
Ensuring completeness of formal
verification with Gap Free Verification

Ratish Punnoose, Sandia National Laboratories

October 2020

00
onespi n

oos Inn Os s

0
0 onespin meeting on solutions, innovation, & strategy

NffS011

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC, a

wholly owned subsidiary of Honeywell International lnc., for the U.S.
Department of Energys National Nuclear Security Administration under

contract DE-NA0003525.

SAND2020-10997C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

About Sandia National Labs 01111% onespin
I, ,

0, Os rn Os i s

. \--1 onespin meeting on solutions, innovation, & strategy

• Sandia is the engineering arm of the U.S. nuclear weapons enterprise.

• The nation's nuclear weapons must always work when commanded and
authorized, and must never detonate otherwise.

• Digital systems at Sandia include embedded systems with custom ASICs,
processors, and cryptographic capability

• In-house ASIC Fabrication capability

© 2020 OneSpin Osmosis 1 Page 2

Problem

• How much formal verification is enough?

• Are we done yet?

onespin
0, 0 s rn Os 1 s

. \--1 onespin meeting on solutions, innovation, & strategy

© 2020 OneSpin Osmosis 1 Page 3

A typical approach

Requirements/Specification

Verification Plan

4onespindimoosmosiso
o onespin meeting on solutions, innovation, & strategy

Assertion writing

Verify assertions

Verification complete

© 2020 OneSpin Osmosis l Page 4

Process Pitfalls

Missing
requirements

Missing
properties

• Requirements are usually written to describe function (matches simulation, UVM, testing)

• "Shall not" requirements are sometimes missed (strengths of formal verification)

© 2020 OneSpin Osmosis 1 Page 5

Verification pitfalls

Over-constrained
antecedants or
assumptions

Under-constrained
consequents

Subtle mistakes in
assertion writing

Input
sequences that
are not fully
checked

Output
sequences that
are not fully
checked

Can result in
both above

© 2020 OneSpin Osmosis l Page 6

Outcome of verification deficiencies

RE-DESIGN AND RE- LACK OF CONFIDENCE IN
VERIFICATION COST FORMAL VERIFICATION

© 2020 OneSpin Osmosis 1 Page 7

A solution: GapFree Verification (GFV)

• Usage experience
• Systems with well-defined requirements/specifications

• Arm Peripheral Bus (APB) controller

• APB General Purpose Input Output (GPIO) slave

• Systems without full requirements
• Processor Arithmetic Accelerator

• Interrupt controller

onespin
0,0 SMOSIS
. \--1 onespin meeting on solutions, innovation, & strategy

© 2020 OneSpin Osmosis 1 Page 8

A solution: GapFree Verification

o
What is it

P....
How does it work conceptually

A mental model of what happens behind the
scenes helps use the technique more
effectively.

a%, onespin
0,0smosis0,, onespin meeting on solutions, innovation, & strategy

X
How do you use it in the tool

© 2020 OneSpin Osmosis I Page 9

v

cp
onespin

°osmosis
onespin meeting on solutions, innovation, & strategy

The OneSpin Gap Free Verification method
What is it, How does it work

o P-

What is it 04, onespin
0,0smosis

o onespin meeting on solutions, innovation, & strategy

An automated and formal check on the properties to check for
completeness

Completeness:
All possible input sequences are examined

All outputs are verified.

At all time

© 2020 OneSpin Osmosis l Page 11

How does it work 1/5 P onespin
dh 0,0smosis0,, onespin meeting on solutions, innovation, & strategy

• Start with a reset property that specifies the reset state of the system
• Outputs

• Externally visible state of the design
• Eg: Upon release of reset, a design is expected to be in "idle", when an operation starts it is "busy", when

operation completes it is "idle" again.

Inputs

State

Outputs

Reset

© 2020 OneSpin Osmosis 1 Page 12

How does it work 2/5 onespin0,0smosis
onespin meeting on solutions, innovation, & strategy

• From the reset state, check that all possible input sequences are covered by the
property set
• i.e., check that antecedants don't exclude any input sequence

• Note: the properties have an antecedent and consequent (if-then OR assume-prove) separated by
an implication operator

I nputs

Sta te

Outputs

© 2020 OneSpin Osmosis l Page 13

How does it work 3/5 P-
• Each property has a designated start and end cycle

• Left-hook: Point at which it takes over from the preceding property.

