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o Enterprise integration is the task of making separate applications work together to produce a unified set
of functionalities. (aka. composite application)

> Applications may be custom developed in-house, while others are bought from third-party vendors.

o Applications may be running on multiple systems, with different platforms/OS’, and geographically
dispersed.

o Applications may be run outside of the enterprise by business partners or customers.

> Applications may need to be integrated, even though they were not designed for integration and cannot be

changed.




+ | Today’s Enterprise.“The Challenge”

Large established organizations have an evolution of point-to-point integrations, aka Spaghetti
integration, where systems integrate directly with each other.

Enterprise Application “Spaghetti”
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Image Source: Service Oriented Architecture Based Integration, Michael Rosen [Slideshare]
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The n(n-1) rule for point-to-point integration.
While adequate for simple integration, this model is quickly unmanageable for

more extensive integration requirements because of the n(n-1) connections rule
(also referred to as the n-squared problem).

Point-to-Point Integrations=n *(n-1)/ 2
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> Remote/Programmatic access to the data. What API/Protocol do I use to get at the data? Example: REST.

o Understanding the meaning of the data is critical. How do individual fields “map” from one system to
another? Example: Ontology, Semantic mapper, and what makes a “record” unique?
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No one domain, organization, or application owns data. The Parent Organization is the data
ownet. 1.e., “Free the data.” All domains are responsible for sharing data with other need-to-
know domains.

Avoid creating more static copies of the data. Example: warehouses, repository, or DataMart.

Data persists within a Domain and its applications. The tool or application that creates the data
should store it when possible.

The “system of record,” i.e., truth for data (authoritative source) can vary, as it is a function of
the product development phase. There should be one and only one “system of record” at a given
time.

Applications (COTS, GOTS, custom-developed) should provide a standard based external
(network) interface. Some standards to be considered are: REST, SOAP, OpenAPI, OSLC, RFD,
ISO/IEC JTC 1/SC 7, STEP AP 239, FMI, XMI

All new integrations should be M x N, 1.e.; multiple different applications can pull data and push
data. Consider Publish/Subscribe pattern. Avoid point-to-point solutions.

All data should be in a neutral/universal/canonical form that is self-describing, Consider the
RDF format for application data.
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8. Enterprise Integration Patterns EIPs should be used whenever possible.
9. When data is published or consumed, it should be validated (cleaned).

10. Data transfer patterns should be defined: on-demand (synchronous), scheduled, and event-based
(asynchronous).

11. Distributed transactions require integrations compensating transactions or XA support.
12. Information transfer should be monitored, have tracing, and failure detection.
13. Avoid database-level integration. Use the vendor’s API.

14. Integrations should be versioned.
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> Data Synchronization — Keep the data in two or more systems the same.

o Workflow/orchestration — Multiple Systems/Applications collaborate to perform an automated multi-step
business process.

o Data Aggregation — A system consumes data from multiple other systems (data sources).

The Three Patterns of Integration

Data Consistency Multistep Process Composite Service
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Source Gartner: Choose the Best Integration Tool for Your Needs Based on the Three Basic Patterns of Integration Published: 20 September 2019
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What 1s it?
o EIP is a set (65) of technology-independent/agnostic design patterns for implementing
system/application Integration.

o EIP is intended to orchestrate business transactions.

> Data mediation propagates changes, or new information flows from one application to another
without manual intervention.

ENTERPRISE =,
INTEGRATION

° The design patterns provide a well known/documented methodology for Integration.

° The patterns are reusable and solve common integration problems.

PATTERNS

o Using patterns, one creates a common approach to all integrations and avoids “one-off” or “point-
to-point” solutions.
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Message Construct.
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How do EIPs compare to other Technologies? 1/2

Data virtualization tools.
> Generally, data is pulled from different data sources and aggregated together

o Data Virtualization is not commonly used for:

o Data source updates
°  Near real-time application updates
o Bvent-Driven (asynchronous) updates

o To orchestrate transactions (XA) across multiple systems

Extract, Transform, Load (ETL), Federated database system, Data Warehouse

° Collect and store information, which results in duplication of data.
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How do EIPs compare to other Technologies? 2/2

Enterprise Service Bus (ESB)
> Heavyweight platform.

° Proprietary, vendor-specific API/implementation.

° A significant learning curve and is still challenging to use.

o

Vendor lock-in.

o Usually requires significant Vendor services to implement and use

o

Commercial versions cost big $$$ to implement and

have a high Total Cost of Ownership.

Customer ESB Producer

—SOAP —REST

]

All customer services communicate %7
in the same way with the ESB: the
ESB translates a message to the
correct message type and sends the
message to the correct consumer
service.
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Notable EIP implementations include:
o Spring Integration

o Apache Camel
o Red Hat Fuse

o Mule ESB

o0 Guarana DSI.
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