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Abstract 
This report describes the development and testing of three component models for NRAP-Open-
IAM, the National Risk Assessment Partnership’s open-source integrated assessment model. 
The FutureGen2 Lookup Table Reservoir component model is based on interpolation of data 
from a set of lookup tables. The lookup tables contain pressures and saturations predicted by 
multiphase flow simulations performed with a reservoir simulator. The FutureGen2 Above Zone 
Monitoring Interval (AZMI) component is a surrogate model that can be used to estimate the 
impact that carbon dioxide (CO2) and brine leaks from the CO2 storage reservoir at the 
FutureGen 2.0 site might have had on overlying aquifers or monitoring units were a leak to 
occur. The model estimates the size of “impact plumes” according to five metrics: pH, Total 
Dissolved Solids (TDS), pressure, dissolved CO2 and temperature. The FutureGen2 Aquifer 
component is similar, but is limited to four metrics: pH, Total Dissolved Solids (TDS), pressure, 
and dissolved CO2. The input parameters for each model are the same, but the Aquifer 
component is applicable to depths between 100 m and 700 m and the AZMI component is 
applicable from depths between 700 m and 1050 m. 
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Acronyms and Abbreviations 
CCUS Carbon capture, utilization, and storage 
EDX Energy Data Exchange 
GCV The generalized cross validation score of the model after the final linear fit 
GRSQ An R2-like score based on the GCV  
MSE The mean squared error of the model after the final linear fit 
NETL National Energy Technology Laboratory 
NRAP National Risk Assessment Partnership 
ROM Reduced Order Model 
RSQ The generalized R2 of the model after the final linear fit 
SDWA Safe Drinking Water Act 
US DOE United States Department of Energy 
USEPA United States Environmental Protection Agency 
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1.0 Introduction 
Carbon capture, utilization, and storage (CCUS) technologies are being developed, both 
domestically and internationally, for their potential to mitigate environmental impacts associated 
with atmospheric release of carbon dioxide (CO2) from anthropogenic sources, such as power 
production from fossil fuels and other large industrial sources. Over the last decade, the United 
States Department of Energy (US DOE) has invested millions of dollars developing carbon 
capture technologies and demonstrating safe and secure geologic carbon storage via a number 
of pilot-scale projects sited throughout the country (NETL 2015). To date, these projects have 
stored more than 16 million tonnes of CO2 (NETL 2018). 

Within the US, CO2 injection activities are overseen by the US Environmental Protection Agency 
(EPA) following regulations (the Class VI Rule) promulgated under the Safe Drinking Water Act 
(SDWA) (USEPA 2010). The Class VI regulations are designed to protect underground sources 
of drinking water (USDWs), and include strict requirements for site characterization, CO2 
injection well construction, injection operations, site monitoring, financial liability, and record 
keeping/reporting. Key elements of the Class VI permitting process include delineating an Area 
of Review (AoR) and defining an appropriate Post-Injection Site Care (PISC) period for the 
project, both of which require simulated CO2 saturations and pressure distributions from 
computational models. The models are based on site-specific data and are updated periodically 
during the lifetime of the project to evaluate reservoir performance and evolution of the storage 
system.  

Despite the sophistication of today’s multi-physics reactive transport codes, significant 
uncertainty exists in predicting the performance of geologic storage reservoirs. Challenges 
associated with developing greenfield sites include the inherit difficulty in scaling a few point 
source measurements of geological structure and reservoir permeability derived from 
characterization of borehole samples throughout the extensive area likely to be impacted by a 
commercial-scale CO2 injection, a lack of site-specific data on the behavior of supercritical CO2 
in the reservoir being evaluated, and understanding changes in the transport behavior of carbon 
dioxide caused by changes in pressure and/or temperature and the buoyant nature of CO2 over 
the long time scales required for geologic sequestration to have long-term benefit to 
atmospheric CO2 levels. Additionally, the computational resources required to run high fidelity 
simulations limits their usefulness in performing sensitivity analysis for uncertainty reduction.  

