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Abstract—The modern power grid is a cyber-physical system.
While the grid is becoming more intelligent with emerging sensing
and communication techniques, new vulnerabilities are intro-
duced and cyber security becomes a major concern. One type of
cyber attacks – False Data Injection Attacks (FDIAs) – exploits
the limitations in traditional power system state estimation, and
modifies system states without being detected. In this paper, we
propose a physics-guided deep learning (PGDL) approach to
defend against FDIAs. The PGDL takes real-time measurements
as inputs to neural networks, outputs the estimated states, and
reconstructs measurements considering power system physics.
A deep recurrent neural network – Long Short Term Memory
(LSTM) – is employed to learn the temporal correlations among
states. This hybrid learning model leads to a time-series state
estimation method to defend against FDIAs. The simulation
results using IEEE 14-bus test system demonstrate the accuracy
and robustness of the proposed time-series state estimation under
FDIAs.

Index Terms—Cyber security, state estimation, physics-guided
deep learning, false data injection attacks, temporal correlations

I. INTRODUCTION

The power grid is a critical infrastructure that produces
and delivers electricity from generating sources to end con-
sumers. To monitor and control the states of power systems,
Energy Management Systems (EMS) are widely adopted. As
a core function in EMS, power system state estimation (PSSE)
receives raw measurements from Supervisory Control and
Data Acquisition (SCADA) system and provide estimates of
systems states to be used in other EMS applications [1].

With the advancements of new monitoring technology, more
meters and sensors are installed in the power grid, such
as Phase Measurement Units (PMUs), Intelligent Electronic
Device (IEDs) and smart meters. While the emerging tech-
nology helps the traditional electrical system update to a
smart grid with intelligent cyber-physical layers, it also raises
new security problems [2]. New vulnerabilities are introduced
by integrating these smart devices. For instance, False Data
Injection Attacks (FDIAs) can bypass the bad data detection
and introduce errors to PSSE without being noticed [3]–[6].
Attackers attempt to achieve malicious objectives such as
making financial profit or cause system outages, which are
extremely harmful to the critical energy infrastructure.

FDIAs stealthily modify the measurement data (PSSE input)
so that the estimated states (PSSE output) will change, which
further impacts other critical EMS functions. In order to
defend against FDIAs, several countermeasures have been
proposed in recent studies. In [4], an approach is proposed
to filter out the abnormal data based on the consistency of
measurements using a subset of PMU measurements. While
PMUs can directly provide voltage phasors, it is noticed that
PMUs can be manipulated by adversary with GPS spoof-
ing [7]. Bobba et al. proposed two ways to defend against the
FDIAs: one way is to protect a strategically selected set of
sensor measurements, and the other is to independently verify
the values of the selected set of state variables [8]. Similarly,
the work in [9] proposed countermeasures by protecting a
small subset of measurements or deploying secure PMUs
based on greedy algorithm. An approach to detect and isolate
the data attacks is proposed in [10], it relies on some secure
measurements of bus voltage magnitudes.

In this paper, we address the FDIA problem from a differ-
ent angle. Traditional PSSE is considered as single-snapshot
estimation, which takes measurement data at the present time
as input and outputs the states for the moment. This single-
snapshot estimation is very sensitive to bad measurement data.
In this paper, we consider multiple snapshots using the present
and past data and propose an time-series PSSE. The proposed
time-series PSSE not only looks at the present status of the
system, but also exploits the past instances from the system.
Therefore, any deviations or stealthy data changes can be
easily notified. As a result, the proposed time-series PSSE is
less sensitive to the present measurement data and capable of
delivering robust state estimates under FDIAs.

In order to take the temporal correlations into account, the
proposed PSSE employs the state-of-the-art machine learning
method. Specifically, a Long Short Term Memory (LSTM)
neural network is adopted to learn the temporal correlations.
The time-series PSSE also considers power grid physical
aspects and integrate into a physics-guided deep learning
approach. The uniqueness of the physics-guided deep learning
is that it is not only data-driven, but also based on first
principles. In other words, the physics-guided deep learning
makes the neural network blackbox explainable in accordance
with the physical model.



The paper is organized as follows. Section II reviews FDIAs
and its impact on state estimation. Section III presents the
time-series PSSE using a physics-guided deep learning method
against FDIAs. Section IV presents simulation results and the
estimation performance in the IEEE 14-bus system. Section V
provides concluding remarks.

