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Abstract— Demand response (DR) is one of the most effective
ways to maintain the reliability and improve the flexibility of
power systems. Accurate forecasts of baseline loads are essential
for DR programs. In the era of big data, machine learning-based
approaches present a unique opportunity for baseline load
forecasting. Thus, this paper presents a machine learning-based
approach using a relatively less explored algorithm, Gaussian
process regression (GPR), to forecast aggregate baseline loads. As
such, a dataset was generated using a set of EnergyPlus
simulations. Using the generated dataset, a GPR-based
forecasting model was developed. In addition, support vector
regression (SVR)- and averaging-based models were developed as
baseline models for comparison. The prediction performance of
the models showed that the GPR-based model is more accurate
and reliable than the others. Such high performance shows the
potential of the GPR in baseline load forecasting. GPR, therefore,
can be used for DR applications.

Index Terms—Aggregate baseline load forecasting, demand
response, Gaussian process regression, machine learning, support
vector regression.

l. INTRODUCTION

Motivated by the adverse effects of the fossil fuels on the
environment, there is a growing trend towards using renewable
energy resources for electricity generation. Renewable energy
resources (e.g., solar and wind), however, pose some challenges
for power system operations due to their variable and
intermittent nature [1]. To overcome these challenges, power
systems are going through a transformation to be able to adapt
more flexible operation and management strategies. Demand
side management, energy storage, and fast-acting supply
services are crucial in this transformation and already play a key
role in the operation and management of energy systems with
various programs [2].

Demand response (DR), as one of the demand-side
management services, is arguably one of the most effective
ways to maintain the reliability and improve the flexibility of
power system operation. DR aims to change the electricity
usage of end-use customers using price-based or incentive-
based mechanisms [3]. Price-based mechanisms motivate the
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end-use customers through the dynamic changes in electricity
price over time. For example, in price-based mechanisms, the
operator sets higher prices during peak load periods and
encourages end-use customers to shift their loads to off-peak
periods. Incentive-based mechanisms encourage end-use
consumers to change their load consumption behaviors when
needed through a contractual agreement.

In DR programs, DR aggregators collect DR capacity from
end-use customers and then trade in the electricity market. For
example, an incentive-based DR aggregator rewards
participating end-use consumers based on the amount of load
that they reduce during peak load periods. To calculate the load
reduction amount, the electricity that would have been
consumed in the absence of DR (baseline load) must be
forecasted. Therefore, an accurate forecast of baseline load is
essential for DR programs [4]. For example, if the baseline load
is underestimated, DR aggregator may determine an incentive
or a rate schedule that is not sufficient to encourage end-user
customers to shift their peak loads. On the contrary, if the
baseline load is overestimated, the DR aggregator may end up
with spending more than needed. In addition, baseline load
forecasting helps utilities with planning the operation of their
generation and distribution infrastructure in advance to
minimize the chance of blackouts or brownouts [5].

Baseline load forecasting can be performed at the end-use
customer or aggregate level. For end-use customer level, there
exist different methods for residential and commercial
customers. On one hand, residential baseline load is subject to
many uncertainties such as occupancy, occupant behavior and
actions. Hence, many different methods have been developed
for residential baseline load forecasting. These methods can
broadly be categorized as averaging and regression methods
[6]. Averaging methods take the average of the loads in the
recent days. In taking averages, several different approaches,
such as taking the average of only representative days, and
taking the weighted average, can be followed. On the other
hand, baseline load forecasting for commercial customers is
relatively simpler because the consumption of commercial
customer is quite regular and therefore the load of a
representative day can be utilized as a baseline load for the
future days.

Utilizing data-driven techniques is a way to develop more
accurate and therefore more reliable baseline load forecasting
approaches. Driven by new technologies, such as Internet-of-
Things (loT) and advanced metering infrastructure (AMI),
power systems are entering into a new digital era. The massive
amount of data generated through these technologies can help



improve the safety, productivity, accessibility and sustainability
of power systems [2]. Machine learning-based approaches are
key in harnessing these data. Certainly, machine learning can
be used for baseline load forecasting as well.

