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Optimal Power Flow Problem @ ..

The Optimal Power Flow (OPF) Problem is the

myopic social welfare max. problem (no horizon considered)

Significant Research Efforts to Solve Non-Convex OPF Problems

= Fully Detailed AC OPF Problem (with reactive power/voltage magnitudes)
NP-hard in general!

Iterative methods converge to local minima

SDP relaxation is exact under certain criteria®

Other relaxations proposed to approximate solution3

I Daniel Bienstock and Abhinav Verma. “Strong NP-hardness of AC power flows feasibility”. In: arXiv preprint
arXiv:1512.07315 (2015).

2 Javad Lavaei and Steven H Low. “Zero duality gap in optimal power flow problem". In: |[EEE Trans. on Power
Systems 27 (2012), pp. 92-107.

3Carleton Coffrin, Hassan L Hijazi, and Pascal Van Hentenryck. “The QC relaxation: A theoretical and computational
study on optimal power flow”. In: IEEE Trans. on Power Systems 31.4 (2016), pp. 3008-3018.
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Optimal Power Flow Problem @ ..
Optimal Power Flow (OPF) Problem: myopic S.W. Max. Problem

Little Research Addresses the
Economic Problems Associated with Non-Convexity

= |dentifying Revenue Inadequacy caused by Non-Convexity

= Standard Locational Marginal Prices
Each bus has different price

= Congestion Revenue Shortfall in presence of FTRs
Congestion revenue shortfall is typically caused by line outages

4and5

= Pricing Structures Addressing this Problem

= Discriminatory pricing structure suggested®
Each generator sees different price

= Convex Hull Pricing (Topic of this work)

4Andy Philpott and Geoffrey Pritchard. “Financial transmission rights in convex pool markets”. In: Operations
Research Letters 32.2 (2004), pp. 109-113.

5Bernard C Lesieutre and lan A Hiskens. “Convexity of the set of feasible injections and revenue adequacy in FTR
markets”. In: |[EEE Trans. on Power Systems 20.4 (2005), pp. 1790-1798.

6 Javad Lavaei and Somayeh Sojoudi. “Competitive equilibria in electricity markets with nonlinearities”. In: American
Control Conference (ACC), 2012. |EEE. 2012, pp. 3081-3088.
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Review of Convex Hull Pricing .
Convex Hull Prices (CHPs) minimize worst case shortfall of 1SO.

The various sources of shortfall are referred to as uplift.

Minimize Various Uplift Quantities’ 2"d 8

= Generator Uplift
= Financial Transmission Right (FTR) Uplift
= Reserve Related Uplift (Future work)

Typical Setting
7and 9

UC Problem with linear transmission constraints
= Observe that CHPs decrease side-payments as compared to LMPs

= Generalization to AC OPF problem does not exist

"Dane A Schiro et al. “Convex hull pricing in electricity markets: Formulation, analysis, and implementation

challenges”. In: |EEE Trans. on Power Systems 31.5 (2016), pp. 4068-4075.

8paul R Gribik, William W Hogan, and Susan L Pope. “Market-clearing electricity prices and energy uplift”. In
Cambridge, MA (2007).

9Bowen Hua and Ross Baldick. “A Convex Primal Formulation for Convex Hull Pricing”. In: IEEE Trans. on Power
Systems (2016).
November 11, 2020
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Outline Mot

Background and Introduction

CHP Problem Formulation (Multi-Objective Minimum Uplift)
Computing Approximate CHPs

I Examples

Conclusion
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Electricity Market Setting

Underlying Graph
G = (N, E): Directed graph
N Set of n buses

E: Set of m trans. lines
Uniform Nodal Prices
m€R™: nodal price for real power

Figure: Arbitrary Directed Graph.
(Arrows represent edges and dots
represent nodes)

November 11, 2020
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Market Participants
(More Details Later)
Demand:
= QOne for each node i € V
= D;: fixed p.u. demand
® Charged amount m; D;

Generators:
= One for each node i € V
= (;: variable p.u. generation
= paid amount 7;G;
FTR holders:
= Awarded FTRs through
auction
= Paid/charged based on nodal
price difference m; — 7;
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Feasible Set of Net Power Injections s

General AC Transmission Model
P C R™: Feasible net power injections
G— D eP: physical network constraint

Possible Forms of P
(Arbitrary paramters My, and by)

= DC Approximation (Convex)
PZ{PERn: b1§M2P§b2}
= General Quadratic (Potentially non-convex)

P={PecR": 3z € R where [PT 27| M, m < by Vk}

November 11, 2020 7
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Generator Uplift

Generators are Profit Maximizers
Similar to other models in literature!® 2nd 11

= Paid amount m;G; accrue costs of C;(G;), where C;( ) is convex
= Private constraints represent generation limits
GieXi::{Gi:G;’”"gGigG;“ax}

= Max profit as a function of nodal price
;(m;) := max (mGi — Cy(Gy)) - (1)

G;eXx?