II. FALSE DATA INJECTION ATTACKS

The bad data detection algorithms in traditional PSSE are
residual-based. FDIAs exploits this feature and constructs
attack vectors that do not change residuals and hence bypass
the bad data detection algorithm.

Specifically, the relationship between system measurement
and states can be represented by:

Z = h(X) + e (1)

where Z = [Z1, Z2, · · · , Zm]T is the measurement vector,
consisting of voltage Vi at bus i , real power injection Pi,
reactive power injection Qi, real power flow Pij and reactive
power flow Qij between bus i and bus j. The state vector is
X = [X1, X2, · · · , Xn]T consisting of voltage magnitudes |Vi|
and phase angles θi. The measurement error is represented by
e, assumed to follow Gaussian distribution, i.e., e ∼ N (0,Σ)
where Σ is the error covariance matrix [11]. The number of
measurements is m and the number of states is n. Usually
measurement redundancy ensures that m ≥ n.

State estimation is to find an estimated state vector X̂ that
could best fit the available measurements. The state estimation
problem can be expressed by:

X̂ = arg min
X̂

[Z− h(X̂)]TW[Z− h(X̂)] (2)

where W denotes the weight matrix. The state estimation
problem can be solved by Weighted Least Square (WLS)
criterion.

Measurement bad data exists due to device misconfigura-
tion, fluctuating noises, or malicious attacks. The bad data can
deviate the estimated states from true states. Thus, in order to
obtain good estimates, these bad data need to be detected,
identified and removed in time. A commonly used criterion to
detect bad data is based on measurement residuals:

r = ‖Z− h(X̂)‖ > τ (3)

where X̂ is the estimated state vector and τ is the prescribed
threshold. If inequality (3) holds, there are bad data in the
measurement vector.

FDIAs exploits this criterion and modifies measurement
data to spoof the bad data detection mechanism in the PSSE.
The FDIAs are based on measurement residual criterion and
DC power flow model, where reactive power is neglected and
voltage magnitudes of all buses are known as 1 per unit. As
a simplified model, the DC state estimation is expressed by:

X̂ = arg min
X̂

[Z−HX̂]TW[Z−HX̂] (4)

where H is a sensitivity matrix from DC power flow equations.

The closed-loop state estimate X̂ is given by:

X̂ = (HTWH)−1HTWZ (5)

FDIAs try to modify the measurement data without chang-
ing the residual r. Let ra denote the measurement residual
after the attack:

ra = ‖za − ẑa‖

= ‖(z + a)−H(HTWH)
−1

HTW(z + a)‖
= ‖(z− ẑ) + (a−H(HTWH)−1HTWa)‖

(6)

If the attack vector is carefully structured, it may bypass the
bad data detection without being detected. As shown in [3],
the residual ra is equal to original residual r when the attack
vector is a linear combination of the column vectors of H,

a = Hc (7)

where c is a non-zero arbitrary vector.
This non-detectable attack directly impact the traditional

single-snapshot state estimation, but the adverse impact is
lessened with the proposed time-series PSSE in Section ??.

III. PHYSICS-GUIDED DEEP LEARNING AGAINST FDIAS

To defend the undetectable FDIAs, we propose a hybrid
machine learning model inspired by the emerging autoencoder
in the Artificial Intelligent (AI) field. As shown in Fig. 1,
an autoencoder is a neural network that is trained to copy
its input to its output [12]. Internally, it has a hidden layer
that divides the neural network into two parts: encoder and
decoder. The autoencoder is initially designed for dimension
reduction so that the number of features can be reduced to
represent a system. To apply autoencoders in state estimation,
the measurement z is fed into the encoder, and the hidden
layer output is the estimated system states x̂, which can
be considered as features to represent the power grid. The
estimated states x̂ then go through the decoder to output the
reconstructed measurement data ẑ.

Fig. 1: Autoencoder for state estimation



Fig. 2: Architecture of the PGDL state estimator

A. Physics-guided Deep Learning

With the domain knowledge of power systems, we propose
to improve the autoencoder incorporating the first principles
in the power grid. The proposed PGDL model is both data-
driven and first-principle-based. Fig. 2 shows the structure of
the PGDL for state estimation.

Here the first part of the autoencoder is maintained with
a deep neural network, while the second part is replaced by
power system physics with h(X̂) – the power flow equations
in (8).

