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Abstract— Demand response (DR) is one of the most effective 

ways to maintain the reliability and improve the flexibility of 

power systems. Accurate forecasts of baseline loads are essential 

for DR programs. In the era of big data, machine learning-based 

approaches present a unique opportunity for baseline load 

forecasting. Thus, this paper presents a machine learning-based 

approach using a relatively less explored algorithm, Gaussian 

process regression (GPR), to forecast aggregate baseline loads. As 

such, a dataset was generated using a set of EnergyPlus 

simulations. Using the generated dataset, a GPR-based 

forecasting model was developed. In addition, support vector 

regression (SVR)- and averaging-based models were developed as 

baseline models for comparison. The prediction performance of 

the models showed that the GPR-based model is more accurate 

and reliable than the others. Such high performance shows the 

potential of the GPR in baseline load forecasting. GPR, therefore, 

can be used for DR applications. 

Index Terms—Aggregate baseline load forecasting, demand 

response, Gaussian process regression, machine learning, support 

vector regression. 

I. INTRODUCTION

Motivated by the adverse effects of the fossil fuels on the 
environment, there is a growing trend towards using renewable 
energy resources for electricity generation. Renewable energy 
resources (e.g., solar and wind), however, pose some challenges 
for power system operations due to their variable and 
intermittent nature [1]. To overcome these challenges, power 
systems are going through a transformation to be able to adapt 
more flexible operation and management strategies. Demand 
side management, energy storage, and fast-acting supply 
services are crucial in this transformation and already play a key 
role in the operation and management of energy systems with 
various programs [2]. 

Demand response (DR), as one of the demand-side 
management services, is arguably one of the most effective 
ways to maintain the reliability and improve the flexibility of 
power system operation. DR aims to change the electricity 
usage of end-use customers using price-based or incentive-
based mechanisms [3]. Price-based mechanisms motivate the 

end-use customers through the dynamic changes in electricity 
price over time. For example, in price-based mechanisms, the 
operator sets higher prices during peak load periods and 
encourages end-use customers to shift their loads to off-peak 
periods. Incentive-based mechanisms encourage end-use 
consumers to change their load consumption behaviors when 
needed through a contractual agreement. 

In DR programs, DR aggregators collect DR capacity from 
end-use customers and then trade in the electricity market. For 
example, an incentive-based DR aggregator rewards 
participating end-use consumers based on the amount of load 
that they reduce during peak load periods. To calculate the load 
reduction amount, the electricity that would have been 
consumed in the absence of DR (baseline load) must be 
forecasted. Therefore, an accurate forecast of baseline load is 
essential for DR programs [4]. For example, if the baseline load 
is underestimated, DR aggregator may determine an incentive 
or a rate schedule that is not sufficient to encourage end-user 
customers to shift their peak loads. On the contrary, if the 
baseline load is overestimated, the DR aggregator may end up 
with spending more than needed. In addition, baseline load 
forecasting helps utilities with planning the operation of their 
generation and distribution infrastructure in advance to 
minimize the chance of blackouts or brownouts [5]. 

Baseline load forecasting can be performed at the end-use 
customer or aggregate level. For end-use customer level, there 
exist different methods for residential and commercial 
customers. On one hand, residential baseline load is subject to 
many uncertainties such as occupancy, occupant behavior and 
actions. Hence, many different methods have been developed 
for residential baseline load forecasting. These methods can 
broadly be categorized as averaging and regression methods 
[6]. Averaging methods take the average of the loads in the 
recent days. In taking averages, several different approaches, 
such as taking the average of only representative days, and 
taking the weighted average, can be followed. On the other 
hand, baseline load forecasting for commercial customers is 
relatively simpler because the consumption of commercial 
customer is quite regular and therefore the load of a 
representative day can be utilized as a baseline load for the 
future days.     

 Utilizing data-driven techniques is a way to develop more 
accurate and therefore more reliable baseline load forecasting 
approaches. Driven by new technologies, such as Internet-of-
Things (IoT) and advanced metering infrastructure (AMI), 
power systems are entering into a new digital era. The massive 
amount of data generated through these technologies can help 
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improve the safety, productivity, accessibility and sustainability 
of power systems [2]. Machine learning-based approaches are 
key in harnessing these data. Certainly, machine learning can 
be used for baseline load forecasting as well. 

Towards addressing this prospect, this paper presents a 
machine learning-based approach using a relatively less 
explored algorithm, Gaussian process regression (GPR), to 
forecast aggregate baseline loads. In this paper, the machine 
learning models are trained using a dataset generated through 
simulating residential and commercial building models. In 
addition to the proposed GPR-based model, a support vector 
regression (SVR) based model and a traditional averaging-
based model were developed as baseline models to compare 
with. 

