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Brain-Inspired Computing Proposition

Leveraging knowledge of how the brain processes information
can impact a wide range of science and technology applications



Leveraging knowledge of how the brain processes information
can impact a wide range of science and technology applications
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can impact a wide range of science and technology applications
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I The recent rise in Al has many causes

➢ Moore's Law! — There is always a bigger computer!
➢ GPUs...

➢ The Internet! — Endless supply of unlimited data!

Social Media...

)• Model-free Learning! — Deep networks can do anything!

➢ Pre-training, drop-out, etc...

•

Links carry signals
from one node

to another, boosting
or damping them
according to each

link's 'weight'.

Multiple hidden layers
process hierarchical features

Identify
combinations

light/dark or features
pixel value • identify Identify Identify

*As edges combinations features
of edges

Waldrop PNAS 2019
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Today

Al Performance

Efficiency Drivers

> Cheaper computing
> Data, data, data
> Some new theory



I Extending Al to different applications requires further efficiency scaling
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I Future reality is not so rosy

Moore's Law! — There is always a bigger computer!
Dennard scaling is over, Moore's La w is slo wing

➢ The Internet! — Endless supply of unlimited data!
➢ Data is not equally available, and not all data is AI-friendly

Model-free Learning! — Deep networks can do anything!

➢ Theory and trust in algorithms remains poor, little physics in current algorithms



I Unending push towards bigger and bigger and bigger networks...

Two Distinct Eras of Compute Usage in Training AI Systems
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Slowing of Moore's Law limits computing scalability
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High-performing Al algorithms often depend on a lot of data...

IMAGEN
14,197,122 images, 21841 synsets indexed

About ImageNet

• Overview

• Research Team

• Summary and Statistics

• Citations and Publications

• Interesting Articles

• Join lmageNet Mailing List

• API Documentation

• Sponsors

Summary and Statistics (updated on April 30, 2010)

Overall

• Total number of non-empty synsets: 21841

• Total number of images: 14,197,122

• Number of images with bounding box annotations: 1,034,908

• Number of synsets with SIFT features: 1000

• Number of images with SIFT features: 1.2 million

Statistics of high level categories

.me Explore

out Download

Not logged in. Login l Signup

High level category
# synset

(subcategories)

Avg # images per

synset
Total # images

amphibian 94 591 56K

animal 3822 732 2799K

appliance 51 1164 59K

bird 856 949 812K

covering 946 819 774K

device 2385 675 1610K

fabric 262 690 181K

fish 566 494 280K

flower 462 735 339K



I Good data is not uniformly available in all domains

= Search Google Maps

See travel times, traffic and nearby places
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Future of data (privacy, cost, etc.) ensures unequal availability...
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certain groups

•••

but probably
not for you



Data should be seen as a potential barrier to entry for Al
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Can we envision an alternative Al future that is more scalable?
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I Neuromorphic computing is embarking on a co-design future

Deep Learning

GPUs
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Spiking

Algorithms
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A roadmap for neuromorphic computing

➢ Today: High-density spiking CMOS chips
➢ Is spiking deep learning realistic?

➢ Can these chips do anything beyond deep learning?

➢ Tomorrow: Hybrid analog-spiking processors as part of heterogeneous architecture
➢ Is energy-savings enough to justify a loss in precision?

➢ Can I create an efficient neural memory algorithm?

➢ Future: Brain-derived algorithms and hardware
➢ What is the path to a data-efficient brain-inspired AI method?

➢ Is current hardware path sufficient? Or do we need something radically different?
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Part I:
Can spiking actually be useful
for computing?
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I The hardware industry is pushing towards spiking chips
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I Why spiking?
➢ Event-driven

➢ Only expend energy when neuron crosses threshold

➢ Reliable and efficient over long distances

➢ Neurons often project across brain or whole body...

➢ Robust to noise
➢ Away from threshold, biophysical noise should not
accidently cause spikes

CPu

Frontal view

D

Medial view of
right brain



I What can you do with spiking neurons?