Pi =

N∑
j=1

ViVj(Gij cos(θi − θj) +Bij sin(θi − θj))

Qi =

N∑
j=1

ViVj(Gij sin(θi − θj) +Bij cos(θi − θj))

Pij = −Vi
2Gij + ViVj(Gij cos(θi − θj) +Bij sin(θi − θj))

Qij = −Vi
2Bij + ViVj(Gij sin(θi − θj)−Bij cos(θi − θj))

(8)

where:
Vi is the voltage magnitude at bus i
Pi is the real power injection at bus i
Qi is the reactive power injection at the ith node
Pij is the real power flow from bus i to bus j
Qij is the reactive power flow from bus i to bus j
Gij is the real part in admittance matrix
Bij is the imaginary part in admittance matrix

The proposed PGDL method is able to produce state esti-
mates using the neural network, and the deviations between
reconstructed measurements and actual measurements are used
to train the neural network.

B. Time-Series PSSE using Deep Neural Nets

The PSSE structure in Fig. 2 can be for single-snapshot
estimation similar to traditional PSSE. To take advantage of
historical measurements and detect any temporal deviations
from normal states, we propose the time-series PSSE. The
times-series PSSE takes into account temporal correlations
among states, which indeed exist in real-world power systems.
This special consideration allows the estimated states converge
to the true states more accurately than that in traditional PSSE.

In order to learn the dynamics between states at different
times, a deep recurrent neural network – LSTM – is chosen.

LSTM networks can be considered as one type of Recurrent
Neural Networks (RNNs). But unlike conventional RNNs,
LSTM networks can learn the correlations for arbitrarily long
time. This attribute is due to its innovative gating mechanism.
An LSTM block with the gating mechanism is described in
Fig. 3. The inputs of this LSTM are xt and ht−1 while
the output is ht. There are three gates, input gate i, forget
gate f , and output gate o. The LSTM unit will learn the
dependencies between the data in the input sequence. The
input gate manages the values flowing into the memory cell
from the inputs. The forget gate determines which part is
passed to the next step. As for the output, it is a product of
the result of output gate and the activation of the memory cell.
The mathematical expressions of LSTM are given as follows:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

Ct = ft ∗Ct−1 + it ∗ (tanh(WC · [ht−1, xt] + bC))

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

where Wf , Wi, WC , Wo are weights that connect different
layers, while bf , bi, bC , bo are the biases with each individual
gate. σ(·) represents the sigmoid activation function, and
tanh is the hyperbolic tangent function.

Fig. 3: LSTM block

Unlike the common supervised training model, we extend
the proposed state estimator by the part of power flow model
and use the difference between Z and Ẑ to update the weights
and biases of the neural network. This physics-guided deep
learning model can be used in an online environment. Com-
pared with the traditional snapshot-based WLS estimation, this
model outperforms in accuracy and robustness against FDIAs,
which will be shown in Section IV.

IV. SIMULATION RESULTS

In this section, the performance of time-series PSSE using
the physics-guided deep learning is demonstrated in IEEE 14-
bus system shown in Fig. 4. As seen in Table I, the test system
consists of 32 measurements and 27 states. Different FDI
attack scenarios are investigated and the results are discussed
in detail.



Fig. 4: IEEE 14-bus system [13]

TABLE I: Measurement vectors of targeted system

measurements IEEE14

V i 1

P i 8

Qi 8

P ij 9

Qij 6

A. Simulation Setup

1) Measurement Data: Simulation is designed in MATLAB
environment with the MATPOWER package [14], [15]. To
simulate the power network in a more practical way, the load
profile from NYISO is adopted. We first fit the normalized
load profile into the IEEE 14-bus case file. Then, the power
flow is run to generate the true states and measurements. After
obtaining the true measurements, the zero-mean White Gaus-
sian Noise (WGN) is added to each measurement according
to their standard deviation following equation (11). Here Ai is
the actual value of measurement, σi is the standard deviation
of measurement.

Zi = Ai + randn ∗ σi (9)

Specifically, the load profile from NYISO is recorded at a
5 minutes interval. The load data of 6 months are generated
for training, validation and testing. The data of the last day in
our selected time horizon is used as the testing data (288 data
points).

