

Hydrogen detection via Raman scattering

Ethan S. Hecht

Raman scattering is inelastic light scatter – the color shifts depending on the gas molecule

- Rayleigh scattering is elastic
 - H₂ Rayleigh cross-section $\approx 10^{-27} \text{ cm}^2$
 - Scatter proportional to number density; variations in intensity caused by variations in both composition and temperature
- Entrained moisture in cryogenic plumes also produces inelastic Mie scattering
- Raman scattering is inelastic (therefore selective to a specific species)
 - H₂ Raman cross-section $\approx 10^{-30} \text{ cm}^2$
 - H₂: shift of 4161 cm^{-1} ($532\text{nm} \rightarrow 683 \text{ nm}$, $355\text{nm} \rightarrow 416 \text{ nm}$)
 - N₂: shift of 2331 cm^{-1} ($532\text{nm} \rightarrow 607 \text{ nm}$, $355\text{nm} \rightarrow 387 \text{ nm}$)

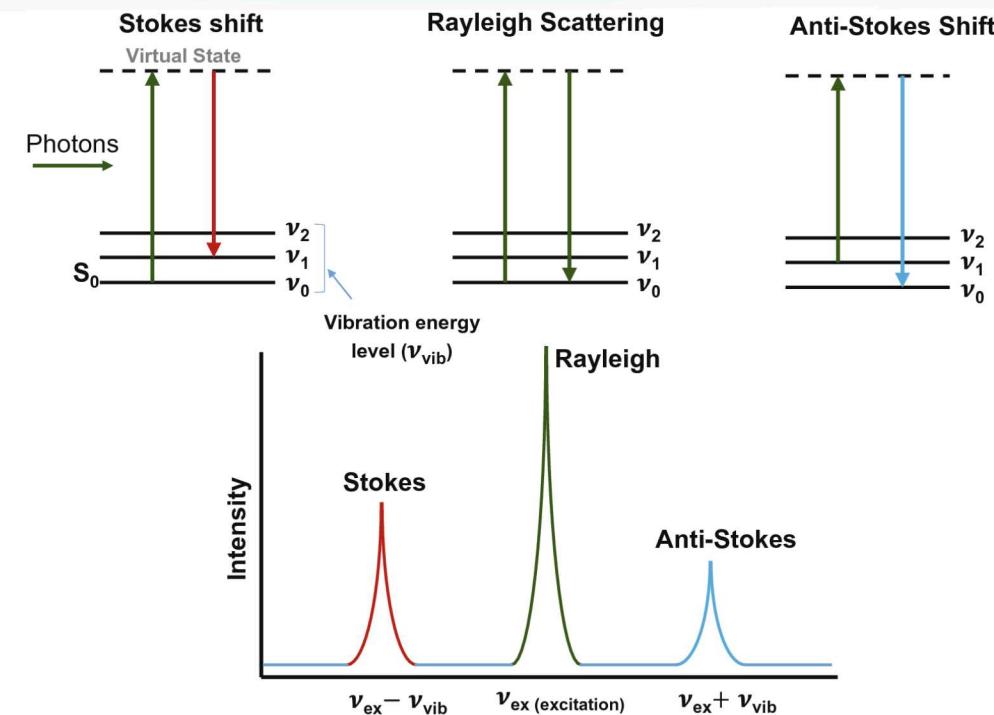
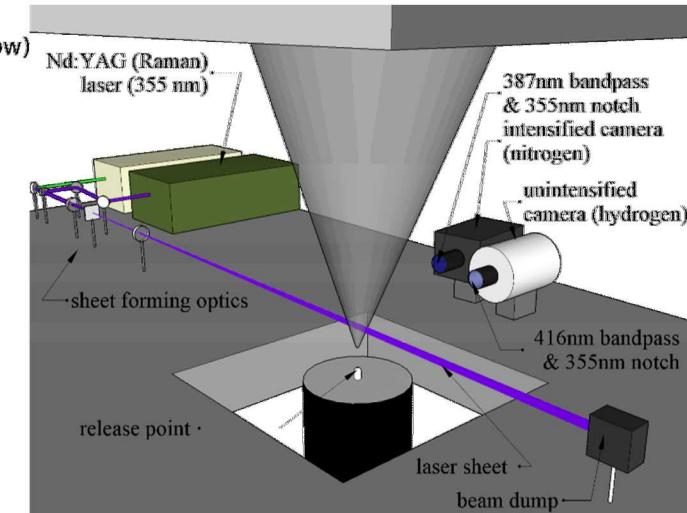
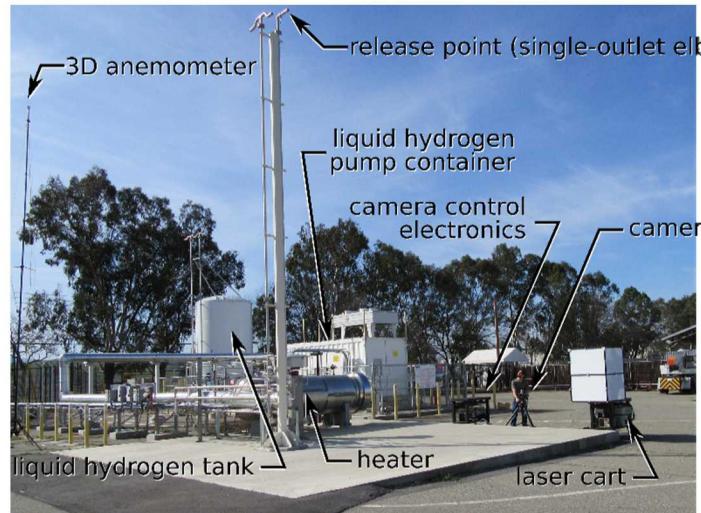
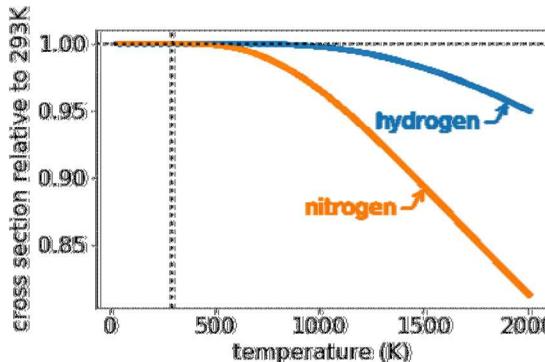




