
Why can't these applications ever play nice?

PRESENTED BY

Click to edit I Peter Chandler, R&D Systems Architecture, pechand@sandia.gov

Sandia National Laboratories is a multimission laboratory managed

and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell international

lnc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-11037C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Agenda

Today's Enterprise. "The Challenge"

Integration Principles

Some Best Practices "Integration Manifesto"

Business Patterns

Enterprise Integration Patterns EIP

Integration Technologies, EIP Implementations

3 Today's Enterprise."The Challenge"

. Enterprise integration is the task of making separate applications work together to produce a unified set
of functionalities. (aka. composite application)

, Applications may be custom developed in-house, while others are bought from third-party vendors.
, Applications may be running on multiple systems, with different platforms/OS's, and geographically

dispersed.
. Applications may be run outside of the enterprise by business partners or customers.
, Applications may need to be integrated, even though they were not designed for integration and cannot be

changed.

•

4 I Today's Enterprise."The Challenge"

Large established organizations have an evolution of point-to-point integrations, aka Spaghetti
integration, where systems integrate directly with each other.

Enterprise Application "Spaghetti"

e-Marketplaces

Trading
Partner

Applications

Purchased
Packages

Autonomous
Divisions

A_ A Outsourced
_1

-*RR Applicatrons

Applications From
Mergers and
Acquisitions

Image Source: Service Oriented Architecture Based Integration, Michael Rosen [Slideshare]

5 Today's Enterprise."The Challenge"

The n(n-1) rule for point-to-point integration.

While adequate for simple integration, this model is quickly unmanageable for
more extensive integration requirements because of the n(n-1) connections rule
(also referred to as the n-squared problem).

140

120

100

80

60

4D

2D

Point-to-Point I ntegrations = (- 1) I/ 2

2 3 4 5 6 7 8 9 10 11 12 13. 14 15

Systems # Point-to-Poi-it Integrations

6 Integration Principles

0 Remote/Programmatic access to the data. What API/Protocol do I use to get at the data? Example: REST.

o Understanding the meaning of the data is critical. How do individual fields "map" from one system to
another? Example: Ontology, Semantic mapper, and what makes a "record" unique?

7 I Some Best Practices "Integration Manifesto"

1. No one domain, organization, or application owns data. The Parent Organization is the data
owner. i.e., "Free the data." All domains are responsible for sharing data with other need-to-
know domains.

2. Avoid creating more static copies of the data. Example: warehouses, repository, or DataMart.

3. Data persists within a Domain and its applications. The tool or application that creates the data
should store it when possible.

4. The "system of record," i.e., truth for data (authoritative source) can vary, as it is a function of
the product development phase. There should be one and only one "system of record" at a given
time.

5. Applications (COTS, GOTS, custom-developed) should provide a standard based external
(network) interface. Some standards to be considered are: REST, SOAP, OpenAPI, OSLC, RFD,
ISO/IEC JTC 1 /SC 7, STEP AP 239, FMI, XMI

6. All new integrations should be M x N, i.e.; multiple different applications can pull data and push
data. Consider Publish/Subscribe pattern. Avoid point-to-point solutions.

7. All data should be in a neutral/universal/canonical form that is self-describing. Consider the
RDF format for application data.

8 I Some Best Practices "Integration Manifesto"

8. Enterprise Integration Patterns EIPs should be used whenever possible.

9. When data is published or consumed, it should be validated (cleaned).

10. Data transfer patterns should be defined: on-demand (synchronous), scheduled, and event-based
(asynchronous).

11. Distributed transactions require integrations compensating transactions or XA support.

12. Information transfer should be monitored, have tracing, and failure detection.

13. Avoid database-level integration. Use the vendor's API.

14. Integrations should be versioned.

9 Business Patterns

• Data Synchronization — Keep the data in two or more systems the same.

• Workflow/orchestration — Multiple Systems/Applications collaborate to perform an automated multi-step
business process.

o Data Aggregation — A system consumes data from multiple other systems (data sources).

The Three Patterns of integration

Data Consistency

CRM

LERP]

Bilhng

Different databases/
applications "agree on the fact"

for shared data

Example! To address
overlapping, inconsistent

customer data

Multistep 13 roc ess

Independent applications
colLaborate to autornate a

business process

Example: Straight-through
processing for shipment cf

goods ordered

Composite Service

New applications consumeAPls
or data from other applications

Example: To create
single interface API for
purchase order approval

Source Gartner: Choose the Best Integration Tool for Your Needs Based on the Three Basic Patterns of Integration Published: 20 September 2019

10 Enterprise Integration Patterns EIP

What is it?

• EIP is a set (65) of technology-independent/agnostic design patterns for implementing
system/application Integration.

