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2 I Agenda

• Single Particle Aerosol Mass Spectrometry

• Model Description

• Hydrodynamics Modeling

• Global Plasma Modeling



3 I Aerosol Mass Spectrometry

• Aerosol mass spectrometry is critical for

• Climate science: Cloud condensing nuclei,
precipitation

• Atmospheric monitoring: Pollution, dust
storms, forest fires

• The chemical composition of particles
can indicate their origin or hazardousness.

• Real-time measurements provide accurate
information on reactive particles.

• Small size and weight desirable for
field/vehicle tests.

• Measuring a mass spectrum for individual
particles provides more information and
is especially useful for source attribution.

Aerosol mass spectrum collected in Atlanta, GA
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4  Single Particle Aerosol Mass Spectrometer (SPAMS)

• An aerodynamic lens focuses the incoming
particles into a beam into a differentially
pumped chamber.

• First sizing laser (405 nm, continuous)
detects particle and measures its
aerodynamic diameter.

• Ionization laser (248 nm, 8 ns) vaporizes and
ionizes.

• Conditions similar to laser induced
breakdown spectroscopy (LIBS), but
SPAMS has lower laser intensity and
background pressure.
• LIBS — 760 Torr; SPAMS — 10-6 Torr
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• In this study, we focused on 1 vtm, spherical
Al particles.

• Goal: Better understand ionization mechanisms in SPAMS systems using numerical modeling.

• Results may aid in future designs and analysis of results.
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5 I Model Description

• CTH — Hydrodynamics model
• Does not resolve phases.

• Provides initial temperature (after
vaporization) and expansion rate for
global model.

• Global plasma model
• O-D, well-stirred reactor approximation.

• Al, e-, Al+, 6 excited states.

• 62 reactions:

• Electrons: excitation, ionization,
recombination, superelastic

• Photon: excitation, ionization, inverse
Bremsstrahlung radiation

• Two temperatures (Te, Tg).

• Maxwellian energy distributions.

• Uniform photon flux.
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6 I Hydrodynamics and Expansion
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• 2-D axisymmetric, CTH.

• 1 lim Al particle

• Laser: 16 mJ, 8 ns pulse (Gaussian)

• 4 x 1012 W/m2, 3 x 104 J/m2

• Energy deposited uniformly throughout
particle. (approximation)

• 60% reflectance

• 8 x 10-6 Torr background pressure



7 I Global Plasma Chemistry Model
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• Plasma modeling begins when enough energy has • Te and T decrease due to expansion (i.e. becoming
been deposited to vaporize the particle (15 ns). collisionless).

a GkBneT e)
• Initial temperature and expansion rate from 
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hydrodynamics model.

• Density decreases due to expansion into vacuum
(9 orders of magnitude in fis!)

• Te = Tg until 40 ns.

• Te lower than expected due to rapid expansion.



8 Photon Absorption Mechanisms

• Ephoton (5.00 eV) < Eionization (5.99 eV)
• No direct photoionization of Al

• Resonant photoexcitation is possible only with
significant pressure broadening.

• hv + Al —> Al(y2D)

• Resonance at 4.83 eV

• Photoionization of excited states absorbs <1%
of photons.

• Al* = Al(42S), Al(32D), Al(42P), Al(y2D)

• Multi-photon ionization (MPI) is not significant
at this laser energy.

• Photon flux (co) is uniform in the 0-D model:

• Attenuation is not considered.

• Photoabsorption rates are limited to prevent
photons absorbed from exceeding incident
photons.
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9 I Number of Particles

• Number of particles = n • V

• Al(y2D) is formed by: hv + Al —> Al(y2D)

• Al(y2D) excitation is redistributed to lower
excited states by:

• Superelastic collisions

• Radiation

• Al(y2D) -> Al(42P)

• Al(52S) -> Al(42P)

• Oscillations follow variations in Te from
expansion.

• Radiation to the ground state is assumed
to be fully trapped.
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10 I lonization Mechanisms
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• e- are heated by superelastic collisions with Al(y2D)

• Hot e- cause e-impact ionization of excited states.

• Photoionization of excited states also important.
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• Three body recombination is the primary loss
of e- and Al+.

• Rate increases for cold electrons ocTe-4.5



11 I Particle Size

1 !dm 0.5 vim
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• A 0.5 i.im particle is fully vaporized earlier in the
laser pulse.

• The total number of ions remaining is critical for
performance/sensitivity of SPAMS.

• Final ion counts are 2 orders of magnitude higher for
a 0.5 vim particle than 1 vim.

• More ions are produced initially for smaller
particles:

• Larger co

• Higher Te

• More ions survive without recombining.

• Due to higher Te, electron impact reactions are
10-5

more important to ionization for a smaller particle.



12 Concluding Remarks

• The ionization mechanisms of an Al particle in a single particle aerosol mass spectrometer (SPAMS)
have been investigated.
• 1-iv + Al* —> Al+ + e-

• e- + Al* —> Al+ + e- + e-

• Direct photoexcitation (Al(y2D)) is possible off-resonance due to pressure broadening.

• Te decreases in —40 ns due to rapid expansion.

• With low Tel many ions are lost to recombination.
• A small electric field may prevent this.

• More ions are produced with a smaller particle.

• Future Work:
• Analyze the assumption of Maxwellian electron energy distribution.

• Effect of externally applied electric field.

•
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14 I Electron Heating Mechanisms

e- + Al(y2D) -> Al + e-
e- + Al(y2D) -> Al(42P)

e- + 1(y2D) -> Al 32D) + e-
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• 1 lim particle

• Superelastic collisions
the main source of
electron heating

are
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15 I lonization Mechanisms vs. Particle Size
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16 I Temperatures and Recombination
  1 !dm 0.5 !dm

105

104

2 103

a) 102

D 101
--J
2 10°

ala) 1_13-1
E 10-2
a) 

10 
_3

H 

104

10-5  8

10 le 1O-6
Time (s)

lo 5

1018

, 1017
if)
— 1016
a)
-6-•

g 1015

1014

1013
0.5

r

r

r

i

1

1

„...
..../

I

i

1%.

1

\ 1%
`....... Recombination :.

........... .
1,„:% 

...,
....

Ionization
1

1.0 1.5 2.0

Time (s)

1

2.5 3.0
le-8


