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Brain-Inspired Computing Proposition

Leveraging knowledge of how the brain processes information
can impact a wide range of science and technology applications



Leveraging knowledge of how the brain processes information
can impact a wide range of science and technology applications

= Bl wigprifivm for ey,
reatesteonimondiasor fyea)|
Pt PRBRROIRDEDS, o

ot

[iEH

[

&
[lid]

i)

Frequency (Hz)
i
]

2 Time (sec) 10 prsubstrate




S5mm

Leveraging knowledge of how the brain processes information
can impact a wide range of science and technology applications

Tesla Autopilot

Musk & Neuralink

Large-scale modeling & simulation Oak Ridge National Laboratory Summit






The recent rise in Al has many causes

» Moote’s Law! — There is always a bigger computet!
» GPUs...

» The Internet! — Endless supply of unlimited datal
» Social Media. ..

» Model-free Learning! — Deep networks can do anything]
» Pre-training, drop-out, etc...
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Efficiency Drivers

» Cheaper computing
» Data, data, data
» Some new theory



Extending Al to different applications requires further efficiency scaling
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future Al
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Future reality is not so rosy

» Moore’s Law! — There is always a bigger computet!

» Dennard scaling is ovet, Moore’s Law is slowing

» The Internet! — Endless supply of unlimited data!
» Data is not equally available, and not all data is AI-friendly

» Model-free Learning! — Deep networks can do anything]
» Theory and trust in algorithms remains pootr, little physics in current algorithms



Unending push towards bigger and bigger and bigger networks...

Two Distinct Eras of Compute Usage in Training AI Systems

Petaflop/s-days
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Slowing of Moore’s Law limits computing scalability
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High-performing Al algorithms often depend on a lot of data...

IMAGENET I, | scvci Ao | Dovmion

Not logged in. Login | Signup

About ImageNet

e Overview

e Research Team

e Summary and Statistics
o Citations and Publications
e Interesting Articles

e Join ImageNet Mailing List Overall

e API Documentation
e Sponsors * Total number of non-empty synsets: 21841

* Total number of images: 14,197,122

* Number of images with bounding box annotations: 1,034,908
* Number of synsets with SIFT features: 1000

e Number of images with SIFT features: 1.2 million

Summary and Statistics (updated on April 30, 2010)

Statistics of high level categories

High level category #synset i Avg# images per Total # images
(subcategories) | synset
amphibian 94 591 56K
animal 3822 732 2799K
appliance 51 1164 59K
bird 856 949 812K
covering 946 819 774K
device 2385 675 1610K
fabric 262 690 181K
fish 566 494 280K
flower 462 735 339K




Good data is not uniformly available in all domains
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Future of data (privacy, cost, etc.) ensures unequal availability...
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Data should be seen as a potential barrier to entry for Al

Tomorrow ‘
Established Al
Industry
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Today
Cost
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Can we envision an alternative Al future that is more scalable?
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Neuromorphic computing is embarking on a co-design future

Algorithms

Programmable

Hardware

Deep Learning
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A roadmap for neuromorphic computing

» Today: High-density spiking CMOS chips
» Is spiking deep learning realistic?
» Can these chips do anything beyond deep learning?

» Tomorrow: Hybrid analog-spiking processors as part of heterogeneous architecture
» Is energy-savings enough to justify a loss in precision?

» Can I create an efficient neural memory algorithm?

» Future: Brain-derived algorithms and hardware
» What is the path to a data-efficient brain-inspired Al method?

» Is current hardware path sufficient? Or do we need something radically different?
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The hardware industry is pushing towards spiking chips
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Why spiking!?

» Event-driven

» Only expend energy when neutron crosses threshold

» Reliable and efficient over long distances

500 um (A, B, D)

» Neurons often project across brain or whole body...

» Robust to noise

» Away from threshold, biophysical noise should not
accidently cause spikes

Frontal view




What can you do with spiking neurons?