Cil -- Spiking deep neural networks

1=11 *4.44,v 016 

m._ • Whetstone allows us to use spiking
communication with no time penalty and
minimal accuracy reduction
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Training deep neural networks for binary
communication with the Whetstone method
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Whetstone has only minimal penalty for binary activations

Metho

Whetstone (VGG-like)

Whetstone (10-net ensemble)

Training Process
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Spiking neuromorphic hardware needs more than just deep learning

Deep Learning

s

I..' •
• • • • •

<5"

GPUs

ASICs
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Spiking

Algorithms

Spiking
Neuromorphic



Our hypothesis:There exists a class of scientific computing algorithms
for which neuromorphic computing is efficient

( 
Big numerical calculations
(i.e., PDEs)

.

•

•

PDEs you can solve with MC methods
•

MC-PDEs that are / PDEs that are typically solved with MC
ill-suited for NMC methods today (efficient on

conventional)

Things GPUs are really good at

• _

Our Results

PDEs that can
efficiently be solved

with NMC

MC-PDEs that are only
efficient on NMC

♦
I/

• —
Non-MC
PDEs that

are
efficient
on NMC
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Spiking circuits can efficiently solve stochastic differential equations
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30 I Neuromorphic algorithm can simulate random walks
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I Spiking circuits can efficiently solve stochastic differential equations

Diffusion: 
cr(x,t) 

= D 
a2C(x,t)

at ax2
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32 I We can identify a neuromorphic advantage for simulating random walks

We define a neuromorphic advantage as an
algorithm that shows a demonstrable advantage
in terms of one resource (e.g., energy) while

exhibiting comparable scaling in other resources
(e.g., time).

CI We show a neuromorphic advantage for implementing
simple random walks on neuromorphic hardware
compared to CPU implementation

13 Same task, architecture specific algorithms

CI TrueNorth and Loihi are slower, but NMC algorithm
time scales better

Overall energy consumption (speed / power) is
markedly better (20x-100x) on NMC
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33 What PDEs can these stochastic processes be useful for?

a a only

Time

a, b, h

Time

b

d

T

116

a, b„1, h = 3

Terri:

L
Non-Zero Terms Example Application

Time-dependent problems

a, b, c, f

c,h

b, c, f,h

Steady-state problems

a, c

a, f

European Option Pricing

Simplified Particle Flux Density (See Fig. 3a-d)

Boltzmann Flux Density

Heat Equation with Dissipation (See Fig. 4c)

Electrostatic Scalar Potential, Heat Transport, or

Simple Beam Bending [23]

b, f, h Simplified Particle Fluence (See Fig 3e-i)

Smith et al., in review 2020



34 I Simulating Particle Transport on TrueNorth and Loihi
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35 I Algorithm can implement non-Euclidean geometries

❑ Stochastic process can be over any mesh, in theory there are no restrictions on geometry
(beyond number of mesh-points and hardware size)

❑ Implemented random walks over surface of sphere and across barbell shape

P Can extend to any graph / network

Time = 0.00

•
•

On Loihi

0

-1

0. 5 ti

- 0.5

Time = 0.000

0.5
0

2

0 5

Neural Simulation

Smith et al., in review 2020



I What can you do with spiking neurons?

Treat neurons as powerful logic
1 gates

Algorithms are circuits...

g=I

Fugu

Aimone et al, ICONS 2019



Part 2:
Scaling Neuromorphic
Architectures to the Next Level
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National
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About News Research Partnerships Careers
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Intel and Sandia National Labs
Collaborate on Neuromorphic
Computing

News Releases Publications Media Contacts Media B-roll Events Video Image Gallery Subscribe

Sandia Labs News Releases

Qqgbgr..2,..2029.

50 million artificial neurons to facilitate machine-learning
research at Sandia

Total number in final system could reach 1 billion or more

ALBUQUERQUE, N.M. — Fifty million artificial neurons — a number roughly equivalent to the brain of a

small mammal — were delivered from Portland, Oregon-based Intel Corp. to Sandia National

Laboratories last month, said Sandia project leader Craig Vineyard.