• EIP is intended to orchestrate business transactions.

o Data mediation propagates changes, or new information flows from one application to another
without manual intervention.

o The design patterns provide a well known/documented methodology for Integration.

o The patterns are reusable and solve common integration problems.

o Using patterns, one creates a common approach to all integrations and avoids "one-off" or "point-
to-point" solutions.

o The patterns support near real-time data exchange.
Message Construct.

Message
Command Message
Document Message
Event Message
Request-RePh,
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator

Endpoint \
Message

Application

A

Message Routing

Pipes-and-Filters
Message Router
Content-based Router
Message Fitter
Dynamic Router
Recipient List
Splitter

Aggregator
Resequencer
Composed Msg. Processor
Scatter-Gather
Routing Slip

Process Manager
Message Broker

Router
Channel

Messaging Endpoints Messaging Channels

r Message
Transformation

Message Translator
Envelope Wrapper
Content Enricher
Content Fitter
Claim Check
Normalizer
Canonical Data Model

Endpoint

Translator

Application

B

Systems Mgmt

Message Endpoint Competing Consumers Message Channel Control Bus
Messaging Gateway Message Dispatcher
Messaging Mapper Selective Consumer

Point-to-Point Channel
Publish-Subscr. Channel Monitoring

Detour
Wire Tap

Transactional Ghent Durable Subscriber Datatype Channel Message History

Polling Consumer ldempotent Receiver Invalid Message Channel Message Store

Event-driven Consurrer Service Activator Dead Leder Channel Smart Proxy
Guaranteed Delivery Test Message
Channel Adapter Channel Purger
Messaging Bridge
Message Bus

. 3-.V.:(524:110;;;eye l.:4tor;r4m ":1

ENTERPRISE
INTEGRATION
PATTERNS

i!

Ot.PLovilht.; :si 11 r. E

GREGOR HOWPE
B 05 EY WOOL F
Vir rp

XYLE

CL.Nykl, F. TrClit2

MARTIN FOS- LEL

SEAN NEVILLE.

miciurin J WITT 14.
jtotil.a i Sail"

FAMIPOntt 47fr•Itn Cd/pi amt hx,fer

11 Enterprise Integration Patterns EIP

Message Construct.

M essa ge
Comman (I M essage
Docu ment Message
Event Message
Re= ast-Rebtv
Return Address
Correlation Identifier
M essage Sequ en ce
Message Expiration
Format indicator

Endpoint
Message

Application

A

Message Routing

Pipes-and-Fifters
Message Router
Content-based Router
Message Fifter
Dynamic Router
Recipient Ust
Splitter

Aggregator
Resequ en cer
Composed Msg. PrOCOSSCIT
Scatter-Gath er
Routing Slip
Process Manager
Message Broker

Messaging Endpoints

Message Endpoint
Messaging Gateway
Messaging Mapper
Transactional Client
Polling Consumer
Event-drtven Consumer

Competing Consumer:
Message Dispatcher
Selectve Consumer
Durable Subscriber
dempotent Receiver
Service Acttvator

kouter
Channel

Messaging Channels

Message Channel
Point-to-Point Channel
Publish-Subscr. Channel
Datatype Channel
invalid Message Channel
Dead Letter Channel
Guaranteed Delivery
Channel Adapter
Messaging Bridge
Message Bus

Translator

Monitoring

message
Transformation

Massage Translator
Envelope Wrapper
Content Enricher
Content Fifter
Claim Check
Normalizer
Canonical Data Model

a."

Endpoint

Application

B

Systems P.9 g mt.
Control Bus
Detour
Wire Tap
Message HLstury
Message Store
Smart Proxy
Test Message
Channel Purger

Source: https://www.enterpriseintegrationpatterns.com/patterns/messaging/

12 Enterprise Integration Patterns EIP
How do EIPs compare to other Technologies? 1/2

Data virtualization tools.

o Generally, data is pulled from different data sources and aggregated together

o Data Virtualization is not commonly used for:
o Data source updates

O Near real-time application updates

O Event-Driven (asynchronous) updates

O To orchestrate transactions (XA) across multiple systems

Extract, Transform, Load (ETL), Federated database system, Data Warehouse

o Collect and store information, which results in duplication of data.

13
1 Enterprise Integration Patterns EIP
How do EIPs compare to other Technologies? 2/2

Enterprise Service Bus (ESB)

o Heavyweight platform.

o Proprietary, vendor-specific API/implementation.

o A significant learning curve and is still challenging to use.

o Vendor lock-in.

Usually requires significant Vendor services to implement and use

o Commercial versions cost big $$$ to implement and

have a high Total Cost of Ownership.

Custom er ESB Producer

#

JP

JP

— SOAP
-RNI

REST

All customer services communicate r)

in the same way with the ESB the

ESB translates a message to the

correct message type and sends the

message to the correct consumer

service

14 I Integration Technologies, EIP Implementations

Notable EIP implementations include:
o Spring Integration

o Apache Camel

o Red Hat Fuse

o Mule ESB

o Guarand DSL

15 Enterprise integration
Why can't these applications ever play nice?

