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Abstract—Neuromorphic computers are hardware systems that
mimic the brain’s computational process phenomenology. This is
in contrast to neural network accelerators, such as the Google
TPU or the Intel Neural Compute Stick, which seek to accelerate
the fundamental computation and data flows of neural network
models used in the field of machine learning. Neuromorphic
computers emulate the integrate and fire neuron dynamics of
the brain to achieve a spiking communication architecture for
computation. While neural networks are brain-inspired, they
drastically oversimplify the brain’s computation model. Neuro-
morphic architectures are closer to the true computation model of
the brain (albeit, still simplified). Neuromorphic computing mod-
els herald a 1000x power improvement over conventional CPU
architectures. Sandia National Labs is a major contributor to
the research community on neuromorphic systems by performing
design analysis, evaluation, and algorithm development for neu-
romorphic computers. Space-based remote sensing development
has been a focused target of funding for exploratory research
into neuromorphic systems for their potential advantage in that
program area; SNL has led some of these efforts. Recently, neuro-
morphic application evaluation has reached the NA-22 program
area. This same exploratory research and algorithm development
should penetrate the unattended ground sensor space for SNL’s
mission partners and program areas. Neuromorphic computing
paradigms offer a distinct advantage for the SWaP-constrained
embedded systems of our diverse sponsor-driven program areas.

I. INTRODUCTION

The model of efficient computing is the human brain. At
an average mass of 1.4-kg it packs approximately 86 billion
neurons and 150 trillion synapses operating from a meager
20W of power with an energy cost per computation of on the
order of 10 femto-joules [1]. The basic computation dynamics
of the brain work as follows. A neuron is connected to
other neurons via synapses1. These synapses carry electrical
signals2 to down stream neurons. As a neuron receives these
electrical signals, or spikes, a voltage potential accumulates in

1A synapse more directly refers to the connection between a neuron’s
axon and the downstream neuron’s dendrites. A pre-synaptic neuron’s axon
can “synapse” to the post-synaptic neuron’s soma, dendrite, or axon. The
connection is not physical. There exists a small gap (the synaptic cleft) in
which a neuro-chemical response allows the “connection” to manifest.

2The transfer of this signal is an electro-chemical process. As the electrical
signal reaches the synaptic cleft it stimulates the release of neurotransmitters
that are ejected and eventually land on chemical receptors that then stimulate
a chemical to electrical conversion

the neuron’s cell body, or soma. The strength of the synaptic
connection amplifies or depresses the electrical signal entering
the soma. Each neuron has an inherent threshold for the
voltage potential that it can withstand. Once this threshold
is exceeded, the neuron fires by releasing a spike to all its
downstream neurons via their synaptic connections. These
dynamics all evolve over time. The spike has an associated
delay (or travel time) for each synaptic connection and any
built-up potential in the soma will slowly decay over time. It
is often stated that the brain performs analog computation and
digital communication. A more complex treatment of neural
dynamics can be found in [2]–[6].

Researchers have long sought to develop an artificial com-
puter that reaches the complexity scale of the mammalian brain
[7], [8]. In the last 20 years there has been an explosion of
research into the field of machine learning (ML). This field
is predicated on the underlying model of the Artificial Neural
Network (ANN). The ANN is a brain-inspired computational
model that can be reduced to a universal function approxi-
mator [9]. The function is “programmed” through training on
copious amounts of data utilizing highly computationally ex-
pensive back propagation algorithms [10]. The ANN borrows
neural topology from the brain; the basic concept that neurons
are connected by synapses which convey information. That
is about as far as ANNs go in bio-inspiration. They remove
the entire time domain complexity of the brain and replace
it with non-linear differentiable transfer functions and vector-
matrix multiplication operations to compute the synaptic input
connections to the neuron.

Still, even with this extremely simplistic view of brain
computational dynamics, ANNs have performed very well at
specific human cognitive tasks, such as image recognition,
natural language processing, playing games, and driving cars.
Because of the increase of the computational density of
these problems, their evaluation on conventional computer
architectures requires an extreme amount of time and power.
To this end strong efforts in industry were (and are being)
undertaken to accelerate in hardware the implementation of
ANNs. While much of this effort is aimed at solutions for
large data centers, there is an additional effort to boost
hardware implementation of ANNs for edge computing [11].
While these efforts are maturing and improving, they still
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Fig. 1. The LIF neuron model is inspired by biological neurons and shares
commonality between threshold gates which evolved from basic logic gates.
Spiking neurons can be characterized by adding input delay and summation
decay to a threshold gate model.

rely on conventional processing architectures and would be
considered high-powered operations from the perspective of
battery-operated embedded systems.