The neurons will be assembled to advance a relatively new kind

of computing, called neuromorphic, based on the principles of

the human brain. Its artificial components pass information in a

manner similar to the action of living neurons, electrically

pulsing only when a synapse in a complex circuit has absorbed

enough charge to produce an electrical spike.

"With a neuromorphic computer of this scale," Vineyard said,

"we have a new tool to understand how brain-based computers

are able to do impressive feats that we cannot currently do with

ordinary computers."

Improved algorithms and computer circuitry can create wider

applications for neuromorphic computers, said Vineyard.

Sandia manager of cognitive and emerging computing John

A close-up shot of an Intel Nahuku board, each of which contains 8 to 32 Intel Loihi neuromorphic chips. Inters latest neuromorphic system,

Pohoiki Beach, is made up of multipre Nahuku boards and contains 64 Loihi chip. Pohoiki Beach was introduced in July 2018 (Credit Tim
Herman/Intel Corporation)

OCTOBER 02, 2020 9:00AH EDT g Download as PDF

SANTA CLARA, Calif.--(BUSINESS WIRE)-- What's New: Today, Intel Federal LLC announced a

three-year agreement with Sandia National Laboratories (Sandia) to explore the value of

Sandia National Laboratories
researcher.l. Darby Smith does an
initial examination of computer
boards containing artificial neurons
designed by Intel Corp. (Photo by
Regina Valenzuela) Click on the
rhi irekheil irnota

$ THENEXTPLATFORM
HOME COMPUTE STORE CONNECT CONTROL CODE AI HPC ENTER

) With ',Crossroads" Supercomputer, HPE Notches Another DOER% HPC

On the Fringes of Useful Neuromorphic Scalability

ON THE FRINGES OF USEFUL NEUROMORPHIC
SCALABILITY

October 5.2020 Nicole Hemsoth
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41 I More neurons = better
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We need a new post-Moore's Law path to cheaper computing
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Scaling to real-world applications will require future hardware solutions
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44 Neuromorphic Processors

Analog 

• Focus on Kirchhoff Law — enabled computation
• Neurons sum current across weighted synapses
• Neural nodes sum current over weighted memristors

• Substantial energy and time savings
• Non-trivial costs of precision
• Practical issues limit size and integration with digital logic

• Ideal scenario
• Train weights in situ
• Compatible with linear algorithms

4- 4-

Fig 1: Analog RRAMs can be used to reduce the energy of a

vector matrix multiply. The conductance of each RRAM

represents a weight. Analog input values are represented by the

input voltages or input pulse lengths. This allows all the read

operations, multiplication operations and sum operations to occur

in a single step. A conventional architecture rnust perform these

operations sequentially for each weight resulting in a higher

energy and delay. Agarwal et al., E3S 2015

Digital 

• Rely on event-driven "spiking" for communication
• Communication only needed for Ts', not otherwise
• Equivalent to large threshold gate networks + time dimension

• Substantial energy savings
• Information in time dimension; limiting time savings

• Compatible and scalable using conventional technology

• Ideal scenario
• Algorithms can be reframed in discrete spiking form

• Learning algorithms are reformulated for spiking approaches

Spike
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Brains, and neural networks, do both...
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Future of neuromorphic is likely a hybrid spiking / analog system
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47 I Implications of analog noise + spiking accuracy

❑ Some accuracy / efficiency trade-off is likely
okay
CI Most applications have requirements

CI Most neural network solutions can be tweaked to
change resources / performance

❑ Spiking or Analog alone probably is not
sufficient

CI However, we're seeing that without some SWaP Costs

modification, analog + digital likely won't work

We need to somehow mitigate errors in either
training or architecture implementation

•

Required Performance
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Part 3:
Looking to the brain for
intelligence beyond deep learning
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Can we really get the brain into algorithms?
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Advances in neurotechnologies are reigniting
opportunities to bring neural computation
insights into broader carnputing applications.