To help address this need, the US DOE established the National Risk Assessment Partnership 
(NRAP), an initiative across five US DOE national laboratories with the goal of developing 
defensible, science-based methodologies and platforms for quantifying risks amidst system 
uncertainty. In 2017, the NRAP team released a set of ten tools (i.e., the NRAP Toolset) that 
can be used to estimate risks associated with carbon sequestration 
(https://edx.netl.doe.gov/nrap/). The toolset adopts a stochastic approach in which includes 
uncertainties in storage reservoirs, leakage scenarios, and shallow groundwater impacts. It is 
derived from detailed physics and chemistry simulation results that are used to train more 
computationally efficient models, referred to here as reduced-order models (ROMs), for each 
component of the system. These tools can be used to help regulators and operators define the 
AoR and better understand the expected sizes and longevity of changes in water quality caused 
by CO2 and brine leakage from a storage reservoir into drinking water aquifers.  

This report details the development and testing of surrogate models that can be used to 
estimate the impact that carbon dioxide (CO2) and brine leaks from the CO2 storage reservoir at 
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the FutureGen 2.0 site might have on overlying aquifers or monitoring units.  The FutureGen2 
Lookup Table Reservoir component model is a ROM based on interpolation of data from a set 
of lookup tables. The lookup tables are based on multiphase flow simulations performed with a 
reservoir simulator. Each row of the lookup table is related to a particular set of model input 
parameters and contains pressures and saturations at selected time steps for a particular 
vertical layer of the full-physics model.  The FutureGen2 Above Zone Monitoring Interval (AZMI) 
model estimates the size of “impact plumes” where changes in the values of five metrics exceed 
detectable thresholds: pH, Total Dissolved Solids (TDS), pressure, dissolved CO2 and 
temperature. The FutureGen2 Aquifer model is similar, but is limited to four metrics: pH, Total 
Dissolved Solids (TDS), pressure, and dissolved CO2. The aquifer component model is based 
on isothermal simulations because the model used to train the surrogate model, STOMP-CO2-
R, required prohibitively small times steps for the nonisothermal phase transition from 
supercritical to liquid CO2 at shallower depths. 
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2.0 FutureGen2 Lookup Table Reservoir Component 
The FutureGen2 Lookup Table Reservoir component model is a ROM based on interpolation of 
data from a set of lookup tables. The lookup tables are based on multiphase flow simulations 
performed with a reservoir simulator. Each row of the lookup table is related to a particular set of 
model input parameters and contains pressures and saturations at selected time steps for a 
particular vertical layer of the full-physics model.  

This study expands on the reservoir model developed by Zhang et al. (2014) used for the 
sensitivity analysis performed for the FutureGen 2.0 Site. Division of stratigraphic layers into 31 
computational model layers is provided in Table 1 of the main paper.  Four horizontal injection 
wells were screened within the layer named MtSimon11.  

2.1 Input parameters 

For the purposes of this application, additional simulations were conducted with this reservoir 
model to create the lookup tables specific to the site to be used in system-scale modeling. In the 
sensitivity analysis reported by Zhang et al. (2014), 11 distinct parameters for each of the 31 
model layers were investigated relative to a reference base-case (i.e., the most representative 
input values based on the characterization data available). They identified that the horizontal 
permeability of the injection layer was the most sensitive parameter for injectivity. In our model, 
leakage risk through a legacy well is driven by pressure and saturation in the reservoir.  We 
performed additional simulations varying permeability of each reservoir model layer 
independently with uncertainty ranges shown in Figure 1.  
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Figure 1. Range of values for reservoir model layer permeability. 

2.2 Parameter Sampling 

To create an NRAP-Open-IAM lookup table reservoir component, ideally the minimum and 
maximum value for each model input parameter must be specified, and a set of simulations 
performed with sampled values for each input parameter.  The original ELAN log and core data 
was revisited to calculate the minimum and maximum permeability for each of the 31 model 
layers (Figure 1).  The current analysis assumed that the permeability values were lognormally 
distributed; average values were calculated using the log of the permeabilities.  The average 
permeability values were assumed to be the most representative input values based on the 
characterization data available.  The minimum value was calculated using the lower 30th 
percentile and the maximum value determined using the upper 70th percentile of the log of the 
values within each vertical layer, roughly equal to one standard deviation about the mean.  