Spiking deep neural networks
i E = ¢ 2% « Whetstone allows us to use spiking

communication with no time penalty and
minimal accuracy reduction
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Training deep neural networks for binary
communication with the Whetstone method

William Severa:*, CraigM. Vineyard *, RyanDellana , Stephen 1. Verzi > and James 8. Aimone "

Training
Whetstone / Keras
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Severa et al., Nature Machine Intelligence, Feb 2019
Vineyard et al., NICE Proceedings, 2019




Whetstone has only minimal penalty for binary activations
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Spiking neuromorphic hardware needs more than just deep learning

Algorithms

Programmable

Hardware

Deep Learning

_:_ _SpTdn? -
Algorithms

Spiking
Neuromorphic



Our hypothesis: There exists a class of scientific computing algorithms
for which neuromorphic computing is efficient

ﬂig numerical calculations PDEs you can solve with MC methods \
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Spiking circuits can efficiently solve stochastic differential equations
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30 I Neuromorphic algorithm can simulate random walks

~ Spikes from input nodes
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Spiking circuits can efficiently solve stochastic differential equations
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32 | We can identify a neuromorphic advantage for simulating random walks

J We show a neuromorphic advantage for implementing
simple random walks on neuromorphic hardware
compared to CPU implementation

J Same task, architecture specific algorithms

J TrueNorth and Loihi ate slower, but NMC algorithm
time scales better

J Overall energy consumption (speed / power) is
markedly better (20x-100x) on NMC
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33 I What PDEs can these stochastic processes be useful for?

d

aonly b

Time

ab, A h=1

d
~

a, b, \h

a b

ab, \,h=3

Time
1024

Non-Zero Terms

25

Time-dependent problems
ab,cf
Ach
A b6, 1 h
a,c

Steady-state problems

af

ADbf,h

Example Application

European Option Pricing
Simplified Particle Flux Density (See Fig. 3a-d)
Boltzmann Flux Density

Heat Equation with Dissipation (See Fig. 4c)

Electrostatic Scalar Potential, Heat Transport, or
Simple Beam Bending [23]

Simplified Particle Fluence (See Fig 3e-i)

Smith et al., in review 2020




34 I Simulating Particle Transport on TrueNorth and Loihi
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35 I Algorithm can implement non-Euclidean geometries

] Stochastic process can be over any mesh, in theory there are no restrictions on geometry

(beyond number of mesh-points and hardware size)

J Implemented random walks over surface of sphere and across barbell shape

J Can extend to any graph / network
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What can you do with spiking neurons?

Treat neurons as powerful logic
gates

Algorithms are circuits...

———— . Network Flow Contirol

Constraint

Satisfaction

Classification Graph Search

Aimone et al, ICONS 2019




Part 2:

Scaling Neuromorphic
Architectures to the Next Level
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Number of Neurons
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Overview

Overview Aboutintel Strategic Priorities Segments News & Events  Financial Info

Press Releases IR Calendar Annual Stockholders' Meeting

Intel and Sandia National Labs
Collaborate on Neuromorphic
Computing

Investor Meeting

Stock |

Research

Sandia
National . About News
Laboratories

Partnerships

Careers

News Releases Publications Media Contacts Media B-roll Events Video Image Gallery Subscribe

Sandia Labs News Releases

50 million artificial neurons to facilitate machine-learning

research at Sandia

Total number in final system could reach 1 billion or more

ALBUQUERQUE, N.M. — Fifty million artificial neurons — a number roughly equivalent to the brain of a
small mammal — were delivered from Portland, Oregon-based Intel Corp. to Sandia National

Laboratories last month, said Sandia project leader Craig Vineyard.

The neurons will be assembled to advance a relatively new kind
of computing, called neuromorphic, based on the principles of
the human brain. Its artificial components pass information in a
manner similar to the action of living neurons, electrically
pulsing only when a synapse in a complex circuit has absorbed
enough charge to produce an electrical spike.

“With a neuromorphic computer of this scale,” Vineyard said,
“we have a new tool to understand how brain-based computers
are able to do impressive feats that we cannot currently do with
ordinary computers.”

Improved algorithms and computer circuitry can create wider
applications for neuromorphic computers, said Vineyard.