While the ubiquity of ML and Neural Network Accelerators
has taken hold in the last 20 years, the Spiking Neural Network
(SNN) model was being born in this same period. The SNN
takes a different approach to brain-inspired computing than
ANNs, one that is more brain inspired. The Leaky Integrate
and Fire (LIF) neuron model (see Figure 1) is a common model
used in SNN (in contrast to the ANN implementation of the
non-linear transfer function). When a spike enters the neuron
from a connected synapse, the synaptic weight is integrated
into the membrane potential (the neuron’s accumulation regis-
ter). At this time the neuron evaluates its potential to determine
if it has exceeded its defined threshold. If the threshold has
been exceeded the neuron will spike, or fire, transmitting a
value of one3 to all its downstream neurons via the neuron’s
synaptic connections. If the threshold was not exceeded, the
membrane potential will be reduced, or leak, by some specified
amount. After a spike occurs the membrane potential is reset
to a defined value, typically zero. We refer to the hardware
implementation of SNNs as Neuromorphic Computers (NMC).

Because of the vast complexity of the brain and the real
resource limitations when engineering specific hardware so-
lutions, there are many trade-offs made when designing an
NMC. As a result there are many different implementations of
SNN in hardware. But, all NMC systems implement the under-
lying principles of spike-based communication, asynchronous
operation, and massively parallel processing elements with
tightly integrated computation and memory. There is a debate
in the field of whether NMC implementations should be
digital, analog, or both. In a pursuit of understanding which

3Ultimately, this unit value is multiplied by the synaptic weight before
accumulating into the neurons membrane potential. Thus, spikes have the
end effect of increasing the neurons potential by the value of the synaptic
weight—a measure of the “strength” of the synaptic connection.

approach is best, a number of large-scale implementations have
emerged in the recent decade. On the analog front there is the
Stanford Neurogrid [12] and the Heidelberg BrainScaleS [13]
system. For digital systems there is IBM’s TrueNorth [14] and
the Manchester SpiNNaker [15] system. Steve Furber provides
a good treatment of these systems in [16]. A recent edition
to the digital domain is Intel’s Loihi [17] system. These five
systems are a huge step in the advancement of NMC research
and development and SNL has varying degrees of experience
with all of them.

II. WHY NEUROMORPHIC?

The scope of applications for ML is vast, but their practical
realization in embedded applications is limited by the hard-
ware resource requirements of the underlying systems. The
types of AI applications we are familiar with on our mobile
devices all require a connection to a data center in the “cloud”
to evaluate the large-scale ML models required to complete the
task. Such a communication and computation paradigm is a
non-starter in the unattended ground sensor domain because
these devices need to exist in the field for years on end from a
single battery source. A much lower power system design for
its communication and computation is required. We believe
that SNN will easily enable low-power hardware evaluation
of deeply complex AI tasks due to their event driven sparsity.

Two brain-inspired principles drive the innate low power
nature of NMC, sparse connectivity, and event driven process-
ing and communication. Each neuron in the brain connects
to an average of 7, 000 other neurons in an ionic soup of
86 billion neurons. Further, the entire brain is not spiking all
the time during a task. By only requiring a small subset of
the computational elements at any point in time, power con-
sumption is greatly reduced by not powering unused elements.
Second, neuron computation and firing dynamics are event
driven. If a neuron does not receive a spike, it will not expend
energy in processing it. The same is true for NMC designs. The
event driven nature combined with the sparsity of connections
is an evolutionary design phenomenon that reduces overall
energy consumption. Whereas, ANN implementations will
seek very densely connected layers of neurons which drive
high computational cost and power.