• Right-hook: Point at which the succeeding property takes over

• The designated start and end are for transfer of responsibility

I nputs

Sta te

Outputs

L R

1

L)r
© 2020 OneSpin Osmosis l Page 14

How does it work 4/5 • tka onespin„osmosis
onespin meeting on solutions, innovation, & strategy

• At the right-hook of each property, the design will be in a specific state

• From the right-hook, check all possible input sequences that follow are covered
by the property set.

np u ts

Sta te

Outputs

n

Reset

© 2020 OneSpin Osmosis l Page 15

How does it work 5/5 P-
• In the consequents for all properties, check that all outputs are specified uniquely.

I np u ts

Sta te

Outputs

i n I-

Reset)
© 2020 OneSpin Osmosis l Page 16

OIM '

oos m osis
onespin meeting on solutions, innovation, & strategy

Using GapFree verification in OneSpin

Using GapFree Verification

Design Properties
Assertion Check

Completeness Spec

a •

% ,

0, Os rn Os i s

Li'. onespin meeting on solutions, innovation, & strategy

GapFree
Verification

• Note: The properties have to hold on the design. The GapFree Check is a check
on the properties.

© 2020 OneSpin Osmosis l Page 18

Completeness file describes the following

Inputs

Outputs

Resets

Property graph

Exceptions

completeness cpu_mul;

disable iff: !Rst_n;

determination_assumptions:
determined(Clk);
determined(MultOp);
determined(Rst_n);
determined(Start);
...;

determination_requirements:
determined(almostDone), end_offset=-1;
phi_det: determined(prodHi);

reset_property: cpu_mul_sva.ops.reset_a;

property_graph:
possible_ops := cpu_mul_sva.ops.mult_a,

cpu_mul_sva.ops.madd_a,

cpu_mul_sva.ops.noop_a;
cpu_mul_sva.ops.reset_a, possible_ops -> possible_ops;

end completeness;

0%onespin
s nn Os s

o ° onespin meeting on solutions, innovation, & strategy

local_completeness sva/cpu_mul_sva/ops/mult_a;
allow_undetermined :

during [t+1, sva/cpu_mul_sva/ops/t_almostDone]: allow_undetermined(phi_det);
end local_completeness;

© 2020 OneSpin Osmosis l Page 19

Properties illik%, onespin
0,0smosis0,, oriew n meet rig on saa ons nnovat on & st ategy

• For GapFree Verification, Properties have to be written using TIDAL (Timing
Diagram Assertion Library)
• OneSpin library of System Verilog sequences, properties, macros

• More constrained than general SVA

property ldaccum_p;

logic [2*W-1:0] tmp_rsoutsq;

t ##0 ready_for_op().triggered and

t ##0 set_freeze(tmp_rsoutsq, { -(1441'b0ll , ALU.rs}) and

t ##0 (!(((ALU.OpCode == SQADDOP) 11 (ALU.OpCode == SQOP)) && (ALU.Start)) && ALU.ldaccum)

implies

t ##0 ALU.almostDone and

t ##1 (ALU.rsoutsq == tmp_rsoutsq) and

t ##1 right_hook;

endproperty // ldaccum_p

© 2020 OneSpin Osmosis l Page 20

TIDAL conveniences 0114 onespin
0,0smosis0,, onespin meeting on solutions, innovation, & strategy

• Time points:
• TIDAL library provides convenient constructs for describing time points and time-intervals

• Hooks:
• TIDAL macro to demarcate left and right-hooks

© 2020 OneSpin Osmosis 1 Page 21

GFV needs TIDAL properties written in a
certain way

• Reset: use specific pattern for reset sequence

onespin
0, 0 s rn Os 1 s

. \--1 onespin meeting on solutions, innovation, & strategy

• Implication operator:
• A single "implies" implication operator to divide the property into an antecedent and consequent

• Operators "1->", "l=>" not allowed

• Local variables captured using the set_freeze macro
• SVA local variable assignments with complex flow rules not allowed

• Substitute liveness operators (eg. eventually, [*0:$]) with:
• a TIDAL time interval + an assumption that the awaited event will happen within n cycles

