workflow is
verified in an incremental manner.

DynaPart, a component of the ParaDyn suite, is used to partition ParaDyn problems. It uses
DYNAS3D to parse the input deck, performs a series of optimization calculations and then
generates a partition file that ParaDyn reads in along with the input deck. While the problem
partition impacts ParaDyn’s computational performance, it does not impact the numerical results,
beyond numerical roundoff, in well posed problems provided that all elements and nodes are
properly included in the overall partition.

Three primary post-processing tools are used in the typical DYNA3D/ParaDyn analysis
workflows at LLNL: 1) Griz (Speck, 2001), 2) VisIt (Whitlock, 2006) and 3) the Python Mili
Reader (Leglar and Durrenberger, 2020). While DYNA3D generates a single plot-file database,
ParaDyn generates one plot-file database per processor. Vislt and the Python Mili Reader can
read one or more plot-file databases and render them concurrently as if they were a single
database, but Griz can only visualize a single plot-file database. The tool XMiliCS, which is part
of the Mili library (Durrenberger et al., 2017), is used to combine a parallel plot-file database
into a single plot-file database. Consequently, XMiliCS may reside in the post-processing
workflow. Unlike the other software, DynaPart employs various manually initiated verification
testing and lacks its own automated verification test suite.

Historically, DYNA3D/ParaDyn developers inferred the accuracy of plot file databases by
manually confirming the simulation results visualized correctly in the post-processing tools.
Consequently, incremental end-to-end testing did not truly exist. The inclusion of automated
plot-file testing rectifies this deficiency.

3 SQA Testing

DYNA3D and ParaDyn optionally generate a binary time-history database and output numerous
text files that contain specific results. The former contains a limited set of mechanics variables
typically written more frequently than in the regular plot file database. Alternatively, the time-
history data can be included in the high-speed printer (HSP) file as text. The DYNA3D/ParaDyn
SQA test suite directs time-history data to the HSP file and extracts data from the HSP file and
other ASCII files to perform its verifications.

The DYNA3D/ParaDyn SQA test suite consists currently of 691 individual problems divided
into roughly twenty-six functional categories. Each problem has an input deck, a partition file for
eight processors, one or more Awk scripts to extract answers from the HSP file and other ASCII
output files and create an answer file, and two baseline answer files — one contains results from a
run with eight-processors and the other from a serial run. For each problem, one to several
hundred mechanics quantities are extracted from the various HSP and text files at different times
in the analysis, typically ten to twenty times, and written to a temporary answer file. The



mechanics quantities include nodal positions and velocities, element stresses, contact forces,
nodal reaction forces, etc., and vary from problem to problem. The main test script compares the
current results with the appropriate baseline values to sixteen digits and flags discrepancies. The
script summarizes by suite the number of problems that pass and reports any differences that
arise. The suite is run twice — once using serial DYNA3D and once using ParaDyn with eight
processors.

The new plot file testing leverages the existing SQA framework and required minimal
modifications to incorporate. Each test-problem answer file contains a character string that
describes the associated mechanics quantity and is printed out when differences arise. To
facilitate plot file testing, a second string is added that contains the Mili short-name and
additional descriptors to uniquely specify the mechanics quantity in the plot file. (The amended
test-problem answer file syntax is summarized in Appendix A.) An additional Python script
decodes the second string, extracts the values from the plot file via the Python Mili reader,
calculates select derived values from the extracted quantities, e.g., the pressure from the stress
components and the displacement magnitude from the positions, and stores them in an analogous
answer file. The main script compares the values in the current plot-file answer file and the
baseline file to seven significant digits (plot file results are written as single precision values),
and records its findings in a log file. When the mechanics quantity is known not to exist in the
plot file, the second string is left blank in the answer file and the script gracefully deals with it.
Plot file testing is only performed if the problem passes its verification test, and parallel
databases are read without being combined into a single database.

The plot-file test script optionally identifies variables in the answer files whose values are not
verified during plot file testing. Currently, 156 of the 691 test problems contain one or more such
quantities, and the slide surface suite accounts for 140 of these problems. The unchecked slide
surface quantities are sums of nodal reaction forces originally included to verify the problem
setup; unfortunately, these quantities cannot be included in the plot files in a general manner. Of
the remaining sixteen tests with unchecked plot file values, four tests do not create plot files, four
tests intentionally don’t check select variables due to precision issues arising from single
precision data, and the remaining eight problems involve seldom used features whose output has
never been included in the plot file database.

The inclusion of plot file testing in the DYNA3D/ParaDyn SQA suite revealed one defect. The
number of integration points included for material model 28 for variable integration point output
was not written to the plot file. As neither Griz nor Vislt currently support variable integration
point rendering, it did not impact users.