The scientific community has accepted that Moore’s law has
ended [18]. This is the self-fulfilling prophecy pronounced by
Gordon Moore of Intel in 1965 that semiconductor complexity
(transistor count) would double every two years. The statement
has been misconstrued over time and the popular understand-
ing is that semiconductor performance would double every 18
to 24 months. Unfortunately, the performance and transistor
count progress is hitting physical reality. Performance has flat
lined due to Dennard scaling about 15 years ago; as transistors
get smaller, power density increases and clock frequency
cannot be increased. Current process fabrication technology
nodes are at 5-nm, which most in industry believe is the end;
pushing any further is too cost prohibitive [18]. Regardless, its
an inevitable reality that transistors can only become so small
under current silicon CMOS technology.



A typical modern desktop CPU operates at 65W and a
clock frequency of 2-3 GHz. If we assume that a handful
(a number less than 10) of clock cycles are required on
average for a single operation, then the math dictates that a
typical CPU operation costs on the order of nano-joules of
energy. In contrast, the basic operation of a NMC is a synaptic
event, and the typical NMC system today costs on the order
of pico-joules of energy per synaptic event [16]. This three
orders of magnitude difference in base-operation energy cost
is the loose basis of the 1000x power improvement. However,
comparison of SNN to conventional computing is non-trivial
and Vineyard et al. caution against such comparison because
the fundamental compute paradigm between conventional and
neuromorphic systems is very different. He argues that the
computational objectives being optimized should serve as the
basis for comparison [19]. His work [20] has shown, with
existing hardware, at least a 100x power improvement of
NMC systems over conventional CPU/GPU architectures on
a Remote Sensing task. This is still an amazing improvement.

There are two notional reasons for these power gains with
neuromorphic systems in addition to the sparsity and event
driven nature of their architectures. The first is that there are
improved communication protocols between massively parallel
simple computing elements with co-located memory [1]. The
other is that digital NMC systems interpret a spike as the com-
munication of a single bit of information. Since, these systems
only use energy to communicate the value of a 1, no energy is
spent communicating the value of a 0, it is simply the absence
of a spike. This temporal dynamic is one of the fascinating
elements of NMC architectures. The integration of time in
the information propagation and computation enables SNNs to
efficiently extract temporal information from time-dependent
data. Furthermore, the use of time in the computation model
is an energy-free exchange of information; the precise time
that a spike arrives conveys additional meaning. Intrinsically,
NMCs are spatial-temporal systems providing different means
of data representation and processing.

Neuromorphic computers will enable the future of com-
puting and be more readily available near term to embedded
systems. The National Securities Program’s (NSP) Intelligence
Science for Proliferation (ISP) Investment Area (IA) should
prepare for this future, today.

III. SANDIA’S LEADING ROLE IN NEUROMORPHIC
COMPUTING RESEARCH

Neuromorphic Computing has grown dramatically at SNL
over the past 10 years. The largest single investment in
neural computing at SNL was the Hardware Acceleration
of Adaptive Neural Algorithms (HAANA) Grand Challenge
[21], a laboratory directed research & development (LDRD)
effort that amounted to approximately $15M over 3 years, and
was funded from FY15-FY17 (PI Conrad James). HAANA
was broad, covering three technical research areas (hardware,
architectures, and algorithms) as well as a mission impact
team. To convey the history of neural computing research at

SNL, it is convenient to discuss research efforts before, during,
and after HAANA.

A. Pre-HAANA Funding

Before HAANA, research efforts were mostly conducted
through small-scale LDRDs within different investment areas.
Much of this work focused on technologies related to neuro-
morphic computing (i.e., computational neuroscience, memris-
tor devices), as opposed to direct examination of neuromorphic
computing. We specifically highlight two efforts (there are
many others) which helped initiate the NMC research.

Episodic Memory and Neurogenesis (FY12-14; PI Aimone)
was a CS&T LDRD focused on examining the biological
process of adult neurogenesis, whereby the brain adds new
neurons to facilitate learning. Insights regarding neurogenesis
were used in adaptive algorithm research in HAANA and
are motivating a project currently funded by DARPA and a
submitted LDRD project.

Cognitive-inspired Cyber Protection Architecture (FY13-14;
PI Naegle) was a Cyber Security LDRD focused on develop-
ing a streaming brain-inspired architecture for rapid pattern
matching of streaming data. This effort involved evaluating
novel algorithms and designing a simulator for the spiking
neuromorphic architecture the effort developed.

