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2 I Floating Offshore Wind Energy

Enables nearly unlimited development
opportunities for wind energy in places with land
constraints

Not limited to shallow water depths and can be
used to access better wind resources

Floating offshore wind is the most expensive 
form of wind energy installations, around 3-4
times more expensive than land-based wind in the
US

Block Island fixed-bottom wind plant being installed
in Rhode Island, the only offshore wind plan in the US

www.dwwind.com

Hywind wind plant being installed in Scotland

www.independent.co.uk



3 I Challenges with Floating Offshore Wind

Energy generation sources have traditionally
been selected based on an LCOE comparison
with alternative sources

Annual expenses include capital costs and
operational expenses, which become
significant for offshore systems

For floating offshore wind, the platform
is the single largest contributor to the 
LCOE 

Operations and Maintenance costs are
much higher than land-based wind due to
costly and restricted accessibility
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4 I Could VAWTs be a solution for floating offshore wind?

Turbine costs represent 65% of wind plant
costs for land-based sites compared to
around 20% for floating offshore sites

• VAWTs are being studied as a potential
solution for floating offshore wind energy
which have several benefits, including:
(1) Lower center of gravity, which reduces

topside moment of inertia and resulting
platform costs

(2) Reduced O&M costs through removal of
active components (yaw and pitch
systems) and by platform-level placement
of drivetrain

Improved aerodynamic efficiency over
HAWTs at multi-MW scales

(4) Insensitive to wind shear and veer

(5) Improved scaling compared to HAWTs
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5 I Traditional Offshore Wind System Design Process

• The current sequential
design approach is
suboptimal for floating
offshore wind, and
likely will not achieve
the cost reductions
needed to enable mass
industry growth

• Relying on this
approach will hinder
identification of
transformative
solutions for floating
offshore wind optimal
system design
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6 I System Optimal Co-Design Process

• VAWTs can reduce
LCOE for floating
offshore wind by:

Reduced platform
costs

- Removal of active
drive components (yaw
and pitch) and
improvements in
O&M

Improved aerodynamic
performance
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7 I Challenges with Floating Offshore Wind

VAWTs have much lower mass moments of
inertia than HAWTs

Previous VAWT study included floating
platform design and analysis to determine the
optimal floating platform architecture for
LCOE and performance [1]

6 platforms covering the range of floating
system stability mechanisms were studied

- A tension-leg platform with multiple columns
was identified as the lowest cost option

• Performance benefits from the small roll/pitch
motions include increased energy capture and
reduced inertial loading on the turbine

TLPs have been identified as a promising
floating platform to reduce system LCOE [2]
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IfVAWTs are so great, then
why don't you see... any of
them... anywhere?



9 I VAWTs versus HAWTs

• HAWTs have been very successful, and are ideally suited for land-based installations

The VAWT turbine might be more expensive than HAWTs, or at best comparable

The benefit of utility-scale VAWTs arises strictly for floating offshore wind plants,
where the platform and O&M costs dominate the LCOE

There is also some legacy misinformation that has hindered their acceptance for
future floating wind development: 

VAWT power performance

VAWT fatigue

• Lack of development and proven performance at scale



10 VAWTs... "their power performance is inferior"...

VAWTs actually have a 4-8% higher
aerodynamic power conversion
efficiency than the Betz limit (for
HAWTs) [3-5]

• Large VAWTs can have a sufficiently
high tip speed ratio and low solidity to
achieve high aerodynamic efficiency
(power coefficients) P
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This graphic has been used for a long time as support for the
relatively poor power performance of VAWTs, it appears to
have been generated based on limited data, not theory [7].



11 VAWTs... "their power performance is inferior"...

VAWTs operate through 360° relative to the incoming wind and in their own wake. For large
VAWTs this effect on angle of attack is minimized while the effective double passage through the
wind can actually produce higher aerodynamic efficiencies than HAWTs.
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Sandia's free wake vortex code CACTUS shows high VAWT efficiencies, comparing well to full
CFD results at a fraction of the computational cost.
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12 VAWTs... "they have fatigue problems"...

VAWTs do have inherent loading fluctuations due
to their vertical rotation

Large VAWTs with high tip speed ratios reduce
the cyclical loading

However, previous VAWTs had fatigue issues 
due to material and design choices which do
not represent the industry today:
VAWTs in the 70s and 80s were manufactured using
extruded aluminum blade sections, as composite
materials were not prominent

• Large VAWT blades had bolted connections which
created stress concentrations, increasing the fatigue
damage

Lifetime loading conditions for wind turbines were
not as well known (design standards)



13 VAWTs... "they haven't been developed at scale"...

FloWind installed over 500 turbines (>95 MW) in California's

Altamont and Tehachapi passes, which operated for over a decade
(prior to fatigue issues).
www.wind-works.org

Eole was built in 1984 and had a rotor area equivalent

to a 71m diameter HAWT. Eole was operated for 6

years in Quebec with a maximum power of 3.4 MW
and was decommissioned due to bearing damage.

www.wind-works.org



14 VAWTs... "they haven't been developed at scale"...
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Early research of VAWTs included numerous developmental turbines (>100 kW) with
somewhat successful commercialization efforts. When composite materials became
common in the 90s, HAWTs began to dominate both research and commercialization [6].



Additional benefits ofVAWTs
for floating offshore wind



16 VAWTs can reduce the LCOE design objective1 la
Offshore Wind Plant

• The solution for LCOE minimization is to
reduce the system costs and increase energy
capture

• The ideal wind energy system would eliminate
all mass and cost that is not directly capturing
energy from the wind

This objective is even more significant for
floating offshore sites where increased mass
above the water level must be supported by
larger and more expensive floating platforms
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17 A VAWT designed for floating offshore sites

The ARCUS Darrieus
VAWT replaces the rigid
tower with tensioned
center supports and pre-
stressed blades

In previous Sandia
studies, the tower
represented 80% of the
rotor mass

ARCUS may enable a
50% rotor mass reduction,
being studied through the
ARPA-e ATLANTIS
program

The ARCUS Darrieus VAWT has been designed by Sandia to address the high
costs of floating offshore wind; patent-pending.



18 A VAWT designed for floating offshore sites

• By eliminating the tower, the total rotor
mass may be reduced, which has a cascading
effect on platform costs

The ARCUS blades will be more expensive
than traditional Darrieus blades, but the net
result should be reduced turbine costs and,
more substantially, system LCOE

VAWTs generally have longer, more
expensive blades than HAWTs, but this is
only 23% of the turbine capital cost

VAWTs eliminate the hub and pitch systems,
the nacelle structural system and bedplate,
and the ARCUS VAWT eliminates the rigid
tower which total to 47% of the capital costs
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19 A HAWT Equivalent of the ARCUS VAWT

VAWTs offer some unique design
advantages for floating sites that simply
cannot be replicated by HAWTs.
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