The structure of this paper is organized as follows: Section 
II presents the existing studies in the area of baseline load 
forecasting. Section III summarizes the GPR. Section IV 
presents the research methodology, which consists of three 
primary steps: data generation, model development and model 
evaluation. Section V presents the simulation results and 
forecasting performance of the developed models. Finally, 
Section VI concludes the paper. 

II. RELATAED WORKS 

Supervised machine learning algorithms are designed to 
learn a mapping between an input vector 𝑥 and an output vector 
𝑦, given that there is an existing labelled dataset that includes a 

set of input-output pairs 𝔇 = {(𝑥𝑖 , 𝑦𝑖)} 𝑖=1
𝐾 . This attribute of the 

supervised machine learning algorithms makes them an ideal 
choice for baseline load forecasting. For baseline load 
forecasting, a model, which maps some features (e.g., outdoor 
weather conditions) into electricity loads, is trained using 
supervised algorithms. To the date, many supervised machine 
learning algorithms, including artificial neural networks 
(ANNs), SVR, and tree-based algorithms, have been used for 
baseline load forecasting.    

SVR is a kernel-based algorithm. It is one of the most 
popular algorithms in load forecasting. For example, [7] 
developed an SVR-based model for forecasting energy 
consumption of a chiller and a supply fan in an air handling unit 
(AHU) using historical building operation data and weather 
forecast information. To demonstrate the effectiveness of SVR, 
[8] developed an SVR model to forecast baseline load for office 
buildings and compared the developed model to other seven 
traditional forecasting models.  

ANNs are computational models, inspired by the human 
brain. ANNs have been used in DR primarily for forecasting 
applications. For example, [9] used a self-organizing map 
(SOM), a type of feed-forward neural network (FFNN), for 
residential baseline load forecasting. Similarly, [10] developed 
an ANN-based model to forecast residential baseline load using 
features including outdoor temperature, day of week, working 
day indicator, and previous load values.  

Tree-based algorithms use a tree to map features into 
outputs. These algorithms have also been extensively used for 
forecasting applications in many DR applications due to their 
simplicity and relatively lower computational cost. For 

example, [11] built regression trees-based predictive models 
using historical data of office buildings. Similarly, [12] used 
regression tree algorithm for demand forecasting models. 

Despite the importance of these studies in baseline load 
forecasting, there are still less explored algorithms such as GPR 
in the field of baseline load forecasting. GPR models, unlike 
other supervised machine learning algorithms, can provide 
probabilistic forecasts. In many DR applications, probabilistic 
approaches may lead to better informed decisions and planning, 
because DR aggregators can take the uncertainties associated 
with the forecasted baseline load into account [2]. Nevertheless, 
GPR, was used in only a few studies (e.g., [13, 14]) in the field 
of baseline load forecasting. Additional studies are still needed 
to better understand the applicability and limitations of GPR 
models in baseline load forecasting using different feature sets 
and datasets.  

In addition, the majority of the machine learning-based 
forecasting studies focus on individual residential and/or 
commercial end-use customers. However, there is lack of 
studies in aggregate baseline load forecasting. The forecasting 
problem is relatively simpler for aggregate level, because the 
fluctuations and the noise in the individual customers may 
cancel each other out when considering the aggregate load [5].  

III. GAUSSIAN PROCESS REGRESSION 

GPR is a non-parametric probabilistic kernel algorithm 
[15]. GPR can be applied for prediction and can provide the 
confidence interval for each point in the prediction to quantify 
the uncertainty of the prediction [16].  

A regression model with noise is assumed as follows: 

𝑌 = 𝑓(𝑥) + 𝜀 (1) 

where 𝑌 is the observation and 𝑓(𝑥) is an underlying function. 
It is assumed that the observed values 𝑌 differ from the function 
values 𝑓(𝑥) by additive noise 𝜀. Furthermore, it is assumed that 
the noise 𝜀 follows an independent, identically distributed 
Gaussian distribution with zero mean and variance of 𝜎𝑛

2 as 
follows: 

𝜀~𝒩(0, 𝜎𝑛
2) (2) 

Then, priori distribution of the observation 𝑌 and the joint 
prior distribution of the observed value 𝑌 and the prediction 
value 𝑦 can be obtained from [15] as follows: 

𝑌~𝒩(0, 𝐾(𝑥, 𝑥) + 𝜎𝑛
2𝐼𝑛) (3) 

[
𝑌
𝑦

] ~𝒩 (0, [
𝐾(𝑥, 𝑥) + 𝜎𝑛

2𝐼𝑛 𝐾(𝑥, 𝑥∗)

𝐾(𝑥∗𝑥) 𝐾(𝑥∗, 𝑥∗)
]) = 𝒩 (0, [

𝐾 𝐾∗
𝑇

𝐾∗ 𝐾∗∗
]) (4) 

where 𝐾(𝑥, 𝑥) = (𝜅𝑖𝑗) is a symmetric positive covariance 

matrix, whose elements 𝜅𝑖𝑗 measure the correlation between 𝑥𝑖 

and 𝑥𝑗 through a kernel function 𝜅. 𝐾(𝑥∗𝑥) = 𝐾(𝑥, 𝑥∗)𝑇 is the 

covariance matrix between the test set 𝑥∗ and the training set 𝑥. 