B. HAANA-era Funding

Research in the community was dominated by HAANA,
which encouraged significant growth in the program. This
shifted the emphasis of research away from foundational
neuroscience and hardware efforts to more algorithms and
architecture research, especially in targeting applications such
as image processing and cyber security. Over all, this effort
produced 48 peer reviewed publications on neuromorphic
computing research; only a handful are highlighted below with
the full scope of research reported in [21].

Algorithms (PI Aimone): Focused primarily on theory
behind algorithms for spiking neuromorphic hardware, devel-
oping adaptive deep learning algorithms, and formal analysis
of different neuromorphic approaches.

Architecture (PI Naegle): Focused on developing a stream-
ing neuromorphic architecture for cyber pattern matching and
a prototype spiking neuromorphic architecture. Hill and Vine-
yard helped assess the trade-offs of algorithm and architecture
interplay.

Hardware (PI Marinella): Focused on researching memris-
tive devices for neuromorphic analog computing approaches
and developing a mod-sim framework for assessing the value
of different devices within analog architectures.

Cyber (PI Doak): Focused on identifying cyber security
problems amenable to adaptive pattern matching and deep
learning algorithms.

Neural Memory Management (FY16-17; PI Vineyard) was
a CIS LDRD focused on identifying adaptive strategies for
resource allocation inspired by neural dynamics.

Neural Adaptive Filtering (FY16-18; PI Chance) was
a Global Security (GS) LDRD focused on adaptive filter



techniques inspired by the mammalian retinal structure. The
algorithms developed out of this were later implemented to
neuromorphic systems.

C. Recent Efforts (Post HAANA)

After HAANA, the main research pillars (algorithms, ar-
chitecture, hardware) separated into efforts within specific
disciplines. There has been an extraordinary boom in neuro-
morphic research efforts post-HAANA, all of which would be
overwhelming to capture entirely. This summary will focus on
neural algorithms and neuromorphic computing applications
with a sampling to illustrate breadth and depth of the research.
There are inevitably efforts of no lesser value left out and
additionally other derivative projects with more of an applied
ML or hardware focus that are not mentioned here.

Neuromorphic Remote Sensing (FY17-19; PI Vineyard)
was a GS LDRD focused on evaluating the potential impact
of neuromorphic processors on embedding image processing
tasks on remote platforms, such as the focal plane array of a
space system.

SPARR (FY17-FY19; PI Hays) was a GS LDRD focused
on exploring brain-inspired sensing in the research and de-
velopment of a novel spiking photonic focal plane. The effort
showed the ability to perform wavelet transforms at the sensor.

Neural PDE (FY18-20; PI Aimone) was a CIS LDRD
focused on developing spiking algorithms for solving par-
tial differential equations (PDEs), with a particular focus on
stochastic PDE solutions for diffusion based applications,
such as radiation transport and molecular dynamics, using
native stochastic capabilities inherent in spiking neuromorphic
hardware platforms.

Neural Automatic Target Recognition (FY19-21; PI Vine-
yard) was an Autonomy for Hypersonics (A4H) LDRD fo-
cused on developing spiking algorithm implementations of
target recognition algorithms such as MPM for synthetic
aperture radar (SAR).

BrainSLAM (FY19; PI Aimone) was an exploratory A4H
seedling LDRD focused on exploring the potential of brain-
inspired navigation algorithms for GPS-deprived navigation in
autonomous platforms. A follow on to this effort, extending
the successful initial proof-of-concept is NeuroGrid (FY21-23;
PI Wang).

Dragonfly Target Interception (FY19; PI Chance) was an
exploratory A4H seedling LDRD that utilized target intercep-
tion dynamics inspired by the Dragonfly’s cortical networks;
developing novel spike-based target interception algorithms.
Extensions to this effort have pursued spiking implementations
of the base continuous-valued computation as well as hardware
demonstrations (FY20-present; PI Chance).

Low-Power Inference for Self-Driving Vehicles (FY20; PI
Severa) was an EHS seedling effort demonstrating how low-
precision spiking neural networks can help enable the onboard
processing needs for autonomous vehicles.