Sandia manager of cognitive and emerging computing John

VA e el Mt vamss Lasrmm smiv vkl sovianioos s vartl] Do s i

A close-up shot of an Intel Nahuku board, each of which contains 8 to 32 Intel Loihi neuromorphic chips. Intel’s latest neuromorphic system,

Pohoiki Beach, is made up of multiple Nahuku boards and contains 64 Loihi chips. Pohoiki Beach was introduced in July 2019. (Credit: Tim

Herman/intel Corporation)

‘OCTOBER 02, 2020 9:00AM EDT

@ pownload as PDF

SANTA CLARA, Calif.--(BUSINESS WIRE)-- What's New: Today, Intel Federal LLC announced a

three-year agreement with Sandia National Laboratories (Sandia) to explore the value of

Sandia National Laboratories
researcher J. Darby Smith does an
initial examination of computer
boards containing artificial neurons
designed by Intel Corp. (Photo by
Regina Valenzuela) Click on the
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41 | More neurons = better
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We need a new post-Moore’s Law path to cheaper computing
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Scaling to real-world applications will require future hardware solutions
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44

* Focus on Kirchhoff Law — enabled computation
Neurons sum current across weighted synapses
Neural nodes sum current over weighted memristors

Neuromorphic Processors

Analog

» Substantial energy and time savings

Non-trivial costs of precision
Practical issues limit size and integration with digital logic

Ideal scenario

Train weights in situ
Compatible with linear algorithms

&y 3 3 3
Fig 1: Analog RRAMs can be used to reduce the energy of a
vector matrix multiply. The conductance of each RRAM
represents a weight. Analog input values are represented by the
input voltages or input pulse lengths. This allows all the read
operations, multiplication operations and sum operations to occur
in a single step. A conventional architecture must perform these
operations sequentially for each weight resulting in a higher

suangy-mid delay. Agarwal et al., E3S 2015

Digital

Rely on event-driven “spiking” for communication
* Communication only needed for ‘1’s’, not otherwise
* Equivalent to large threshold gate networks + time dimension

Substantial energy savings
* Information in time dimension; limiting time savings

Compatible and scalable using conventional technology

Ideal scenario

* Algorithms can be reframed in discrete spiking form
* Learning algorithms are reformulated for spiking approaches

Spike
Transfer
Structure

- Temporal Location
 Pust Synaptic Neuron

FIFO Buffers

Newron Potential

Neuronal Processing Units
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Brains, and neural networks, do both...

Weights (Linear)
Analog

Dendrite / Soma / / \

Analog

Soma / Axon Neurons (Non-linear)
Spiking Spiking




Future of neuromorphic is likely a hybrid spiking / analog system

000000 000
000000 )00 O
000000 T 0] Analog Synapses
000000 900
000000 000
000000 000
3d Hybrid System for
Communication

(X X EL1X | Digital Neurons




47 I Implications of analog noise + spiking accuracy

J Some accuracy / efficiency trade-off is likely

okay Required Performance
J Most applications have requirements |
) Most neural network solutions can be tweaked to | b

change resources / performance

S El 2=
o A EA CA

J Spiking or Analog alone probably is not
sufficient I
|

W

HETSTDINE
—

Available Resources

] However, we’re seeing that without some ~ SWaP Costs
modification, analog + digital likely won’t work

J We need to somehow mitigate errors in either
training or architecture implementation

Accuracy



Part 3:
Looking to the brain for
intelligence beyond deep learning




Can we really get the brain into algorithms?

| | | | ] | | | | | | | | "
Deen Learmn 1 Spiking 1 | Brain-derived
E e I | |
E L |
= e : I |
I | ' -
: I I
|
Iy =l
Q o ST
: S | = |
S % """" I ~&’ I
S S )
ST | -/ |
a GPUs Spiking Hybrid |
Neuromorphic | Analog-Digital
L Neuromorphic |



review articles

DOL:10.1145/ 3231600

| com puting in s
Advances in neurotechnologies are reigniting | oo o *l'f dar

opportunities to bring neural computation e adisoning
insights into broader computing applications. | time i

f perceived limits
ant fabrication pro

Indesd diffe

Law is soon o be ¢

| BY JAMES B. AIMONE v, Dennard
lesser known but equally i

Neural e .g;-'?.e;'i'“
Algorithms

- with feature sing from 1

] to " 10nm; the ability to speed up pro-

and Computin
stopped. Today's common CPUs are

lir d 1o wl 4GH: due to by -

they were 10 yes While Moore's

’ Law enables more C s On g il

{and hos enabls

Moore’s Law
there is increasing

feature sizes cannot fall much further
with perhaps two or three furthe

Multipl

. s have been pre
sented for technological extension of

Moore's Law,

M ND y DEML i Moor I\ 1as | ur muin challer
ed. Fo T
listely evident thae future materials

