This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 11037C

Enterprise integration

Why can’t these applications ever play nice?

PRESENTED BY

Click to edit 1Peter Chandler, R&D Systems Architecture, pechand@sandia.gov

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 | Agenda

Today’s Enterprise. “The Challenge”
Integration Principles

Some Best Practices “Integration Manifesto”
Business Patterns

Enterprise Integration Patterns EIP

Integration Technologies, EIP Implementations

3 | Today’s Enterprise.“The Challenge”

o Enterprise integration is the task of making separate applications work together to produce a unified set
of functionalities. (aka. composite application)

> Applications may be custom developed in-house, while others are bought from third-party vendors.

o Applications may be running on multiple systems, with different platforms/OS’, and geographically
dispersed.

o Applications may be run outside of the enterprise by business partners or customers.

> Applications may need to be integrated, even though they were not designed for integration and cannot be

changed.

+ | Today’s Enterprise.“The Challenge”

Large established organizations have an evolution of point-to-point integrations, aka Spaghetti
integration, where systems integrate directly with each other.

Enterprise Application “Spaghetti”

e-Marketplaces Purchased

—_'l Packages r:
' A‘Jil — Autonomous
ﬁ | Dlvl;lops
B

, : o
i 5 6 [
Trading [C actio g - e >4 /
Partner g fie [R5~/ L8 > »
Applications U ~(Browser P _)r(l'#‘

|8

ergers and
Acquisitions

e

Image Source: Service Oriented Architecture Based Integration, Michael Rosen [Slideshare]

s | Today’s Enterprise.“The Challenge”
The n(n-1) rule for point-to-point integration.
While adequate for simple integration, this model is quickly unmanageable for

more extensive integration requirements because of the n(n-1) connections rule
(also referred to as the n-squared problem).

Point-to-Point Integrations=n *(n-1)/ 2

140
120
100

&0
47
20

1 2 3 4 5 B 7 8 9 10 11 12 13 14 15

i Sygtems s Point-to-Point Integrations

¢ | Integration Principles

> Remote/Programmatic access to the data. What API/Protocol do I use to get at the data? Example: REST.

o Understanding the meaning of the data is critical. How do individual fields “map” from one system to
another? Example: Ontology, Semantic mapper, and what makes a “record” unique?

7 I Some Best Practices “Integration Manifesto”

No one domain, organization, or application owns data. The Parent Organization is the data
ownet. 1.e., “Free the data.” All domains are responsible for sharing data with other need-to-
know domains.

Avoid creating more static copies of the data. Example: warehouses, repository, or DataMart.

Data persists within a Domain and its applications. The tool or application that creates the data
should store it when possible.

The “system of record,” i.e., truth for data (authoritative source) can vary, as it is a function of
the product development phase. There should be one and only one “system of record” at a given
time.

Applications (COTS, GOTS, custom-developed) should provide a standard based external
(network) interface. Some standards to be considered are: REST, SOAP, OpenAPI, OSLC, RFD,
ISO/IEC JTC 1/SC 7, STEP AP 239, FMI, XMI

All new integrations should be M x N, 1.e.; multiple different applications can pull data and push
data. Consider Publish/Subscribe pattern. Avoid point-to-point solutions.

All data should be in a neutral/universal/canonical form that is self-describing, Consider the
RDF format for application data.

s I Some Best Practices “Integration Manifesto”

8. Enterprise Integration Patterns EIPs should be used whenever possible.
9. When data is published or consumed, it should be validated (cleaned).

10. Data transfer patterns should be defined: on-demand (synchronous), scheduled, and event-based
(asynchronous).

11. Distributed transactions require integrations compensating transactions or XA support.
12. Information transfer should be monitored, have tracing, and failure detection.
13. Avoid database-level integration. Use the vendor’s API.

14. Integrations should be versioned.

9 | Business Patterns

> Data Synchronization — Keep the data in two or more systems the same.

o Workflow/orchestration — Multiple Systems/Applications collaborate to perform an automated multi-step
business process.

o Data Aggregation — A system consumes data from multiple other systems (data sources).

The Three Patterns of Integration

Data Consistency Multistep Process Composite Service

CRM — WMS / ER
| ;?f‘_‘, SCM ERP e ﬁk M/‘}
®© © ®

Different databases/ Independent applications New applications consume APls
applications “agree on the fact” collaborate to automate a or data from other applications
for shared data business process
Example: To address Example: Straight-through Example: To create
overlapping, inconsistent processing for shipment of single interface API for
customer data goods ordered purchase order approval

Source Gartner: Choose the Best Integration Tool for Your Needs Based on the Three Basic Patterns of Integration Published: 20 September 2019

5

10 | Enterprise Integration Patterns EIP

What 1s it?
o EIP is a set (65) of technology-independent/agnostic design patterns for implementing
system/application Integration.

o EIP is intended to orchestrate business transactions.