2.3 STOMP Simulations 

One thousand STOMP-CO2 simulation runs were performed to capture the effect of variability in 
permeability at each layer of the injection reservoir.  Predicted pressures (Figure 2) and 
separate-phase CO2 distribution (Figure 3) at the end of the injection period are shown for a 
single run with the average permeability values. While most of the CO2 stays within Mount 
Simon, vertical migration results in small amounts of CO2 in the overlying Elmhurst formation.   



PNNL-31781 

FutureGen2 Lookup Table Reservoir Component 11 
 

 
Figure 2. 2D cutaway view of the predicted pressure differential results in the reservoir at the 
end of injection period (20 yr).  Screened portion of horizontal injection wells #1 and #4 are 

shown in red. 
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Figure 3. 2D cutaway view of the predicted gas saturation results in the reservoir at the end of 
injection period (20 yr).  Screened portion of horizontal injection wells #1 and #4 are shown in 

red. 

The pressure differentials (i.e., post-injection pressure in the injection formation minus the pre-
injection reservoir pressure) for the end of the injection period—when the highest reservoir 
pressures were observed—are shown in Figure 4 and compared to the extent of the separate-
phase CO2 plume as shown in Figure 5. The plan view represents the extent of the CO2 plume 
within the injection layer that is used for developing the lookup tables for the NRAP-Open-IAM 
model. The separate-phase CO2 plume is confined to an area 4 km square around the injection 
wells. The reservoir model grid was approximately 166 km square, but the figure depicting gas 
saturations displays a 7.2 km square area to show more detail. The footprint of the pressure 
impact due to the injection operation extends beyond the separate-phase CO2 plume to an area 
of approximately 56 km in diameter around the injection wells. The effect of the four injection 
wells on the distribution of supercritical CO2 plume near the injection well can also be observed. 
Max saturation is 60% for the MtSimon11 layer of the model because, as shown in Figure 3, 
some CO2 has migrated upward from injection layer. 
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Figure 4. 2D areal view of predicted pressure differential in reservoir MtSimon11 layer at the 

end of the injection period (shows 72-km square area).  Screened portion of 
horizontal injection wells #1 through #4 are shown in red. 
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Figure 5. 2D areal view of predicted gas saturation in reservoir in MtSimon11 layer at the end of 

the injection period (shows 7.2-km square area).  Screened portion of horizontal 
injection wells #1 through #4 are shown in red. 

Pressure and free-phase CO2 saturation simulation results for every year during the injection 
period and every five years for the 50-year post-injection period were output during these runs 
to create the lookup table format required by NRAP-Open-IAM.  The STOMP-CO2 simulation 
output consists of text files that contain the grid coordinates and output variables at a given time 
step. 

2.4 Lookup Tables 

 The pressure and saturation values for each horizontal grid location and time within a single 
model layer were converted to lookup tables for each run for the reservoir component of the 
NRAP-Open-IAM. For this application, the injection layer (MtSimon11) was selected to develop 
the necessary lookup tables. 

The lookup table files consist of 1008 comma-delimited text files (.csv) with the grid coordinates 
and pressure, saturation, and salinity values vs. time. In addition, a file named 
parameters_and_filenames.csv contains the permeability values for each model layer for each 
of the 1008 simulations.  Finally, a file named time_points.csv contains the simulation output 
times in years. 

The python script for converting STOMP output to a NRAP-Open-IAM lookup table, 
plot_to_openiam.py, is included in Appendix A.1. 
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2.5 Testing 

Given coordinates x and y and time as input, the FutureGen2 reservoir lookup table should 
produce pressure and saturation that match the results output by STOMP.  Saturations and 
pressures were read at each grid location from a STOMP plot file at the end of a 20-year 
injection period.  NRAP-Open-IAM output at the same time and grid locations were compared 
and show one-to-one correspondence (Figure 6).  The python script to generate these plots is 
given in Appendix A.2. 

 
Figure 6. Comparison of STOMP and NRAP-Open-IAM FutureGen2 reservoir lookup table 

component output for saturation and pressure. 
 

For a single run, a lookup table component can linearly interpolate between over space and 
time.  To demonstrate that the interpolation is working correctly, pressure and saturation at 
known grid locations and times are compared to space and time-interpolated values at a 
particular grid location (Figure 7).  The python script to generate these plots is given in Appendix 
A.3. 

