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Outline

• Finite Element Modeling Capability Background

• Encapsulant Thermal and Viscoelastic Characterization

• Model Parameterization and Validation Techniques

• Custom Instrumented Modules
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Sandia's Foundation for Advanced Computational Modeling

• Advanced computational capabilities at Sandia have been developed to predict
behavior in many complex systems
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Capability Development of Multi-Physics Models for PV

• Modeling capabilities incorporate various physics causing or related to degradation:

NREL

Mechanical stress
[Hartley, SNL]

Thermal stress
[Hartley, SNL]

Material responses

• Encapsulant viscoeiasticity [Maes,
SNL]

• Electrically Conductive Adhesive

viscoelasticity and damage [Bosco,

NREL]

• Backsheet aging [Owen-Bellini, NREL;

Schelas, SLAC]
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Electrical-thermal coupling [SNL]

Additional physics could include moisture transport, corrosion chemistry, and many others
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Polymer Materials in PV Modules

• Encapsulants and backsheets must perform several key roles including:

protect cells and metallization from water and other environmental stresses,
maintain electrical insulation, provide adhesion between layers of the
laminate, and maintain high transparency through PV-relevant wavelengths

Crystalline silicon cells

Glass

Polymer backsheet

Encapsulant

Encapsulant

Layers in silicon PV modules

Glass

Glass

Encapsulant

Deposited thin film cells

(ex. CdTe)

Layers in thin-film PV modules
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Adding Time and Temperature Dependency of Polymer Materials

• The viscoelastic nature of polymer encapsulants is potentially a key factor
affecting component stress states
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• The polymeric layers of modules are known to have higher thermal expansion
coefficients than surrounding materials, leading to stress during thermal cycling
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Adding Time and Temperature Dependency of Polymer Materials

711 Ill

• EVA is the most common encapsulant
material used in PV modules

• We characterized crosslinked samples
of a fast-curing commercial EVA

R

n m

R- 1; ,-(CH2)nCH3, others

• Polyolefin films are a common
alternative encapsulant with several
improved characteristics that are
especially valued in thin-film PV
modules

• We characterized commercial POE
samples that were heated and pressed
to mimic manufacturing lamination
conditions
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Thermal Expansion Coefficient

• Measure thermal expansion over operating
temperatures with a thermal mechanical
analyzer (TMA)

Increase Temperature
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Dynamic Mechanical Analysis (DMA) to Measure Viscoelastic Behavior

• Viscoelastic materials have
mechanical responses between

Cyclic loading

those of elastic solids and viscous
Material samplc

fluids

• DMA applies an oscillatory stress and
measures the material response
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Time-Temperature Superposition: Application

• Measurements of modulus at very low frequencies are time consuming
and at very high frequencies can be unfeasible

Storage Modulus
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10000 E 10000
• -56.3 C

• -44.5 C

21000 = •

•

•
.
•
.
•

•

• •

•

• -39.3 C

• -34.2 C 2 1000
•
•
•
••
•
••

•

• 

•

•
•

•

•
••

•
•

•

• -29.0 C

• -23.9 C C
• • ••

-0100 E • •
.• 

• •
. • -18.9 C ❑

iaa
2 •

.
• • -13.9 C

• -4.2 C at
b.0ro
o

10 = • • 6.1 C

• 16.1 C o
10

• 26.1 C

• 36.0 C1
0.01 1 100

Frequency [Hz]

.03,°
00̀a

INN I 111M

• -563 C

• -44.5 C

• -39.3 C

to -34.2 C

•-79.00.

•

•

•

•

•

•

•

•

1.0E-07 1.0E-02 1.0E+03 1.0E+08
Shifted Frequency [Hz]

Times Scale: Module Temp. Wind Gusts

Changes

Williams-Landel-Ferry (WLF) equation:

-C1(T - Tref) 
log(aT) 6-2 (T - Tref)

TTS Shift Factors: EVA
-23.9 C

-18.9 C

13.9 C

1.0E+14

1.0E+11

- o Tref

-4_2 C 2 1.0E+08 2
4.1 C •

16 1 C
1.0E+05 1 •

• o
26.1 C. 1.0E+02 • o

•
36.0 C

1.0E-D1 • Manual a 6
6

1.0E-04 2 o WLF a •

1.0E-07

-80 -60 -40 -20 0 20

Temperature ["C]

11

: :DuraMAT NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY



Time-Temperature Superposition: Fit

• Master curves of each material consist of
shifted DMA data collected on multiple samples
and smoothed