4 Potential Future Work

While the inclusion of plot file verification has addressed a long-standing gap in incremental
end-to-end testing of DYNA3D and ParaDyn, several areas for potential improvement remain.
Foremost, an automated SQA test suite needs to be developed for DynaPart and utilized
routinely. Although DynaPart development utilizes most of the DYNA3D/ParaDyn SQA test
suite problems for its SQA, the process is not yet fully automated. Checks should be included in
ParaDyn to ensure all nodes and elements are accounted for by the partition file*. Additional
variables could be added to the plot files and checked in the test suite. Finally, an assessment,
similar to a code coverage analysis for a SQA suite, that determines the percent of different plot
file variables examined in the plot file testing would be insightful.

*- This functionality was added to ParaDyn in June 2021.

References

DeGroot, A.J., Durrenberger, J.K., Giffin, B., Pham, E., Zywicz, E., “ParaDyn: A Parallel
Nonlinear Explicit, Three-Dimensional Finite-Element Code for Solid and Structural Mechanics
User Manual — Version 20.1”, Lawrence Livermore National Laboratory, Report LLNL-SM-
816810, 2020.

Durrenberger, J.K., Corey, 1., Pierce, E., Speck, D., “Mili I/O Library Programmer’s Reference
Manual”, Lawrence Livermore National Laboratory, Report UCRL-SM-743317, 2017.

Legler, P.M., Durrenberger, J.K., “Mili Python Interface: Users Guide V0.1”, Lawrence
Livermore National Laboratory, Report LLNL-SM-811236, 2020.

Speck, D.E., “Griz Finite Element Analysis Results Visualization for Unstructured Grid User
Manual”, Lawrence Livermore National Laboratory, Report UCRL-MA-115696-REV-2, 2001.

Whitlock, B.J., “Vislt User’s Manual”, Lawrence Livermore National Laboratory, Report
UCRL-SM-220449, Revision b7c2a67f, 2006.

Zywicz, E., Giffin, B., DeGroot, A.J., Durrenberger, J.K., “DYNA3D: A Nonlinear, Explicit,
Three-Dimensional Finite-Element Code for Solid and Structural Mechanics User Manual —
Version 20”7, Lawrence Livermore National Laboratory, Report LLNL-SM-816811, 2020.



Appendix A - Answer File Syntax

The DYNA3D/ParaDyn SQA baseline answer files are written with a standard format to
facilitate automated processing. Each file contains one or more result blocks separated by one or
more blank lines. One block is used for each mechanics result. Each block starts with a title line
whose format is “# stringl string2” and is followed by N data lines ordered in increasing
analysis time. A data line has the format “time value” or “time value # comment”. Here time
denotes the analysis time at which the result is sampled, and value is the associated numerical
value at that time. The second form accommodates an optional inline comment, used to
supplement stringl, that is printed out when discrepancies arise. Blocks can contain an arbitrary
number of comment lines, i.e., a line whose first character is “#”, before and after the primary
section. Within an answer file, each block must have N data lines and use the same times (time).
If the analysis has both a dynamic relaxation phase and a transient phase, it is permissible for the
time value to jump backwards in time at the end of the dynamic relaxation phase.

In the title line stringl provides a succinct description of the variable, e.g., node 12 x-velocity.
Space are not allowed in either string! nor string2. String2 defines the variable in a manner that
allows the script to extract it from the plot file. It has three general forms:

1. classname variable,
2. classname_label variable
3. classname label ipt point variable

Here classname is the Mili class name that DYNA3D associates with a specific model entity
when it writes the plot files, e.g., brick, node, shell, tshell, global, etc., label and point are integer
numbers, and variable is the Mili short name that DYNA3D assigns that quantity, e.g., sx (x-
stress), xv (x-velocity), eps (equivalent plastic strain), etc., or the name of a supported derived
quantity such as seff (equivalent stress) or dispx (x-displacement of a node). The first form is
used to select global and other similar data that requires no additional specifiers to uniquely
identify it. The second form is used for bricks, nodes, load curves, etc. where label is the desired
mesh entity number. The third form is for elements with data outputted at multiple integration
points. Here point is the integration point number desired. The following examples show valid
string2 descriptors:

brick 571 seff
node 667 dispx
node 1080 vy
shell 22 ipt 5 sz
beam 45 ipt 1 sx
Icurve 3 Icfunc
global ke



The appropriate Mili short names can be obtained from the DYNA3D source or by looking at the
plot file with Griz and examining the “primal” tab and its sub-tabs. The currently supported
derived quantities in the plot file testing script are:

e For Nodes:

o dispx, dispy, dispz, dispmag (x-, y-, and z-displacement)

o dispmag (displacement magnitude)
e For Materials:

o matcg-dispx, matcg-dispy, matcg-dispz (x-, y-, and z-displacement of the CG)
e For Elements:

o seff (equivalent stress)

o press (pressure)

Additional quantities will be added as needed.