 
Figure 7. Comparison of known and interpolated values from the FutureGen2 reservoir lookup 

table component output for saturation and pressure.  Blue (x=236681.772) and green 
(x=236834.172) markers are known values and orange markers (x=236757.972) are 

interpolated values (all at y=4409421.84). 
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3.0 FutureGen2 Aquifer and AZMI Components 
3.1 Background Data 

Based on a model constructed for the original monitoring design at the FutureGen 2.0 site 
(Vermeul et al. 2016), there are three high-permeability units between the injection reservoir 
(Mt. Simon) and the lowermost USDW (St. Peter Sandstone): the Ironton-Galesville, the Potosi, 
and the New Richmond. The aquifer properties used in this previous modeling effort (Table 1) 
inspired the current work.  

Table 1. Hydraulic parameters used in permit application monitoring model (Vermeul et al. 
2016). 

Model Layer 
Thickness 

(m) 

Bottom 
Depth (m 

bgs) 

Horizontal 
Permeability 
(log10 m^2) 

Anisotropy 
(log10 
Kh/Kv) Porosity 

St Peter 61.6 -591.9 -11.92 0.30 0.18 

New Richmond 31.1 -741.9 -12.48 0.30 0.132 

Potosi 84.1 -936.3 -11.05 1.00 0.038 

Ironton-Galesville 33.2 -1043.9 -13.39 0.30 0.118 

 

A fluid sample collected from the St. Peter Sandstone during installation of the stratigraphic well 
resulted in a laboratory-measured TDS value of 3,400 mg/L and field parameter values of 7.91 
and 5,910 μS/cm for pH and electrical conductivity, respectively. Because the total dissolved 
solids measured within this zone was below the upper regulatory limit of 10,000 mg/L for 
potable aquifers the St. Peter Sandstone was considered to be the lowermost federal USDW for 
the purposes of the UIC permit application (FutureGen Industrial Alliance 2013b). Salinity 
measurements from the surficial aquifer (Groschen et al. 2000) and the St. Peter, Ironton, and 
Mt. Simon (FutureGen Industrial Alliance 2013b) indicate that salinity increases logarithmically 
with depth, so this relationship was used to interpolate salinity at intermediate depths (Figure 8). 
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Figure 8. Increase in salinity with depth at the FutureGen 2.0 site. 

The initial conditions in the reservoir (Mt. Simon) and USDW (St. Peter) are based on observed 
values at depth in the stratigraphic well (FutureGen Industrial Alliance 2013c) and are listed in 
Table 2. The St. Peter is an order of magnitude less saline than the Mt. Simon. 
 

Table 2. Summary of reservoir and USDW initial conditions. 
 

Parameter 
Reference Depth 

(m GS) Value 
Aqueous Saturation  1.0 
Mt. Simon Pressure 1,230  12.343 MPa 
St. Peter Pressure 533  4.9510 MPa 
Mt. Simon Temperature 1,190  35.9 °C 
Temperature Gradient  0.0122 °C/m 
Mt. Simon Salinity 1342 47,500 ppm 
Ironton-Galesville Salinity 1044 15,000 ppm 
St. Peter Salinity 592 3,700 mg/L 

As indicated in Figure 9, the St. Peter is underpressured relative to a uniform hydrostatic 
pressure gradient. 
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Figure 9. FutureGen pilot (stratigraphic) well formation vs. hydrostatic pressure difference 
(FutureGen Industrial Alliance 2013c).  

 

3.2 Input Parameters 

The AZMI and aquifer components were trained on a range of hydraulic properties (Table 3) so 
they could be applicable to all four of these high permeability zones. The AZMI simulations were 
performed with depths ranging from 700 m to 1050 m, whereas the aquifer simulations were 
performed at shallower depths ranging from 100 m to 700 m. The AZMI and aquifer simulations 
were performed using a wide range of CO2 and brine leakage rates, ranging from 1x10-9 kg/s to 
30 kg/s, so that the resulting AZMI Component model could be used with any of the wellbore 
models currently included in NRAP-Open-IAM. 
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Table 3. Ranges of input parameters for the Aquifer and AZMI components. 