ASC Beyond Moore’s Law Neuromorphic Computing (PI’s
Aimone & Vineyard) is a multi-year, on-going effort ex-
ploring how neuromorphic computing technologies can enable

Fig. 2. Neuromorphic research has immediate benefits and long term potential
in future systems. SNL is helping pave the way for the future growth of this
research field with deep investments into algorithm, architecture, and hardware
co-design to drive the future innovation of neuromorphic computing systems.

scientific computing workloads for next generation High Per-
formance Computing (HPC) architectures.

Over the past decade, the “Cognitive and Emerging Com-
puting” Department (1421) has built the Neural Exploration
and Research Laboratory (NERL) to house a vast array of
neural accelerators and neuromorphic computing systems to
aid in their research efforts. Notably, they acquired an Intel
Loihi-based system [22] with 50 million neurons, 50 billion
synapses, and 384 Loihi chips in a 5U rack through a close
research partnership between Intel and SNL4 [23].

Through the HAANA Grand Challenge and many other
efforts, SNL has risen to become a major leader in all
aspects of neuromorphic computing (Figure 2). This leadership
is strengthened by SNL’s brain-inspired computing research
collaboration efforts across multiple national labs such as
LANL, LLNL, PNNL, and ORNL.

IV. NEUROMORPHIC RESEARCH IN REMOTE SENSING AND
PROLIFERATION SENSING

Space-based Remote Sensing (RS) applications are tightly
integrated into many facets of SNL’s mission domains. Re-
mote Sensing systems are quickly evolving in three dimen-
sions, hyper-spectrally (sensing more spectral bands), hyper-
temporally (faster sampling rates) and hyper-spatially (increas-
ing number of smaller pixels). This evolution creates the chal-
lenging problem of deploying expensive and computationally
complex algorithms in SWaP constrained environments. There
are three broad application areas which jointly capture the
problem domain of Remote Sensing tasks: signal processing,
signal classification, and signal understanding.

While RS has historically considered neural network ap-
proaches to improve on signal processing, classification and
understanding, these approaches faltered due to high power
consumption and a lack of strong theoretical understanding.
Combined with SNL’s research excellence and recent advances
in hardware acceleration of ANN and SNN, these neural
inspired approaches are showing more promise. The newer

4In FY22 SNL will be receiving Intel’s 2nd generation architecture with
128 million neurons consuming under 40W, and in FY23 will be receiving a
large-scale 2nd generation system using 3D scaling technology with 1 billion
neurons consuming under 100W



Fig. 3. A comparison of power vs performance for various traditional
CPU/GPU, ANN Accelerator, and Spiking Neuromorphic systems. The in-
ference task was a common SAR-based image processing task. The STPU is
a SNL-developed neuromorphic architecture implemented on an FPGA and
developed through the HAANA GC LDRD effort.

hardware implementations are often proving to be orders of
magnitude faster computationally and cheaper in terms of
power consumption (see Figure 3), making them well suited
for resource constrained environments like Remote Sensing.

A 3-year LDRD effort that began in FY17 investigated
the application of neuromorphic computing systems and SNN
algorithms to the RS domain [24]. The research goal was to
simulate several neural inspired architectures to assess and
identify their computational implications for the RS domain,
and to evaluate computationally intensive RS algorithms on
these neural architectures. The result of this effort was the
development of an algorithmic capability to produce spiking
neuromorphic compatible networks, an understanding of how
to benchmark and compare heterogeneous architectures, and
a co-design capability to explore algorithm and architecture
mapping. This work led to additional funding from SPP
sources at $2M for 2 years for developing SNN implemen-
tations of specific RS imaging algorithms.

Space-based RS shares a number of common parallels to
terrestrial RS, specifically unattended ground sensors (UGS).
Both mission areas operate in highly constrained SWaP en-
vironments, require sophisticated processing of sensor data,
and demand more and more processing capability with each
new mission. Remote Sensing domain problems have a natural
segue into standalone battery-operated sensor applications that
fall into the NA-22 program area.