Image from: Cho, Y.C., Ahn, S.I. Fabricating a Raman spectrometer using an optical pickup unit and pulsed power. *Sci Rep* **10**, 11692 (2020). <https://doi.org/10.1038/s41598-020-68650-7>


Planar Raman imaging has been used in a lab setting and Raman line-imaging has been used outdoors to detect cryogenic hydrogen plumes

- Signals are low
 - High powered light source required (e.g., ~400 mJ/pulse @ 355nm, 12mm tall sheet)
 - Fast optics needed for collection ($f\# \leq 1.2$)
- Large Raman shift enables use of high optical density filters to remove unwanted Mie and Rayleigh signals
- Challenges due to:
 - Background light
 - Polarization effects
 - Angular dependence of optical filters

Quantification of concentration from Raman signals requires calibration of detection system

- Signal is proportional to number density of molecules
- We use the ideal gas law to relate temperature and mole fraction to number density
 - $\frac{n_{total}\Sigma x}{V} = \frac{P_{total}\Sigma x}{RT}$
 - other equation of state could be used but may not have analytical solution
- Cross-section dependence matters for high-T (flames), but not low-T (cryogenic)

measured values $\frac{I_{H_2}}{I_0}$ $\frac{I_{N_2}}{I_0}$ $\xrightarrow{\text{calibration constants}}$

Eq. 1: $\frac{I_{H_2}}{I_0} = k_{H_2} \frac{x_{H_2}}{T} \xleftarrow{\text{unknown 1}}$ $\xleftarrow{\text{unknown 2}}$

Eq. 2: $\frac{I_{N_2}}{I_0} = k_{N_2} \frac{x_{N_2}}{T} \xleftarrow{\text{unknown 3}}$

Eq. 3: $1 = x_{H_2} + 1.28x_{N_2}$ $\xrightarrow{\text{based on the composition of air}}$

$$\left\{ \begin{array}{l} x_{H_2} = \frac{I_{H_2}}{k_{H_2} \left(\frac{I_{H_2}}{k_{H_2}} + \frac{1.28I_{N_2}}{k_{N_2}} \right)} \\ x_{N_2} = \frac{I_{N_2}/I_0}{k_{N_2} \left(\frac{I_{H_2}}{k_{H_2}} + \frac{1.28I_{N_2}}{k_{N_2}} \right)} \\ T = \frac{1}{\frac{I_{H_2}}{k_{H_2}} + \frac{1.28I_{N_2}}{k_{N_2}}} \end{array} \right.$$