© 2020 OneSpin Osmosis l Page 22

GFV checks

Reset
Status: Validity: up_to_clate

Reset Successor Determination Case_split Contradiction Minimality

1 assumption

2 determination

3 case sprit

Status

r H
H

111.11

Find ambiguous outputs
Determination

Status: hold Validity: up_to_date

Reset Successor I Determination Case_split Contraciiction Minimality

1 gpio_sva.ops.reset_a

2 gpio_sva.ops.addr_err a

3 gpio_sva.ops.no read write a

4 gpio_sva.ops.read addr 0 a

5 gpio_sva.ops.read_addr_1_a

6 gpio_sva.ops.write addr 0_a

7 gpio_sva.ops.write addr 1 a

2 3 4 5 6 7

H HHHHH

H H H H H H

H H H H H H

H H H H H H

H H H H H H

H H H H H H

H H H H H H

Find overconstrained or missing properties
Case-Split

Status: Validity: up_to_date

Reset i Successor Determination

1 gpio_sva.ops.reset_a

2 gpio_sva.ops.addr_err_a

3 gpio_sva.ops.no read write a

4 gpio_sva.ops.read addr 0 a

5 gpio_sva.ops.read addr 1 a

6 gpio sva.ops.write addr 0_a

7 gpio sva.ops.write addr 1 a

Casesplit Contracliction Minimality

Status

H

H

H

H

H

H

H

Successor
Status: Validity: up_to_clate

Reset Successor Determination I Casesplit Contradiction Minimality

2 3 4 5 6 7

H H H H H H1 gpio_sva.ops.reset_a

2 gpio_sva.ops.addr_err a H H H H H H

3 gpio_sva.ops.no read write a H H H H H H

4 gpio_sva.ops.read addr 0 a H H H H H H

5 gpio_sva.ops.read_addr_1_a H H H H H H

6 gpio_sva.ops.write addr 0_a H H H H H H

7 gpio_sva.ops.write addr 1 a H H H H H H

onespin
0, Os nn Os s

o

onespin meeting on solutions, innovation, & strategy

Extra Checks
Contradiction

Status: Valdity: up_to_ciate

Reset Successor Determination Case_split

Status

1 gpio_sva.ops.reset_a

2 gpio_sva.ops.addr_err a

3 gpio_sva.ops.no_read write a

4 gpio_sva.ops.read_addr_0_a

5 gpio_sva.ops.read_addr_1_a

6 gpio_sva.ops.write addr 0_a

7 gpio_sva.ops.write addr 1_a

H

H

H

H

H

H

H

Minimality
Status: Validity: up_to_date

Contradiction Mnimarity

Reset Successor Determination Case_split Contradiction

1 gpio_sva.ops.reset a

2 gpio_sva.ops.addr_err_a

3 gpio_sva.ops.no_read write_a

4 gpio_sva.ops.read_addr_0_a

5 gpio_sva.ops.read_addr_1_a

6 gpio_sva.ops.write_addr_0_a

7 gpio_sva.ops.write_addr_1_a

2 3 4 5 6 7

H HHHH

H H H H H

H H H H H

H H H H H

H H H H H

H H H H H

H H H

H

H

H

H

H

H

H

Minimalty

© 2020 OneSpin Osmosis l Page 23

How does GapFree Verification solve the
pitfalls identified earlier

Case Split +
Successor

Determination

Missing
requirements

Over-constrained
antecedants

Under-constrained
or unchecked
output values

onespin
oosmosiso

o onespin meeting on solutions, innovation, & strategy

© 2020 OneSpin Osmosis Page 24

Other benefits of GapFree

• A complete property set is an
"abstract" model of the system
.

dle
[OpCode == AddMem]

[OpCode == MulMem]

onespin
0, 0 171 0 I .3

o onespin meeting on solutions, innovation, & strategy

• All design behavior is exposed (to the
level of the properties)
• Hidden behavior detected in antecedent check

• Can back-out undocumented
specification from the "abstract" model

© 2020 OneSpin Osmosis l Page 25

Experiences with GapFree onespin
0, 0 s rn Os 1 s

. \--1 onespin meeting on solutions, innovation, & strategy

• Missing assertion check of outputs in GPI slave module, AMBA master

• Missing assertion check of certain input cases.
• SVA assertions ignored two back-to-back out-of-band operations.

• Seeming bug in ALU math operation (output modified by toggling inputs in the
middle of computation)
• Designers intended it would not be used this way

• Backed out specification from the property set.

© 2020 OneSpin Osmosis l Page 26

Summary onespin
0, 0 s rn Os 1 s

. \--1 onespin meeting on solutions, innovation, & strategy

• The OneSpin GapFree Verification method provides an automated and formal
check for completeness

• Ideal for high-consequence systems where the complete verification is desired (as
opposed to "targeted formal")
• Identifies missing assertions and checks on outputs.

• What if missing assertions would have failed ? Undiscovered bug.

• Can identify over-constrained antecedants and unchecked outputs

• Unique among Formal Property Verification (FPV) tool capabilities

© 2020 OneSpin Osmosis 1 Page 27