Vineyard is currently leading an NA-22 funded effort known
as the SEEK project. SEEK is a 2 year $1.25M joint effort with
LANL scoping the role of NMC for proliferation monitoring.
SEEK hypothesizes that neuromorphic hardware, by virtue
of its low-power brain-inspired communication structure and
highly parallel design, offers a solution to the NA-22 mission
area; enabling greater processing at the sensor. Complementing
the development of NA-22 relevant neural algorithms and their
characterization on emerging neuromorphic architectures, the
effort will develop an understanding of which architectural
features impact the joint algorithm and architecture perfor-

mance for NA-22 missions. A complementary NA-22 scoping
study (FY21; PI Shank) considers how brain-inspired event-
sensors may offer novel sensor capabilities for proliferation
monitoring.

V. NEUROMORPHIC RESEARCH FOR UNATTENDED
GROUND SENSORS

While application areas on the cutting edge of processing
technology, such as supercomputers and data centers, are
feeling the pinch of the death of Moore’s law, the low-power
embedded sensors space still has some time to take advantage
of performance gains down the road. This is because the
embedded processing ICs used for low-power applications
lag behind the advancements of transistor scaling. But, the
bemoaning of the HPC and data center universe is a warning
call to the embedded computing world; it is a window into
our inevitable future. Adaption of new computing paradigms
and processing platforms takes years of research, development,
testing, characterization, and trust building. The future of
computing is heterogeneous specialization [25], [26], and it
will also be the future of embedded systems. Embedded
computing is intrinsically well suited for the paradigm shift
NMC seeks to enable. While HPC has thrived in the pursuit
of enabling max computations (marching towards exascale),
the embedded world conversely seeks the minimal solution.
Accordingly, we see opportunity for embracing this paradigm
shift as a strategic advantage rather than out of necessity.

Many of the common ANN-based ML algorithms may offer
value to many of our UGS sensing application needs, but the
power requirements for implementing such algorithms limits
their utility. A SNL developed tool (Whetstone) [27] exists
for porting traditional ANN algorithms to SNN algorithms
amenable for implementation to NMC systems. This reduces
the burden of entry for NMC research into the low-power
embedded systems domain and facilitates the exploration of
more processing capability at the sensor node. Effectively, by
enabling enhanced processing at the sensor, the amount of data
transmitted for subsequent processing or analyst interpretation
may be reduced. Additionally, more processing at the node
allows the exploration of more feature rich classification of
raw sensor data and better discrimination of events of interest.

There is no question that ML has been the buzzword in
NSP ISP IA for the last 3-4 years. It is promising to see many
mission relevant funding efforts exploring the use of ANN
type algorithms to mission relevant problems. However, results
seem mixed. For example, BALDR (investigation of radio
isotope identification using ML algorithms) is an excellent
example of successfully applying ML to a domain relevant
problem. Other efforts have not been so successful due to the
required degradation of the high-fidelity models, resulting in
loss of accuracy, when moving to the embedded processing
space. Further, many of the models are too large to implement
or require too much computation time to execute, expending
more power than the traditional algorithm for performing the
same task. This is where NMC can help. Taking a deep look



into the respective ground base sensor algorithms and re-
imagining them into SNN models for implementation on NMC
hardware can provide computational and power gains where
traditional ANN approaches are failing. This has been done
in the RS domain, and is currently happening in the NA-22
domain.

In FY22, the NSP ISP LDRD IA funded a 2-year LDRD
effort titled “Autonomous Reconfigurable Intelligence at the
Edge”, as a first entry of this IA into neuromorphic computing
research. This effort investigates brain-inspired computing
algorithms applied to mission domain relevant problems in the
ISP mission domain. Specifically, this effort seeks to leverage
the notion of context switching in the brain with liquid state
machines (LSM) [28] to develop an algorithm that can deploy
multiple ML models on the same network. Additionally, many
of the sensor phenomenologies for ground sensors are one-
dimensional making it hard to perform accurate discrimination
of the event data when looking at data from a single sensor.
The LSM is a SNN-based algorithm that performs high
dimensional feature space discrimination on streaming data; a
type of data common in the UGS domain. This type of neural
model can easily perform sensor data fusion while elevating
the dimensionality of the data leading to better discrimination.
Leveraging a natively spike-based algorithm for data sensor
classification will make it easily amenable to neuromorphic
hardware. This is a promising sign that neuromorphic research
is starting to make headway into the NSP ISP IA. It is our
hope that this paper has supported this continued path and
provided evidence to the mission need.
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