 

Aquifer Parameters min max 

Thickness (m) 30 90 

Depth (m bgs)   

AZMI -1050 -700 

Aquifer -700 -100 

Porosity 0.02 0.2 

Horizontal Permeability (log10 m2) -14 -11 

Anisotropy (log10 Kh/Kv) 0 3 

Calcite (solid volume fraction) 0 1 

Leakage Parameters min max 

CO2 Rate (log10 kg/s) -9 1.5 

Brine Rate (log10 kg/s) -9 1.5 

 

3.3 Parameter Sampling 

Model input parameters for each simulation run were selected using Latin Hypercube Sampling 
(Iman, Helton, and Campbell 1981). The parameters listed in Table 2 were assumed to be 
uniformly distributed. For both the aquifer (Figure 10) and AZMI (Figure 11) models, 480 
different combinations of the input parameters were generated. 
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Figure 10. Pair plot for input parameters of simulations used to train the aquifer model, showing 
the uniform distribution of values in 480 samples. 
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Figure 11. Pair plot for input parameters of simulations used to train the AZMI model, showing 
the uniform distribution of values in 480 samples 

 

3.4 STOMP Simulations 

A series of STOMP simulations were conducted using the parameter samples from section 3.3. 
Simulations were performed using STOMP-CO2E-R (multiphase flow of CO2, brine and heat 
with geochemical reactions). Nonisothermal simulations were performed for training the AZMI 
component ROM and isothermal simulations were performed for training the aquifer component 
ROM. 
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In order to encompass impact plumes for both very small and very large CO2 or brine leaks, a 
radial grid of 50 miles (80,467 meters) in radius was used. Grid radii ranged in size from 3.24 m 
to 5,877 m in the horizontal direction. Ten vertical grids were used, varying in height from 3 to 9 
m, for a total of 1000 nodes. For each of the leakage scenarios, distributions of pressure, 
temperature, dissolved CO2, pH and TDS were calculated. 

The initial temperature and salinity in the aquifer/AZMI simulations were assumed to be a 
function of depth, based on site characterization data in section 3.1. Hydrostatic initial pressures 
were assumed. 

Figure 12 shows supercritical CO2, pH and TDS distributions in the St. Peter Sandstone after 20 
years of a single, illustrative leakage simulation with equal CO2 and brine leakage rates of 
2.5x10-4 kg/s. Free-phase CO2 accumulates within the top 60 m of the aquifer, extending about 
260 m from the leakage location. The pH is inversely related to dissolved CO2, and it decreases 
from the background value of 7.91 to 4.8. This effect is seen where supercritical CO2 migrates 
and where dissolved CO2 spreads beyond the supercritical CO2 plume due to density effects 
and mixing with brine.  

 
Figure 12. Supercritical CO2 saturation, pH and TDS in a single aquifer leakage simulation after 

20 years. 
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3.5 Impact Thresholds 

In order to delineate the impact in the AZMI or aquifer, a threshold that represents a monitoring 
detection must be set. The precision thresholds of various sensors were used when developing 
the FutureGen2 aquifer and AZMI ROMs (Table 4). 

 
Table 4. Monitoring detection thresholds. 

 
Table A.5 & A.7 (FutureGen Industrial 

Alliance 2013a) ROM 

Variable Min Max Unit Precision +/- Indicator Threshold 

Pressure 0 2500 psi 0.065% relative 0.00065 

Temperature 0 150 F 0.03% relative 0.0003 

DIC 0.2 -- mg/L 20% relative 0.2 

pH 2 12 pH 0.2 absolute 0.2 

TDS 10 -- mg/L 10% relative 0.1 

 

The original monitoring plan states that “Central to this monitoring strategy is the measurement 
of CO2 saturation … using pulsed-neutron capture logging” (FutureGen Industrial Alliance 
2013a). However, dissolved inorganic carbon (DIC) was used instead as it would indicate the 
presence of small leaks where free-phase CO2 would not be present. Romanak et al. (2012), 
found that dissolved inorganic carbon (DIC) was a useful monitoring metric because changes in 
DIC with CO2 leakage were consistent across geochemical environments, indicating that prior 
characterization of aquifer minerals may not be necessary if DIC is used as the primary 
monitoring parameter. 

