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3 | Aerosol Mass Spectrometry
Aerosol mass spectrum collected in Atlanta, GA
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4+ I Single Particle Aerosol Mass Spectrometer (SPAMS)

|
* An aerodynamic lens focuses the incoming
particles into a beam into a differentially _
pumped chamber. O ‘0 1 um Al particles |
* First sizing laser (405 nm, continuous) \ Aerodynamic Lens
detects particle and measures its ©
aerodynamic diameter. ! Sizing
* lonization laser (248 nm, 8 ns) vaporizes and Laser
ionizes. \I
Time of Flight v |
* Conditions similar to laser induced Mass!|! Positive Arm . Negative Arm
breakdown spectroscopy (LIBS), but Spectrometers
SPAMS has lower laser intensity and
background pressure.
* LIBS ~ 760 Tott; SPAMS ~ 106 Torr \ lonization
) Laser
* In this study, we focused on 1 pm, spherical [
Al particles.
* Goal: Better understand ionization mechanisms in SPAMS systems using numerical modeling,

* Results may aid in future designs and analysis of results.



s | Model Description

* CTH — Hydrodynamics model

* Does not resolve phases.

* Provides initial temperature (after
vaporization) and expansion rate for

global model.
* Global plasma model

* 0-D, well-stirred reactor approximation.

* Al, e", Al", 6 excited states.

* 62 reactions:

* Electrons: excitation, ionization,
recombination, superelastic

* Photon: excitation, ionization, inverse
Bremsstrahlung radiation

* Two temperatures (1, T ).
* Maxwellian energy distributions.

* Uniform photon flux.

Global Plasma Model
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n, = number density of speciesi

¢ = photon flux LHS

k; = reactionrate of reaction j Rj = kj 1_[ n;
kyp; = multiphoton ionization (MPI) rate i

€ = energy change

V  =volume

Particle Reactions Expansion |



Hydrodynamics and Expansion 2 20
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* 2-D axisymmetric, CTH.
* 1 pm Al particle
* Laser: 16 mJ, 8 ns pulse (Gaussian)
4% 1012W/m? 3 X 10* J/m?
* Energy deposited uniformly throughout
particle. (approximation)
L - .

* 60% reflectance

* 8 X 10°° Torr background pressure

*Modeling by Jeffrey Musk



Global Plasma Chemlstry Model
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* Plasma modeling begins when enough energy has * T,and T, dectrease due to expansion (i.e. becoming

been deposited to vaporize the particle (15 ns). collisionless).

.. . a(%aneTe) _ (%aneTe) dv
* Initial temperature and expansion rate from — =~F 5

hydrodynamics model. -
* T, = T,until 40 ns.

10 ‘ ‘ 10”

* Density decreases due to expansion into vacuum
(9 orders of magnitude in ps!) * T, lower than expected due to rapid expansion.



s I Photon Absorption Mechanisms

* Epnoton (5:00 V) < Eiopiation (5-99 €V)

* No direct photoionization of Al

* Resonant photoexcitation is possible only with
significant pressure broadening;

* hv + Al > Al(yZD)
* Resonance at 4.83 eV

* Photoionization of excited states absorbs <1%
of photons.

o Al¥ = Al(42S), Al(32D), Al(4°P), Al(y?D)

* Multi-photon ionization (MPI) is not significant
at this laser energy.

* Photon flux (¢) is uniform in the 0-D model:
* Attenuation is not considered.

* Photoabsorption rates are limited to prevent
photons absorbed from exceeding incident
photons.

Photon Absorption Rate (s1)
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s | Number of Particles

* Number of particles = # - [/
* Al(y?D) is formed by: hv + Al = Al(y*D)

* Al(y?D) excitation is redistributed to lower
excited states by:

* Superelastic collisions
* Radiation

* Al(y?D) — Al(4°P)

o AI(%S) — Al(42P)

* Oscillations follow variations in T, from
expansion.

* Radiation to the ground state 1s assumed
to be fully trapped.
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lonization Mechanisms
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hv + Al(42P)
hv + Al(32D)

hv + Al(42S) \

* ¢ are heated by superelastic collisions with Al(y?D)
* Hot e cause e-impact ionization of excited states.

* Photoionization of excited states also important.
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* Three body recombination is the primary loss
of e and Al".

* Rate increases for cold electrons ocT*>



Particle Size

11

* A 0.5 um particle is fully vaporized earlier in the
laser pulse.

0 * The total number of ions remaining is critical for
% performance/sensitivity of SPAMS.

i * Final ion counts are 2 orders of magnitude higher for
© a 0.5 pm particle than 1 um.

(ol

o) * More ions are produced initially for smaller

= particles:

O * Larger @

- * Higher T,

-

=

* More ions survive without recombining,

* Due to higher T, electron impact reactions are
more important to ionization for a smaller particle.




12 I Concluding Remarks

* The ionization mechanisms of an Al particle in a single particle aerosol mass spectrometer (SPAMS)
have been investigated.

e hv + Al* > Al" + ¢
ce+AX > AlT+e + e

* Direct photoexcitation (Al(y?D)) is possible off-resonance due to pressure broadening,
* T, decreases in ~40 ns due to rapid expansion.

* With low T, many ions are lost to recombination.

* A small electric field may prevent this.

* More ions are produced with a smaller particle.

* Future Work:
* Analyze the assumption of Maxwellian electron energy distribution.

* Effect of externally applied electric field.
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14 | Electron Heating Mechanisms

Electron Heating Rate (W/m?3)
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* 1 pm particle

* Superelastic collisions are
the main source of
electron heating



lonization Rate (1016 s-1)

lonization Mechanisms vs. Particle Size
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