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• Sandia is the engineering arm of the U.S. nuclear weapons enterprise.

• The nation's nuclear weapons must always work when commanded and
authorized, and must never detonate otherwise.

• Digital systems at Sandia include embedded systems with custom ASICs,
processors, and cryptographic capability

• In-house ASIC Fabrication capability
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Problem

• How much formal verification is enough?

• Are we done yet?
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A typical approach

Requirements/Specification

Verification Plan
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Assertion writing

Verify assertions

Verification complete
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Process Pitfalls

Missing
requirements

Missing
properties

• Requirements are usually written to describe function (matches simulation, UVM, testing)

• "Shall not" requirements are sometimes missed (strengths of formal verification)
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Verification pitfalls

Over-constrained
antecedants or
assumptions

Under-constrained
consequents

Subtle mistakes in
assertion writing

Input
sequences that
are not fully
checked

Output
sequences that
are not fully
checked

Can result in
both above
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Outcome of verification deficiencies

RE-DESIGN AND RE- LACK OF CONFIDENCE IN
VERIFICATION COST FORMAL VERIFICATION
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A solution: GapFree Verification (GFV)

• Usage experience
• Systems with well-defined requirements/specifications

• Arm Peripheral Bus (APB) controller

• APB General Purpose Input Output (GPIO) slave

• Systems without full requirements
• Processor Arithmetic Accelerator

• Interrupt controller
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A solution: GapFree Verification

o
What is it

P....
How does it work conceptually

A mental model of what happens behind the
scenes helps use the technique more
effectively.
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X
How do you use it in the tool
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The OneSpin Gap Free Verification method
What is it, How does it work

o P-
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An automated and formal check on the properties to check for
completeness

Completeness:
All possible input sequences are examined

All outputs are verified.

At all time
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How does it work 1/5 P onespin
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• Start with a reset property that specifies the reset state of the system
• Outputs

• Externally visible state of the design
• Eg: Upon release of reset, a design is expected to be in "idle", when an operation starts it is "busy", when

operation completes it is "idle" again.

Inputs

State

Outputs

Reset
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How does it work 2/5 onespin0,0smosis
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• From the reset state, check that all possible input sequences are covered by the
property set
• i.e., check that antecedants don't exclude any input sequence

• Note: the properties have an antecedent and consequent ( if-then OR assume-prove) separated by
an implication operator

I nputs

Sta te

Outputs
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How does it work 3/5 P-
• Each property has a designated start and end cycle

• Left-hook: Point at which it takes over from the preceding property.

• Right-hook: Point at which the succeeding property takes over

• The designated start and end are for transfer of responsibility

I nputs

Sta te

Outputs

L R

1 

L )r  
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• At the right-hook of each property, the design will be in a specific state

• From the right-hook, check all possible input sequences that follow are covered
by the property set.

np u ts

Sta te

Outputs

n 

Reset
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How does it work 5/5 P-
• In the consequents for all properties, check that all outputs are specified uniquely.

I np u ts

Sta te

Outputs

i n I-

Reset)
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Using GapFree verification in OneSpin



Using GapFree Verification

Design Properties
Assertion Check

Completeness Spec
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GapFree
Verification

• Note: The properties have to hold on the design. The GapFree Check is a check
on the properties.
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Completeness file describes the following

Inputs

Outputs

Resets

Property graph

Exceptions

completeness cpu_mul;

disable iff: !Rst_n;

determination_assumptions:
determined(Clk);
determined(MultOp);
determined(Rst_n);
determined(Start);
...;

determination_requirements:
determined(almostDone), end_offset=-1;
phi_det: determined(prodHi);

reset_property: cpu_mul_sva.ops.reset_a;

property_graph:
possible_ops := cpu_mul_sva.ops.mult_a,

cpu_mul_sva.ops.madd_a,

cpu_mul_sva.ops.noop_a;
cpu_mul_sva.ops.reset_a, possible_ops -> possible_ops;

end completeness;
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local_completeness sva/cpu_mul_sva/ops/mult_a;
allow_undetermined :

during [t+1, sva/cpu_mul_sva/ops/t_almostDone]: allow_undetermined(phi_det);
end local_completeness;
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• For GapFree Verification, Properties have to be written using TIDAL (Timing
Diagram Assertion Library)
• OneSpin library of System Verilog sequences, properties, macros

• More constrained than general SVA

property ldaccum_p;

logic [2*W-1:0] tmp_rsoutsq;

t ##0 ready_for_op().triggered and

t ##0 set_freeze(tmp_rsoutsq, { -(1441'b0ll , ALU.rs}) and

t ##0 ( !(((ALU.OpCode == SQADDOP) 11 (ALU.OpCode == SQOP)) && (ALU.Start)) && ALU.ldaccum)

implies

t ##0 ALU.almostDone and

t ##1 (ALU.rsoutsq == tmp_rsoutsq) and

t ##1 right_hook;

endproperty // ldaccum_p
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TIDAL conveniences 0114 onespin
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• Time points:
• TIDAL library provides convenient constructs for describing time points and time-intervals