• The number of Prony terms was varied from 10
to 50, with 25 terms selected to minimize L2
(below)
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Calibrating Sandia's Universal Polymer Model

• Viscoleastic properties are captured with parameters from master curve
creation and prony-series fit:

• C1 , C2 , Tref, E0 , E00 , -c; ,

• Thermal expansion properties captured with the series fit of TMA data

• VoICTErubbery, VOICTEgiassy, Ti,

• Model is also capable of handling curing kinetics, future work could capture
full lamination conditions

DB Adolf and RS Chambers, J. Rheology, 2007
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Validation Efforts

• Validate material model

• Stress relaxation measurements offer an alternative
measurement of viscoelastic behavior of films

• Directly comparable to DMA results and simple FEA
geometry

• Validate FEM Output

• Module deflection measured under static load on two
module types [JY Hartley et al., IEEE-JPV, 2020]

• Novel instrumented modules were designed and
fabricated to allow in situ measurements of cell strain
[AM Maes et al., IEEE-PVSC Proceedings, 2020]

30

25

E 20

0 15

QJ

Mount x = +0.95 m
constraints►

O 2.4 kPa, meas.
—2.4 kPa, sim. with ±26
O 1.0 kPa, meas.
— 1.0 kPa, sim. with ±20

-0.5 0 0.5

Distance from Module Center (m)
1

15

*Pnni NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY



Outline

• Finite Element Model Background

• Encapsulant Thermal and Viscoelastic Characterization

• Model Parameterization and Validation Techniques

• Custom Instrumented Modules

16

l 02,912.MI NATIONAL RENEWABLE ENERGY LABORATORY • SANDIA NATIONAL LABORATORIES • LAWRENCE BERKELEY NATIONAL LABORATORY • SLAC NATIONAL ACCELERATOR LABORATORY
I



Design of Instrumented Modules

• Strain gauges allow continuous high precision zr
measurement at high sampling rates, and their
thin profile allows them to be encapsulated in
PV module laminates without disrupting stress
states.

X r -\ 1 o —1

Zr
—. .

a•
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Linear gauge sensitive to strain in x-direction

• Cell strain maps of a glass-BS PV module (right)
were used to select strain gauge locations

• 4 modules were constructed, 1 control and 3
with unique data objectives

• Wiring continuity checks and EL imaging
confirm the instrumentation survived
lamination and did not cause cell cracks
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Mechanical Testing with a LoadSpot Tester

• The LoadSpot is an air pressure based mechanical
tester which enables repeatable, controlled loads
with simultaneous internal and external data
collection

• Identical load sequences were applied by pulling
vacuum on the back of each module:
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Module Deflection Results

• Optical sensors measured
displacement of the
backsheet surface in the
y-direction during each test

• The addition of strain
gauges and wiring did not ea,) 2
greatly effect the bulk
mechanical behavior of 717 5

modules compared to the
control
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Cell Strain Measurement Results: Symmetry

• Largest strains are measured in
the module center, as predicted
by computational model. Edge-
module gauges "A" and "L"
measure strains opposite in
direction to center module
gauges, as expected.

• Trends match in symmetric
gauge locations but magnitudes
vary up to 20%, perhaps due to
module inconsistences or
misaligned strain gauges.
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Cell Strain Measurement Results: Effect of Junction Box

• Module 3 instrumented to
assess influence of junction box
on surrounding cells

• Largest difference between
module left/right sides
observed in x-direction readings
surrounding J-box, where J-box
seemed to relieve strain (J and
G w/J-box, B and 0 w/o)
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Instrumented Modules: Ongoing Work and Future Applications

• An area of further investigation is the irreversibility observed in the strain
measurements. Strain after the return to zero load tends to remain below zero, likely
due to a combination of temperature effects on instrumentation and irreversible
changes in the mounting or module structure.

• These results are useful as model validation data to improve confidence in more
complex FEM predictions of internal components

• Use of these instrumented modules in the future could include:

• collection of mechanical histories of modules in the field under snow loading or
high wind conditions

• assessment of cell strain during accelerated test protocols
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Summary

• Multi-scale, multi-physics modeling can be used to:

• determine the sensitivity of module behavior to material or design changes
• identify locations of stress that can lead to failures
• assess smaller test geometries used in accelerated stress testing

• Encapsulant thermal and viscoelastic behavior was characterized for two commercial
materials: EVA and POE

• Validation techniques were developed to increase confidence in the material model
and overall FEM results

• This work improves our ability to model modules under the wide range of stresses seen
in operation and accelerated tests

Questions?
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