Towards addressing this prospect, this paper presents a
machine learning-based approach using a relatively less
explored algorithm, Gaussian process regression (GPR), to
forecast aggregate baseline loads. In this paper, the machine
learning models are trained using a dataset generated through
simulating residential and commercial building models. In
addition to the proposed GPR-based model, a support vector
regression (SVR) based model and a traditional averaging-
based model were developed as baseline models to compare
with.

The structure of this paper is organized as follows: Section
Il presents the existing studies in the area of baseline load
forecasting. Section Il summarizes the GPR. Section IV
presents the research methodology, which consists of three
primary steps: data generation, model development and model
evaluation. Section V presents the simulation results and
forecasting performance of the developed models. Finally,
Section VI concludes the paper.

Il.  RELATAED WORKS

Supervised machine learning algorithms are designed to
learn a mapping between an input vector x and an output vector
v, given that there is an existing labelled dataset that includes a
set of input-output pairs ® = {(x;, y;)} X ,. This attribute of the
supervised machine learning algorithms makes them an ideal
choice for baseline load forecasting. For baseline load
forecasting, a model, which maps some features (e.g., outdoor
weather conditions) into electricity loads, is trained using
supervised algorithms. To the date, many supervised machine
learning algorithms, including artificial neural networks
(ANNSs), SVR, and tree-based algorithms, have been used for
baseline load forecasting.

SVR is a kernel-based algorithm. It is one of the most
popular algorithms in load forecasting. For example, [7]
developed an SVR-based model for forecasting energy
consumption of a chiller and a supply fan in an air handling unit
(AHU) using historical building operation data and weather
forecast information. To demonstrate the effectiveness of SVR,
[8] developed an SVR model to forecast baseline load for office
buildings and compared the developed model to other seven
traditional forecasting models.

ANNs are computational models, inspired by the human
brain. ANNSs have been used in DR primarily for forecasting
applications. For example, [9] used a self-organizing map
(SOM), a type of feed-forward neural network (FFNN), for
residential baseline load forecasting. Similarly, [10] developed
an ANN-based model to forecast residential baseline load using
features including outdoor temperature, day of week, working
day indicator, and previous load values.

Tree-based algorithms use a tree to map features into
outputs. These algorithms have also been extensively used for
forecasting applications in many DR applications due to their
simplicity and relatively lower computational cost. For

example, [11] built regression trees-based predictive models
using historical data of office buildings. Similarly, [12] used
regression tree algorithm for demand forecasting models.

Despite the importance of these studies in baseline load
forecasting, there are still less explored algorithms such as GPR
in the field of baseline load forecasting. GPR models, unlike
other supervised machine learning algorithms, can provide
probabilistic forecasts. In many DR applications, probabilistic
approaches may lead to better informed decisions and planning,
because DR aggregators can take the uncertainties associated
with the forecasted baseline load into account [2]. Nevertheless,
GPR, was used in only a few studies (e.g., [13, 14]) in the field
of baseline load forecasting. Additional studies are still needed
to better understand the applicability and limitations of GPR
models in baseline load forecasting using different feature sets
and datasets.

In addition, the majority of the machine learning-based
forecasting studies focus on individual residential and/or
commercial end-use customers. However, there is lack of
studies in aggregate baseline load forecasting. The forecasting
problem is relatively simpler for aggregate level, because the
fluctuations and the noise in the individual customers may
cancel each other out when considering the aggregate load [5].

I1l.  GAUSSIAN PROCESS REGRESSION

GPR is a non-parametric probabilistic kernel algorithm
[15]. GPR can be applied for prediction and can provide the
confidence interval for each point in the prediction to quantify
the uncertainty of the prediction [16].