• Hooks:
• TIDAL macro to demarcate left and right-hooks
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GFV needs TIDAL properties written in a
certain way

• Reset: use specific pattern for reset sequence
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• Implication operator:
• A single "implies" implication operator to divide the property into an antecedent and consequent

• Operators "1->", "l=>" not allowed

• Local variables captured using the set_freeze macro
• SVA local variable assignments with complex flow rules not allowed

• Substitute liveness operators (eg. eventually, [*0:$] ) with:
• a TIDAL time interval + an assumption that the awaited event will happen within n cycles
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GFV checks

Reset
Status: Validity: up_to_clate

Reset Successor Determination Case_split Contradiction Minimality

1 assumption

2 determination

3 case sprit

Status

r H
H

111.11

Find ambiguous outputs
Determination

Status: hold Validity: up_to_date

Reset Successor I Determination Case_split Contraciiction Minimality

1 gpio_sva.ops.reset_a

2 gpio_sva.ops.addr_err a

3 gpio_sva.ops.no read write a

4 gpio_sva.ops.read addr 0 a

5 gpio_sva.ops.read_addr_1_a

6 gpio_sva.ops.write addr 0_a

7 gpio_sva.ops.write addr 1 a

2 3 4 5 6 7

H HHHHH

H H H H H H

H H H H H H

H H H H H H

H H H H H H

H H H H H H

H H H H H H

Find overconstrained or missing properties
Case-Split

Status: Validity: up_to_date

Reset i Successor Determination

1 gpio_sva.ops.reset_a

2 gpio_sva.ops.addr_err_a

3 gpio_sva.ops.no read write a

4 gpio_sva.ops.read addr 0 a

5 gpio_sva.ops.read addr 1 a

6 gpio sva.ops.write addr 0_a

7 gpio sva.ops.write addr 1 a

Casesplit Contracliction Minimality

Status

H

H

H

H

H

H

H

Successor
Status: Validity: up_to_clate

Reset Successor Determination I Casesplit Contradiction Minimality

2 3 4 5 6 7

H H H H H H1 gpio_sva.ops.reset_a

2 gpio_sva.ops.addr_err a H H H H H H

3 gpio_sva.ops.no read write a H H H H H H

4 gpio_sva.ops.read addr 0 a H H H H H H

5 gpio_sva.ops.read_addr_1_a H H H H H H

6 gpio_sva.ops.write addr 0_a H H H H H H

7 gpio_sva.ops.write addr 1 a H H H H H H
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Extra Checks
Contradiction

Status: Valdity: up_to_ciate

Reset Successor Determination Case_split

Status

1 gpio_sva.ops.reset_a

2 gpio_sva.ops.addr_err a

3 gpio_sva.ops.no_read write a

4 gpio_sva.ops.read_addr_0_a

5 gpio_sva.ops.read_addr_1_a

6 gpio_sva.ops.write addr 0_a

7 gpio_sva.ops.write addr 1_a

H

H

H

H

H

H

H

Minimality
Status: Validity: up_to_date

Contradiction Mnimarity

Reset Successor Determination Case_split Contradiction

1 gpio_sva.ops.reset a

2 gpio_sva.ops.addr_err_a

3 gpio_sva.ops.no_read write_a

4 gpio_sva.ops.read_addr_0_a

5 gpio_sva.ops.read_addr_1_a

6 gpio_sva.ops.write_addr_0_a

7 gpio_sva.ops.write_addr_1_a

2 3 4 5 6 7

H HHHH

H H H H H

H H H H H

H H H H H

H H H H H

H H H H H

H H H

H

H

H

H

H

H

H

Minimalty
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How does GapFree Verification solve the
pitfalls identified earlier

Case Split +
Successor

Determination

Missing
requirements

Over-constrained
antecedants

Under-constrained
or unchecked
output values
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Other benefits of GapFree

• A complete property set is an
"abstract" model of the system
.

dle
[OpCode == AddMem]

[OpCode == MulMem]
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• All design behavior is exposed (to the
level of the properties)
• Hidden behavior detected in antecedent check

• Can back-out undocumented
specification from the "abstract" model
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Experiences with GapFree onespin
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• Missing assertion check of outputs in GPI slave module, AMBA master

• Missing assertion check of certain input cases.
• SVA assertions ignored two back-to-back out-of-band operations.

• Seeming bug in ALU math operation (output modified by toggling inputs in the
middle of computation)
• Designers intended it would not be used this way

• Backed out specification from the property set.
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• The OneSpin GapFree Verification method provides an automated and formal
check for completeness

• Ideal for high-consequence systems where the complete verification is desired (as
opposed to "targeted formal")
• Identifies missing assertions and checks on outputs.

• What if missing assertions would have failed ? Undiscovered bug.

• Can identify over-constrained antecedants and unchecked outputs

• Unique among Formal Property Verification (FPV) tool capabilities
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