BY JAMEs B. rusioNE

Neural
Atgorithms
and Computing
Beyond
Moore's Law

THE 1MPL Di EITNiltit ilf Moore's Law has begun to
broadly inlpact the computing research community,'
P.Soore's Lftw has driven thc computing industry for
many decades, with nearly every- aspect of society
benefiting from the ativancruf improved computing
pmeessors, sensors, and controllers. Behind these
pniducts has been a cimsiderable research industry,
with billions of dollars invested in fields ranging
from computer science to eledrical engineering.
fkr nda mentally, however, the exponential growth
in colliputing described by Moore's Law svas driven
by adnces in materials science.lor From thr start,
the povver of the computer has been lim iced bv the
derisity of transistors. Progressive advances in how
tu nian ipulate silictm through advancing lithogra phy
mrthtxls:ind nrw design te HON have kept advancing

.1.10 ersorkorrionrrolf or ine Jen • nini. ono voi 0 r.e.

es:imputing in spite olpicrenwed int air •

• ihe dunilrr.m fen-wanner pt rr-
ersoca of the

Mem Is atriwig evidence that this

Low Le Loticed deferent, And Moores

lAW K soon to kw InA-r f'rg gixid.'.• AI-
mint,. I klimarrl %cal • I aw'r

kxur kr14.111 but equall irnp(rrtara
jwrWkl, aprycata to. rrnon ern:ltd.̀  Sien-
Thud.% soling refer, To the property
thug The re-clw lion of ininsigni gee
triune with en es/ Onatent redunit.r of

orquirod innrcr.. 'llits hes real endue.

/Jerk-es—even !hough Minor's Law

has cuallnue0 nrv Lhe last dewde,

with •kortutt truifi rong from 65003.
to ' Lomax the obi icy to speed up pro-

eel,,WS (Of n T104net 4.401 hal.

510prk`d. Trnirly-O 0.4[00011 1139,1•4 are

l{rniter! to 4hou I it die due Wheat 
pntk[q which Ls rritighky the seine As

they were Ill years Apt. Writ alinter's

Law crumbles Enure LPL! 40m1r4rrn chip

land haxi coahlml high power sysernis
mach as LPL's lL continue 24.1,...nelngt,

there is Inclrasillii appreeialton that

feature suer. cannt% Pali Much PlatIlier,

with perhaps Wen or three inn/re!, grell-

efulikr05.fetririni05 lull

sLialions hafer haeli per

w riled fig trahrathrgical roans., af

ryn.m."1 but there arc two

mum chilleniens. 040 neat1 be ad.

arrised. For the first lime, It n not law

alerting:1A} evident line Intuit. me/Crude

keg insights  
• vita. N..... L... is slawnis• AMOK.

INNInCiMI•EM 6 NI prr nncing • ••••lin,
with .01...ale,' ••••imy oclondsn
ts haw. mtkipts Ingo it. eras..

bell••••• or Wore on,/ 'Mos
paareanag ate arra swriwe liege tr.
pweerl•• • WeiVirin •our ol m,•11.••••
Ire meal •••••••••(

• Einweelag Tit.  al 6, di,. n•la
Mm s•rtliaz•ng •••11 not way rrial.•
um.. nwtheels he.rer. bul LAW Ina
boyen•I tb. hr•n., %spitz, •ry. Il•rn • non

•,•• ..... eta. rsaeh aril ••• now

Wanieerirws

• neetirair rh. ILLL pow:anal rif braln.

▪ eiwainetwa rKt•••5•••Kra••••

• •Do•••4••ns ritl P.M; Or
• Ittlp• between me neinraraenea.
0101.010 0rerce. end net•••-•••II•1I•



I How can neuroscience influence Al beyond Deep Learning?