2) Attack Data: To launch FDIAs, attackers are assumed
to have the knowledge of the targeted system and the access
to meters. In this paper, we assume attackers have limited

access to meters and can only modify the measurement data
for those meters. Let P = H(HTH)−1HT , the attack vector
can be obtained by solving (10).

a = Hc⇔ Pa = a⇔ Pa− a = 0

⇔ (P − I)a = 0⇔ Ba = 0
(10)

Let `meter denotes the set of indices of meters that can be
accessed by attacker. For unaccessible meters i /∈ `meter,
the element in the attack vector ai = 0. Then the modified
measurement set is:

Za = Z + a (11)

As shown in [3], if the number of accessible meters is
larger than m−n, the attackers are always able to find attack
vectors without being detected using a DC power flow model.
In our test case given in Table I, the total number of real
power injection and real power flow is 17, which is enough for
attacker to design attacks given the accessibility of 5 meters.
One instance is shown in Table II.

TABLE II: Attack vectors of false data injection

measurements
Measured Value

(pu)
Malicious Value

(pu)
Attack Vector

(pu)

P2 0.1888 0.1937 -0.0049

P10 -0.1156 -0.0557 -0.0599

P12 0.2428 -0.0576 0.3004

P14 0.2027 -0.1083 0.3110

P4,5 -0.5030 -0.4885 -0.0144

B. Result Analysis

In this paper, we consider two attack scenarios: random
and consecutive attacks. For the random false data injection
attacks (FDIAs), attackers will manipulate the accessible mea-
surements at random time points. In our test case, 30 time
points are randomly selected to inject false data in the testing
period. While regarding the consecutive FDIAs, we assume
the attacks will last for one hour with a random beginning
point during the testing period, that is, 12 consecutive time
points are under attack.

1) Temporal Comparison: Figs. 5 and 6 give the RMSEs
between estimated states and true states of the time points
under FDIAs. It is obvious that our proposed PGDL model out-
performs WLS in both scenarios in terms of FDIAs. With the
random FDIAs, PGDL model still can keep a more accurate
state estimation in most cases compared to WLS, as illustrated
in Fig 5. When there are consecutive FDIAs, the perofmance
of PGDL model is still better than WLS. While compared with
random FDIAs, the PGDL model has a larger RMSE facing
continuous attacks. The reason is that the dynamic temporal
correlation learned by PGDL model can suppress the bad data
considering multiple data points. This also can be verified by
the result shown in 6. When FDIAs begin at point 1, the state
RMSE is still small due to the suppression of normal condition
at point 0. In addition, when the FDIAs stop at point 12, the



RMSE of the normal condition at point 13 decreases but still
a little large. The mean and standard deviation of RMSEs
are described in Table III. The lower mean value and stand
deivation of PGDL model indicates the stable performance of
our proposed method against FDIAs.

Fig. 5: State RMSE with random FDIAs

Fig. 6: State RMSE with consecutive FDIAs

TABLE III: RMSEs under FDI attacks

Random FDIAs Consecutive FDIAs
Mean(RMSE) SD(RMSE) Mean(RMSE) SD(RMSE)

WLS 0.0261 0.0090 0.0046 0.0056

LSTM 0.0028 0.0008 0.0028 0.0018

2) Spatial Comparison: Figs. 7 and 8 indicate the esti-
mated states at the time points when there are malicious false
data injections. They show the largest RMSE in random and
consecutive FDIAs respectively. It can be seen that the results
of PGDL model is much close to the true states when there
are random FDI attacks. While consecutive attacks happen,
PGDL shows a higher deviation at voltage angles but much
closer to true voltage magnitudes at the selected time point.
Overall, PGDL has lower RMSE indicated in Fig. 6.

V. CONCLUSION

Cyber security becomes a major concern in the modern
power grid. To defend against FDIAs, a physics-guided deep

Fig. 7: Estimated states with random FDIAs

Fig. 8: Estimated states with consecutive FDIAs

learning model is proposed to develop the time-series PSSE.
In contrast to traditional state estimation, the time-series PSSE
uses LSMT to learn the temporal correlations among states at
different times. The learned temporal correlations strengthen
the state estimation under FDIAs. The proposed time-series
PSSE take a sequential measurements as inputs, and output
the estimated states. The adverse impact of any random
attacks contaminating measurements at times is mitigated by
incorporating measurements at different times. The proposed
PGDL approach is demonstrated in IEEE 14-bus system, and
the time-series estimator can better withstand FDIAs.
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