> Data mediation propagates changes, or new information flows from one application to another
without manual intervention.

ENTERPRISE =,
INTEGRATION

° The design patterns provide a well known/documented methodology for Integration.

° The patterns are reusable and solve common integration problems.

PATTERNS

o Using patterns, one creates a common approach to all integrations and avoids “one-off” or “point-
to-point” solutions.

Message Construct.
lo) h 1 d h Message
I e pﬂtterﬂs Support near fea _tlme ata eXC ange. Command Message = Message
Document Message Routing Transformation
Event Message Pipes-and-Fitters Aggregator Message Translator
Request-Reply Message Router Resequencer Envelope Wrapper
Return Address Content-based Router c Msg. Processor Content Enricher
C”"e'a"°’l|de”"7'er Message Filter Scatter-Gather Content Fiter
Message Sequence Dynamic Router Routing Slip Claim Check
Message Expiration Recipient List Process Manager Normalizer
Format Indicator Splitter Message Broker Canonical Data Model
Endpoint _~Endpoint
& 3
Chérnat Router Translator
" " nnei - — . .
Application Application
PP — o~ K i
A % = B
M M ing Channels | L ESERL . - Systems Mgmt.
Message Endpoint C C s M Channel Control Bus
Messaging Gateway Message Dispatcher Point-to-Point Channel oy Detour
Messaging Mapper Selective Consumer Publish-Subscr. Channel Monitoring Wire Tap
Transactional Client Durable Subscriber Datatype Channel Message History
Poling Consumer Idempotent Receiver Invalid Message Channel Message Store
Event-driven Consumer Service Activator Dead Letter Channel Smart Proxy
Guaranteed Delivery Test Message
Channel Adapter Channel Purger
Messaging Bridge
Message Bus

11 | Enterprise Integration Patterns EIP

Message Construct.
Meszage
Command Message = Message
Du,cu ment Mmﬂge “E’-‘.iﬁﬂﬂﬂ Rﬂﬂlﬂﬂ Tﬁll'lﬁfﬂmlﬂmn
Event Message Pipes-and-Filters Aggregator Message Translator
Request-Reply Message Router Resequencer Envelope Wrapper
Heturn J";'derﬂs*s_ Content-based Router Composed M=g. Processor Content Enricher
Correlation Identifier Me==age Filter Scatter-Gather Content Fitter
Message Sequence Dynamic Router Routing Slip Claim Check
Message FT*F’"E“D” Recipient List Procesz Manager Mormalizer
Format Indicator Splitter Message Broker Canonical Data Model
= = .-I
Endpoint Ay _~"Endpoint
Message Router Translator
Application S ' Application
PP — [0— G~ - K o
A : - B
"'xl 4".
Messaging Endpoints Messaging Channels | | B&E] ... Systems Mgmt. I
Mezsage Endpoint Competing Consumers Meszage Channel Control Bus
Mezzaging Gateway Meszage Dizpatcher Point-to-Point Channel Monitori Detour
Mes=zaging Mapper Selective Consumer Publish-Subscr. Channel nitonng Wire Tap _
Transactional Client Durable Subscriber Catatype Channel Mes=age History
Polling Consumer idempotent Receiver Invalid Message Channel Message Store
Event-driven Consumer Service Activater Dead Letter Channel Smart Proxy
Guaranteed Delivery Test Meszage
Channel Adapter Channel Purger
Mez=aging Bridge -
Mez=age Bus

Source: https://www.enterpriseintegrationpatterns.com/patterns/messaging/

2 | Enterprise Integration Patterns EIP

How do EIPs compare to other Technologies? 1/2

Data virtualization tools.
> Generally, data is pulled from different data sources and aggregated together

o Data Virtualization is not commonly used for:

o Data source updates
° Near real-time application updates
o Bvent-Driven (asynchronous) updates

o To orchestrate transactions (XA) across multiple systems

Extract, Transform, Load (ETL), Federated database system, Data Warehouse

° Collect and store information, which results in duplication of data.

Enterprise Integration Patterns EIP

13
How do EIPs compare to other Technologies? 2/2

Enterprise Service Bus (ESB)
> Heavyweight platform.

° Proprietary, vendor-specific API/implementation.

° A significant learning curve and is still challenging to use.

o

Vendor lock-in.

o Usually requires significant Vendor services to implement and use

o

Commercial versions cost big $$$ to implement and

have a high Total Cost of Ownership.

Customer ESB Producer

—SOAP —REST

]

All customer services communicate %7
in the same way with the ESB: the
ESB translates a message to the
correct message type and sends the
message to the correct consumer
service.

14 | Integration Technologies, EIP Implementations

Notable EIP implementations include:
o Spring Integration

o Apache Camel
o Red Hat Fuse

o Mule ESB

o0 Guarana DSI.

15

Enterprise integration
Why can’t these applications ever play nice!?

| w