Algorithm Class Current Algorithms Inspiration Application

Deep Vision
Processing

Deep Convolutional Networks
(VGG, AlexNet, GoogleNet,
etc.), HMax, Neocognitron

Hierarchy of sensory nuclei and
early sensory cortices

Static feature extraction (e.g.,
images) & pattern classification

Temporal Neural
Networks

Deep Recurrent Networks
(e.g., long short-term memory),

Hopfield Networks

Local recurrence of most biological
neural circuits,

especially higher sensory cortices

Dynamic feature extraction (e.g.,
videos, audio) & classification

Bayesian Neural
Algorithms

Predictive Coding,
Hierarchical Temporal Memory,
Recursive Cortical Networks

Substantial reciprocal feedback
between "higheC and "lower"

sensory cortices

Inference across spatial and
temporal scales

Dynamical Memory
and Control
Algorithms

lirLiquid State Machines, —111
Echo State Networks,

Neural Engineering Framework

Continual dynamics of
hippocampus, cerebellum, and
prefrontal and motor cortices

Online learning content-
addressable memory & adaptive

motor control

Cognitive Inference
Algorithms

Reinforcement learning
(e.g., Deep Q-learning)
Neural Turing Machines

Integration of multiple modalities
and memory into prefrontal cortex,
which provides top-down influence

on sensory processing

Context and experience
dependent information

processing and decision making

Self-organizing
Algorithms

Neurogenesis Deep Learning
Initial development and continuous

refinement of neural circuits to
specific input and outputs

Automated neural algorithm
development for unknown input
and output transformations

Time 4

Aimone JB, Communications of ACM, April 2019



I Data is a potential unseen barrier to entry for Al

Cost
(Computing,
Energy, Data)

Tomorrow

1
Al Performance

Required
performance for

future Al

Established Al
Industry

Entry point business
and academic research

1



I Some types of applications are well-suited for deep ANNs
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➢ Deep neural networks benefit from high
volume of relatively low-dimensional data

➢ N»d

➢ Good (necessary?) for training very large,
relatively model-free networks
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I ... other applications are not

Under the bonnet
How a self-driving car works

Signals from GPS (global pos Honing system)
satellites are combined with readings from
tachometers. altimeters
and gyroscopes to provide
more accurate positioning
than is possible with
GPS alone  

Radar
WWI

Ultrasonic sensors may
be used to measure the
position of objects very
close to the vehicle,
such as curbs and other
vehides when parking

Sow re. IMErortvmivt

The info

bf the sensors is analy a central computer that
manipulates the steering,
accelerator and brakes. Its
software must understand
the rules of the road, both
formatand informal

War (liglit detection and ranging)
sensors bounce pubes of tight off the
surroundings. These are analysed to
identify lane marldngs and the

v- edges of roads

Video cameras detect traffic lights.
read road signs. keep track of the
position of other vehicles and loo,
out for pedestrians and obstar
on the road

Radar semm mmitor rhe position of alter
vehicles nearby. Such sensor are already used
in adaptive cruise.coMol system
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CMS Experiment at the LI-FO,

Date recni-ded: 2C1E-May-Š1 07:D8:.49,i568672 n1411"

Event / LS: e.425.0 1 3713362260 1 1 eti

➢ Deep neural networks benefit from high
volume of relatively low-dimensional data

➢ N»d

➢ Good (necessary?) for training very large,
relatively model-free networks

➢ Many applications will have low-volume or
a skewed-distribution of relatively high-
dimensional data

➢ Few labels, expensive experiments,
changing world, needle-in-haystack, etc.

➢ Nzd,
or nz d, where n are relevant observations

➢ Not a good fit for large unstructured
parameterizable ANNs



I The brain exhibits plasticity at many scales

Temporal
Scale

months

hours

seconds

milliseconds

Synapto-
genesis

Neurogenesis

LTPILTD 
Intrinsic

Properties

Regional
Restructuring

Neuromodulation

synapse cell circuit region

Spatial Scale



Can we really get the brain into algorithms?

Deep Learning

<5"

GPUs

Spiking
Algorithms

Spiking
Neuromorphic
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I Thanks!
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