R snect of societ EJ key insights

n 8 While Moore's Law is slowing down,

dres.

It s not i

L

s anpm &

ik lers. | 1 with technology anabling scemntists
TR s 3 . 0 harve moTe isights into the brain's
$ COLSK 183 wil L behavior than ever befare and thas

e . -3 1 = poamonmg the neurosciencs feld to
provide a long-term source of Inspiration
mpul i o ¢lectrical envin in foe naw el computing solutions
Extending the reach of brain-inspiration
into computing will not anly make
current Al methods better, but looking
beyond the brain's sensory systems can
wdvance n matenals scien Frov the start also expand the reach of Al into new
applications.

® Realizing the full potential of brain-
density of transist 5. Provressh wdvances in how inspired computing requires increased
collaborations and sharing of
nanip t licon thr yadvancin i ge between the )
. computer science, and neuramorphic
e i VL iR ey nave Kept advan hardware communities.

110 commumisaTIoNS DF THE ACM | 4=




How can neuroscience influence Al beyond Deep Learning?

Algorithm Class Current Algorithms Inspiration Application

Jo y C
Predictive Coding, Substantial reciprocal feedback
Hierarchical Temporal Memory, between “higher” and “lower”
Recursive Cortical Networks sensory cortices

Bayesian Neural
Algorithms

Inference across spatial and
temporal scales

Neural
Capability

Advancing

Aimone JB, Communications of ACM, April 2019




Data is a potential unseen barrier to entry for Al
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Some types of applications are well-suited for deep ANNs
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... other applications are not

I Under the bonnet

How a self-driving car works

Signals from GPS (global positioning system) Lidar (light detection and ranging) v
eep neural networks benetit rrom 4z
tachometers, altimeters surroundings. These are analysed to
and gyroscopes to provide identify lane markings and the
more accurate positioning o———— edges of roads M e o
/ t relatively Jow-dim / dat
Crosene o e i A VoLunie O cla c Y 0NV-arniensiona ata
read road signs, keep track of the
R - position of other vehicles and look
sensor - out for pedestrians and obstacles ™
\ O ontheroxd f N>>d

» Good (necessary?) for training very large,
relatively model-free networks

g
M
mn

Ultrasonic sensors may
be used to measure the
position of objects very The information from all
close to the vehicle, of the sensors is analysed
suchascurbsand other by a central computer that
vehicles when parking manipulates the steering,
accelerator and brakes. Its
software must understand Radar sensors monitor the position of other
the rules of the road, both vehicles nearby. Su(h sensors are already used

» Many applications will have low-volume or
_ a skewed-distribution of relatively high-
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Source: The Economist

» N=d,

or n=d, where 7 are relevant observations

» Not a good fit for large unstructured
parameterizable ANNs



The brain exhibits plasticity at many scales
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Can we really get the brain into algorithms?
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Thanks!

Primary Funding sources

» Sandia Laboratory Directed Research and Development Program
» DOE NNSA Advanced Simulation and Computing

Sandia NERL team

»Brad Aimone, Suma Cardwell, Frances Chance, Srideep Musuvathy, Fred Rothganger, William
Severa, Craig Vineyard, Darby Smith, Corinne Teeter, Felix Wang, Ryan Dellana, Mark Plagge

References

» Aimone B, Neural Algorithms and Computing Beyond Moore’s Law; Communications of ACM,
April 2019

» Aimone ]B, A Roadmap for Reaching the Potential of Brain-Derived Computing; Advanced Intelligent
Systems, 1n press 2020