A regression model with noise is assumed as follows:

Y=f(x)+e¢ €

where Y is the observation and f (x) is an underlying function.
It is assumed that the observed values Y differ from the function
values f (x) by additive noise €. Furthermore, it is assumed that
the noise ¢ follows an independent, identically distributed
Gaussian distribution with zero mean and variance of ¢? as
follows:

e~N(0,02) )

Then, priori distribution of the observation Y and the joint
prior distribution of the observed value Y and the prediction
value y can be obtained from [15] as follows:

Y~N(0,K(x,x) + 62I,) 3)
[l o[ o™ k) => (ol ) @

where K(x,x) = (x;;) is a symmetric positive covariance
matrix, whose elements k;; measure the correlation between x;
and x; through a kernel function «. K (x,x) = K (x,x.)" is the
covariance matrix between the test set x, and the training set x.



K(x,, x,) is the covariance matrix of the test set itself. I,, is an
n-dimensional unit matrix. Radial basis function kernel (aka
squared exponential kernel), is one of the most widely used
kernels and can be calculated as follows:

o)

where p;, and p, are tuning parameters. The posterior
distribution of the predicted value y is

YWY~ (3,05 (6)
y=KK™'Y (7
o2 =K., — K.K KT (8)

Thus, the predictions of GPR is y and the prediction interval
with 95% confidence level is [y — 1.960,, + 1.965,, |. The
probability density function of the i-th predicted value is as
follows:
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IV. METHODOLOGY

Three primary steps were followed to develop the proposed
GPR-based aggregate baseline load forecasting model. First, a
dataset including outdoor weather conditions and resulting
electricity load profile were generated. Second, the datasets
were preprocessed to make them compatible with machine
learning algorithms. Third, the GPR-based forecasting model
and a set of baseline models were developed and compared.

A. Dataset Generation and Preprocessing

To train the machine learning models, a dataset was
generated using EnergyPlus simulations. The dataset included
(1) aggregate consumption of 100 residential heating,
ventilation, and air conditioning (HVAC) units, 100
commercial HVAC units, and 100 water heater (WH) units, and
(2) the corresponding weather conditions.

To create a dataset that represents the overall characteristics
of the U.S. building stock to some extent, the EnergyPlus
models provided by the U.S. Department of Energy were used
[17]. The prototype single-family building model was used for
the residential HVAC and WH units. The reference small office
building model was used for the commercial HVAC units.

The models were simulated in EnergyPlus using the typical
meteorological year 3 (TMY3) weather data of Atlanta, GA.
Then, the aggregate baseline load profile of these 300 units was
computed by aggregating the hourly cooling and water heater
electricity consumption profiles by date and time.

B. Data Preprocessing and Model Development

Prior to machine learning model development, non-summer
months were filtered out. Only temperature and solar radiation
data were extracted from the weather conditions data, and other
irrelevant variables were removed from the dataset. Hourly
consumption and weather conditions profiles were interpolated
into 10-minute intervals. The weather conditions data were
normalized using their means and standard deviations. A
working day/hour indicator was created using the time stamps
to indicate whether a particular data instance is subject to
thermostat setpoint or setback hours. Finally, the dataset was
split into training and testing datasets with proportions of 75%
and 25%, respectively.

In developing the prediction models, in addition to the
proposed GPR-based model, an SVR-based model and an
averaging-based model were developed as baseline models for
comparison. GPR- and SVR-based models take outdoor
temperature, solar radiation, and working day/hour indicator
values as features. These models were trained on the training
dataset. The averaging-based model simply takes the average
of past 10 days.

C. Model Evaluation

The models were evaluated based on the three criteria
suggested by [10]: accuracy, simplicity, and integrity.

To evaluate the model accuracy, the trained models were
used for forecasting the aggregate baseline load. The predicted
load values were compared to the actual load values in the
testing dataset and the root mean square error (RMSE) was
calculated as:

RMSE = \/Zgzl(ypredict,t - Ydata,t)z (10)

n

Where yy,,.cqice ¢ is the forecasted load value at time ¢, Ygqeq IS
the actual load value at time t, and n is the number of instances
in the testing dataset. The lower the RMSE, the less dispersions
are between the forecasted and the actual load values.