10payl R Gribik, William W Hogan, and Susan L Pope. “Market-clearing electricity prices and energy uplift”. In:

Cambridge, MA (2007).
1 Bowen Hua and Ross Baldick. “A Convex Primal Formulation for Convex Hull Pricing”. In: IEEE Trans. on Power

Systems (2016).
8
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Generator Uplift ) =
Dispatched Generation

The ISO dispatches generators at amount G¢ € X"
The dispatch may not maximize the generator's profits.

Lost Opportunity Cost/Side Payments
Realized profit is m,G¢ — C;(GY)
Lost Opportunity Cost is

Cf (mi, G) =Thi(m) - (mG{ - Ci(GY)) (2)

Side Payments in the amount of C¢(m;, G%)
= Conditioned on generator following dispatch
= Neutralize incentive to deviate from dispatch
= Not covered by another revenue stream

= Side-payments are non-negative, e.g. C¢(m;, G%) >0

November 11, 2020




FTR Uplift =
Maximum FTR Payoff

(Market must be revenue adequate for any FTR allocation)

U(r) := r}*lea%( —alf. (3)

Modeling the Aggregate Effect of FTRs!?
» —7T f: total FTR payoff (FTR Obligation)
s f € R"™ Aggregate FTR allocation vector
= Element fj represents a megawatt value of injection into node k

Simultaneous Feasibility Conditions (SFCs)
= FTR auction occurs far in advance of market clearing

= FTR auction ensures that SFCs are satisfied

= The aggregate FTR allocation vector represents a feasible vector of
net power injections, eg. f € P.

12V, Garcia, H. Nagarajan, and R. Baldick. “Generalized Convex Hull Pricing for the AC Optimal Power Flow
Problem”. In: IEEE Transactions on Control of Network Systems 7.3 (2020), pp. 1500-1510.
November 11, 2020 10




FTR Uplift .

Potential Congestion Revenue Shortfall (PCRS)

(Worst case shortfall of congestion revenue)

FTRs are funded using congestion revenue
Congestion revenue: FT(D—Gd)
PCRS (also known as FTR uplift):

C5(m,GY) := U(r) — 7T (D - Gd) . (4)

PCRS is non-negative, eg. C*(m, G4) > 0 (Assuming that
GF—D e P)

If C*(m, G%) = 0 then congestion revenue adequacy is guaranteed

November 11, 2020 11




Multi-Objective Minimum Uplift Problem ™ £2.

Convex Hull Pricing (CHP) Problem

The Convex Hull Prices (CHPs) minimize the weighted sum of PCRS
and total side-payments and are denoted 7*.

7 & g (aCS(W, @+ 3, cg(mc;?)) (5)

TeR?

= PCRS represents only a potential shortfall

= Weight a > 0 is likely less than 1
= Generalization of typical CHP definition

= Typical definition sets weight parameter to a = 1
= Difficult to solve

= Bi-level optimization problem
= |nner optimization problem is non-convex

November 11, 2020 12




Primal CHP Problem @ ..
Convex Primal Counterpart (Primal CHP Problem)

Equivalent to the AC OPF problem with P replaced by its convex hull conv(P).
(Note: P?:= G~ D)

i 3L el(e 6
ot iR (©)
st:Dj—Gi+aP;+(1—a)PE=0 YieV (6a)

Optimal Lagrange multipliers of constraints (6a) minimize the
CHP problem (5) and thus represent CHPs.