 

𝐾(𝑥∗, 𝑥∗) is the covariance matrix of the test set itself. 𝐼𝑛 is an 
n-dimensional unit matrix. Radial basis function kernel (aka 
squared exponential kernel), is one of the most widely used 
kernels and can be calculated as follows: 

𝜅𝑖𝑗 = 𝑝1 exp (−
(𝑥𝑖 − 𝑥𝑗)

2

2𝑝2

) (5) 

where 𝑝1 and 𝑝2 are tuning parameters. The posterior 
distribution of the predicted value 𝑦 is 

𝑦|𝑌~𝒩(𝑦, 𝜎𝑦
2) (6) 

𝑦 = 𝐾∗𝐾−1𝑌 (7) 

𝜎𝑦
2 = 𝐾∗∗ − 𝐾∗𝐾−1𝐾∗

𝑇 (8) 

Thus, the predictions of GPR is 𝑦 and the prediction interval 

with 95% confidence level is [𝑦 − 1.96𝜎𝑦, 𝑦 + 1.96𝜎𝑦 ]. The 

probability density function of the i-th predicted value is as 
follows: 

𝑝(𝑦𝑖) =
1

√2𝜋𝜎𝑦𝑖

𝑒𝑥𝑝 (−
(𝑦𝑖 − 𝑦

𝑖
)

2𝜎𝑦𝑖
2 ) (9) 

IV. METHODOLOGY 

Three primary steps were followed to develop the proposed 
GPR-based aggregate baseline load forecasting model. First, a 
dataset including outdoor weather conditions and resulting 
electricity load profile were generated. Second, the datasets 
were preprocessed to make them compatible with machine 
learning algorithms. Third, the GPR-based forecasting model 
and a set of baseline models were developed and compared.  

A. Dataset Generation and Preprocessing 

To train the machine learning models, a dataset was 
generated using EnergyPlus simulations. The dataset included 
(1) aggregate consumption of 100 residential heating, 
ventilation, and air conditioning (HVAC) units, 100 
commercial HVAC units, and 100 water heater (WH) units, and 
(2) the corresponding weather conditions.  

To create a dataset that represents the overall characteristics 
of the U.S. building stock to some extent, the EnergyPlus 
models provided by the U.S. Department of Energy were used 
[17]. The prototype single-family building model was used for 
the residential HVAC and WH units. The reference small office 
building model was used for the commercial HVAC units. 

The models were simulated in EnergyPlus using the typical 
meteorological year 3 (TMY3) weather data of Atlanta, GA. 
Then, the aggregate baseline load profile of these 300 units was 
computed by aggregating the hourly cooling and water heater 
electricity consumption profiles by date and time.  

B. Data Preprocessing and Model Development 

Prior to machine learning model development, non-summer 
months were filtered out. Only temperature and solar radiation 
data were extracted from the weather conditions data, and other 
irrelevant variables were removed from the dataset. Hourly 
consumption and weather conditions profiles were interpolated 
into 10-minute intervals. The weather conditions data were 
normalized using their means and standard deviations. A 
working day/hour indicator was created using the time stamps 
to indicate whether a particular data instance is subject to 
thermostat setpoint or setback hours. Finally, the dataset was 
split into training and testing datasets with proportions of 75% 
and 25%, respectively.   

In developing the prediction models, in addition to the 
proposed GPR-based model, an SVR-based model and an 
averaging-based model were developed as baseline models for 
comparison. GPR- and SVR-based models take outdoor 
temperature, solar radiation, and working day/hour indicator 
values as features. These models were trained on the training 
dataset. The averaging-based model simply takes the average 
of past 10 days. 

C. Model Evaluation 

The models were evaluated based on the three criteria 
suggested by [10]: accuracy, simplicity, and integrity.  