An aggregate baseline load forecasting model should also
be simple so that it can easily be communicated to the
concerned stakeholders (e.g., aggregators and customers) [18].
To evaluate the simplicity of the models, the number of features
that the models take, and efforts required to develop the models
were considered.

In DR programs, because the participating customers are
rewarded based on the amount of load that they reduce during
peak load periods, they may choose to reflect their baseline load
more than their actual baseline load to be rewarded more.
Therefore, integrity is also an important factor to consider when
evaluating the baseline load forecasting models. A model
should make it difficult to “cheat” the system in favor of a
stakeholder. To assess this, whether there is a manipulation
opportunity by a customer was also checked.



V. RESULTS

A. Generating Aggregate Baseline Loads

The EnergyPlus simulations generated hourly energy
consumption levels for residential HVAC, commercial HVAC,
and WH units. Figure 1 shows a sample day of these simulation
results. Figure 2 shows the aggregate load and corresponding
outdoor weather conditions for that day. As shown in the
figures, the residential and commercial HVAC load is relatively
lower before 6:00 due to the low outdoor temperature and solar
radiation levels. Parallel to the increases in outdoor temperature
and solar radiation levels, HVAC loads as well as the aggregate
load start to increase after 6AM. The load of the water heaters
is higher during morning and evening times, but their pattern
does not affect aggregate baseline load significantly.
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Figure 1. Individual loads of residential HVAC, commercial HVAC, and

water heater units.

B. Forecasting Performance

Figure 3 shows the prediction results of the previously
described three algorithms on a few days from the testing
dataset. The GPR-based model achieved the highest prediction
accuracy. The GPR-based, SVR-based, and averaging-based
models achieved RMSEs of 85.3 kW, 115.6 kW, and 89.6 kW,
respectively. In addition, for almost all testing dataset, the
confidence interval determined by the GPR-based model
covered the actual load. The 95% confidence interval of the
GPR-based model was able to cover the actual load 93% of the
time.

In terms of simplicity, the averaging-based model is
superior than the GPR-based and SVR-based models due to two
reasons. First, unlike machine learning-based models, the

averaging-based model does not require any model training.
However, machine learning-based models require time
consuming model training efforts which involve data collection
and preprocessing, and parameter tuning of the selected
algorithms. Second, the averaging-based model can forecast the
future baseline load using only historical baseline load, whereas
the GPR-based and SVR-based models require an accurate
weather forecasting.

In terms of integrity, the GPR-based and SVR-based models
are better than the averaging-based model. Machine learning-
based models reduce the risk of “cheating” to almost zero as
they are regression models depending on a long historical
dataset. Increasing load on a few days to be rewarded more
would not change the forecasts of the GPR-based and SVR-
based models. However, the averaging-based model is very
sensitive to such artificial changes as it forecasts based on a few
recent days only.

Overall, the GPR-based model is better than the SVR-based
and averaging-based models due to its higher accuracy and
lower chance of being subject to a DR trick. Furthermore,
unlike the traditional supervised learning algorithms, GPR can
also provide probabilistic forecasts. The only drawback
associated with GPR is its relatively lower simplicity. However,
this is minor drawback due to the recent advances in computing
power. For example, the GPR-based model presented in this
paper was trained in 15 seconds only using a typical laptop
machine. In addition, the GPR-based model presented in this
paper only requires temperature and solar radiation forecasting,
which can be easily obtained from weather stations, or from
other recent methods (e.g., [19]).
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Figure 2. Aggregate baseline load and corresponding outdoor weather
conditions.
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Figure 3. Forecasting performace of the algorithms.

VI. CONCLUSIONS

This paper developed a GRR-based model for aggregate
baseline load forecasting using a dataset generated through
EnergyPlus simulations. The GPR-based model was compared
against two baseline models, including SVR- and averaging-
based models, in terms of accuracy, simplicity, and integrity.
The results showed that the GPR-based model is superior to the
SVR-based and averaging-based models. Such high
performance proves the potential of the GPR in aggregate
baseline load forecasting. GPR, therefore, can be used for
demand response applications.
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