Proof: Contained in reference.l3 O

By, Garcia, H. Nagarajan, and R. Baldick. “Generalized Convex Hull Pricing for the AC Optimal Power Flow
Problem”. In: |EEE Transactions on Control of Network Systems 7.3 (2020), pp. 1500-1510.
November 11, 2020 13




Approximating CHPs ()

Approximating CHPs
Conv(P) may be intractable to evaluate!
Approximate using convex relaxation relax(P)2conv(P).
Relaxation produces approximate CHPs 7

Relaxed Primal CHP Problem
Replace P with a convex relaxation relax(P)

i Y Ci(G; 7
Gex, ]TEI?eIaX(P) ieVC (&) (7)
st:D;—Gi+aPi+(1-a)Pl=0 ViV (7a)

Approximate CHPs 7 are Lagrange multipliers for constraint (7a)

November 11, 2020 14
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I Examples
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Examples -

Overview of All Test Cases
Full AC transmission modell4

= Accounts for reactive power and voltage magnitudes
= Used to define P

= This presentation will only analyze the SDP relaxation®®.
. = QOther options: QC® and SOCP'7 relaxations

Part I: Weight parameter is set to o = 1

Part Il: Analyze impact of varying weight parameter «

Daniel K Molzahn and lan A Hiskens. “Convex relaxations of optimal power flow problems: An illustrative example”.
In: IEEE Transactions on Circuits and Systems I: Regular Papers 63.5 (2016), pp. 650-660.

15Daniel K Molzahn et al. “Implementation of a large-scale optimal power flow solver based on semidefinite
programming”. In: |[EEE Trans. on Power Systems 28.4 (2013), pp. 3987-3998.

16 Carleton Coffrin, Hassan L Hijazi, and Pascal Van Hentenryck. “The QC relaxation: A theoretical and computational
study on optimal power flow". In: |EEE Trans. on Power Systems 31.4 (2016), pp. 3008-3018.

17Rabih A Jabr. “Radial distribution load flow using conic programming”. In: |EEE Trans. on power systems 21.3
(2006), pp. 1458-1459.
November 11, 2020 16
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LMP Analysis
Overview
= Three test cases available by NESTA!8
= Strong duality does not hold so Total Uplift is non-zero.

= Must solve the max FTR payoff problem (3) to compute FTR
Uplift.

= |ocal minimum found with interior point solver (Conservative).

Table: Resul ith LMP D
LMPs and Shortfall able: Results wit s (USD)

- LMPs
FTR Uplift is (for AC OPF) | Total
significant for some Test  [Generator] FTR |Operating
test cases Case Uplift Uplift Cost
162 jeee_dtc|] ~ 0 |1,352.92[ 4,230.23
> 30% of cost for 189_edin ~0 1.22 | 849.29
300_ieee ~0 | 36.87 |16,891.27
162 bus case

18Carleton Coffrin, Dan Gordon, and Paul Scott. “NESTA, the NICTA energy system test case archive”. In: arXiv
preprint arXiv:1411.0359 (2014)

November 11, 2020 17




Approximate CHPs with SDP ) e

Approximate CHPs and Shortfall

= Relaxed primal CHP problem formulated using SDP relaxation.
= Implimented using MATPOWER toolbox in MATLAB®
= Significantly lower FTR Uplift, slightly larger Generator Uplift.
= Particularly effective for 162 bus test case
Table: Results with SDP Relaxation (USD)

LMPs Approximate CHPs
(for AC OPF) |with SDP Relaxation| Total
Test Generator| FTR |Generator] FTR |Operating

Case Uplift Uplift Uplift Uplift Cost
162_ieee dtc| ~ 0 [1,352.92| 0.11 42.55 |4,230.23
189_edin ~0 1.22 0.05 0.74 849.29

300_ieee ~0 36.87 0.03 14.77 |16,891.27

Daniel K Molzahn et al. “Implementation of a large-scale optimal power flow solver based on semidefinite
programming”. In: |[EEE Trans. on Power Systems 28.4 (2013), pp. 3987-3998.
November 11, 2020 18




Choice of Weight Parameter o =
(Case 162 ieee dtc)

Varying Weight «

= Decreasing o from 1 = When a = .7
= Decreases = Generator Uplift is zero
side-payments = FTR Uplift is approx. $42
® |ncreases PCRS down from approx $1352
0.1 ‘ ‘ 24215
o = =Side-Payments &=
< . |—PcRs Prs
£ -7 1421 &
g L "=
£ 0.05 Y 22
5 7\ O
& , ~_ 142,05
< s S~——
& L’ ~——_
0 - : : 42
0.6 0.7 0.8 0.9 1

. Weight Parameter, «
Figure: Varying the weight Parameter
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Conclusions and Future Work ) e

Conclusions
The SDP relaxation can be used to effectively approximate CHPs.

= Computational restrictions limit us to small test cases.

The trade-off between generator uplift and FTR uplift can be
adjusted by the weight parameter o

Future Work
Extend work to UC problem with simple quadratic losses.

= Analyze weight constant « using empirical results

= Include reserve uplift in the formulation

November 11, 2020 20