To evaluate the model accuracy, the trained models were 
used for forecasting the aggregate baseline load. The predicted 
load values were compared to the actual load values in the 
testing dataset and the root mean square error (RMSE) was 
calculated as:   

RMSE = √
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,t − 𝑦𝑑𝑎𝑡𝑎,t)

2𝑛
𝑡=1

𝑛
(10) 

where 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡,t is the forecasted load value at time 𝑡,  𝑦𝑑𝑎𝑡𝑎,t is 

the actual load value at time t, and 𝑛 is the number of instances 
in the testing dataset. The lower the RMSE, the less dispersions 
are between the forecasted and the actual load values. 

An aggregate baseline load forecasting model should also 
be simple so that it can easily be communicated to the 
concerned stakeholders (e.g., aggregators and customers) [18]. 
To evaluate the simplicity of the models, the number of features 
that the models take, and efforts required to develop the models 
were considered. 

In DR programs, because the participating customers are 
rewarded based on the amount of load that they reduce during 
peak load periods, they may choose to reflect their baseline load 
more than their actual baseline load to be rewarded more. 
Therefore, integrity is also an important factor to consider when 
evaluating the baseline load forecasting models. A model 
should make it difficult to “cheat” the system in favor of a 
stakeholder. To assess this, whether there is a manipulation 
opportunity by a customer was also checked. 



 

V. RESULTS 

A. Generating Aggregate Baseline Loads 

The EnergyPlus simulations generated hourly energy 
consumption levels for residential HVAC, commercial HVAC, 
and WH units. Figure 1 shows a sample day of these simulation 
results. Figure 2 shows the aggregate load and corresponding 
outdoor weather conditions for that day. As shown in the 
figures, the residential and commercial HVAC load is relatively 
lower before 6:00 due to the low outdoor temperature and solar 
radiation levels. Parallel to the increases in outdoor temperature 
and solar radiation levels, HVAC loads as well as the aggregate 
load start to increase after 6AM. The load of the water heaters 
is higher during morning and evening times, but their pattern 
does not affect aggregate baseline load significantly.  

  

 

Figure 1.  Individual loads of residential HVAC, commercial HVAC, and 

water heater units. 

B. Forecasting Performance 

Figure 3 shows the prediction results of the previously 
described three algorithms on a few days from the testing 
dataset. The GPR-based model achieved the highest prediction 
accuracy. The GPR-based, SVR-based, and averaging-based 
models achieved RMSEs of 85.3 kW, 115.6 kW, and 89.6 kW, 
respectively. In addition, for almost all testing dataset, the 
confidence interval determined by the GPR-based model 
covered the actual load. The 95% confidence interval of the 
GPR-based model was able to cover the actual load 93% of the 
time.   

In terms of simplicity, the averaging-based model is 
superior than the GPR-based and SVR-based models due to two 
reasons. First, unlike machine learning-based models, the 

averaging-based model does not require any model training. 
However, machine learning-based models require time 
consuming model training efforts which involve data collection 
and preprocessing, and parameter tuning of the selected 
algorithms. Second, the averaging-based model can forecast the 
future baseline load using only historical baseline load, whereas 
the GPR-based and SVR-based models require an accurate 
weather forecasting. 

In terms of integrity, the GPR-based and SVR-based models 
are better than the averaging-based model. Machine learning-
based models reduce the risk of “cheating” to almost zero as 
they are regression models depending on a long historical 
dataset. Increasing load on a few days to be rewarded more 
would not change the forecasts of the GPR-based and SVR-
based models. However, the averaging-based model is very 
sensitive to such artificial changes as it forecasts based on a few 
recent days only.  

Overall, the GPR-based model is better than the SVR-based 
and averaging-based models due to its higher accuracy and 
lower chance of being subject to a DR trick. Furthermore, 
unlike the traditional supervised learning algorithms, GPR can 
also provide probabilistic forecasts. The only drawback 
associated with GPR is its relatively lower simplicity. However, 
this is minor drawback due to the recent advances in computing 
power. For example, the GPR-based model presented in this 
paper was trained in 15 seconds only using a typical laptop 
machine. In addition, the GPR-based model presented in this 
paper only requires temperature and solar radiation forecasting, 
which can be easily obtained from weather stations, or from 
other recent methods (e.g., [19]). 

 

 

Figure 2.  Aggregate baseline load and corresponding outdoor weather 

conditions. 



 

 

Figure 3.  Forecasting performace of the algorithms. 

VI. CONCLUSIONS 

This paper developed a GRR-based model for aggregate 
baseline load forecasting using a dataset generated through 
EnergyPlus simulations. The GPR-based model was compared 
against two baseline models, including SVR- and averaging-
based models, in terms of accuracy, simplicity, and integrity. 
The results showed that the GPR-based model is superior to the 
SVR-based and averaging-based models. Such high 
performance proves the potential of the GPR in aggregate 
baseline load forecasting. GPR, therefore, can be used for 
demand response applications.  
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