3.6 Plume Delineation 

For each original STOMP-CO2E-R leakage simulation, the total volume and dimensions of 
impacted aquifer/AZMI are calculated for each of the five monitoring variables. For example, the 
volume of impacted aquifer for pH is calculated by summing the volume of each grid cell in the 
model where pH changes by more than 2 pH points. The dataset includes the width (dx, dy), 
height (dz) and volume of the impacted aquifer recorded at 17 times (0, 1, 2, 5, 10, 15, 20, 25, 
30, 35, 40, 45, 50, 55, 60, 65, and 70 years). Plots of these plume dimensions vs. time are 
shown in Figure 13 (aquifer) and Figure 14 (AZMI). 
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Figure 13. Plume dimensions vs. time for aquifer simulations 
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Figure 14. Plume dimensions vs. time for AZMI simulations. 
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3.7 Training 

The FutureGen2 Aquifer component model is a regression model, fit to the simulations of CO2 
and brine leakage into an aquifer, described in the previous chapter. Each of the 480-simulation 
datasets, one for the aquifer model and one for the AZMI model, were randomly split 70%/30% 
into training and testing sets. 

The regression model was trained using using py-earth (https://contrib.scikit-learn.org/py-
earth/index.html). The py-earth package is a Python implementation of the Multivariate Adaptive 
Regression Splines algorithm (Friedman 1991) in the style of scikit-learn (http://scikit-learn.org), 
a library of machine-learning methods written in Python. 

Multivariate adaptive regression splines is a flexible regression method that automatically 
searches for interactions and non-linear relationships. Earth models can be thought of as linear 
models in a higher dimensional basis space (specifically, a multivariate truncated power spline 
basis). Each term in an Earth model is a product of so called “hinge functions”. A hinge function 
is a function that’s equal to its argument where that argument is greater than zero and is zero 
everywhere else. 

The multivariate adaptive regression splines algorithm has two stages. First, the forward pass 
searches for terms in the truncated power spline basis that locally minimize the squared error 
loss of the training set. Next, a pruning pass selects a subset of those terms that produces a 
locally minimal generalized cross-validation (GCV) score. The GCV score is not actually based 
on cross-validation, but rather is meant to approximate a true cross-validation score by 
penalizing model complexity. The final result is a set of terms that is nonlinear in the original 
feature space, may include interactions, and is likely to generalize well. 

The training statistics for the aquifer (Table 5) and AZMI (Table 6) model are shown below. The 
volume (vol) and dimensions in the x-, y- and z- dimensions are given. The statistics for dx and 
dy are always the same, because these are radially symmetric models. By convention, NRAP-
Open-IAM aquifer models predict the dimensions of impact plumes in three dimensions. Ideally, 
the mean square error (MSE) and generalized cross-validation (GCV) scores should be similar 
and relatively low, indicating that the model is not overfitting. Similarly, the generalized R2 error 
(RSQ) and the R2-like score based on the GCV should be similar and close to one.  
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Table 5. Train/test statistics for the aquifer model. 

Variable  Metric MSE GCV RSQ GRSQ 
Prediction 

Score 
Dissolved CO2 log dx 0.3662 0.3746 0.9418 0.9405 0.9437 

Dissolved CO2 log dy 0.3662 0.3746 0.9418 0.9405 0.9437 

Dissolved CO2 log dz 0.2651 0.2759 0.7859 0.7773 0.7674 

Dissolved CO2 log vol 2.2255 2.2602 0.9283 0.9272 0.9307 

pH log dx 0.7156 0.7446 0.9201 0.9169 0.9130 

pH log dy 0.7156 0.7446 0.9201 0.9169 0.9130 

pH log dz 0.545 0.5579 0.785 0.78 0.7768 

pH log vol 6.0776 6.1848 0.8785 0.8764 0.8598 

Pressure log dx 2.0994 2.1582 0.9252 0.9231 0.9213 

Pressure log dy 2.0994 2.1582 0.9252 0.9231 0.9213 

Pressure log dz 0.6325 0.6535 0.8275 0.8218 0.8103 

Pressure log vol 11.7228 12.0508 0.9221 0.92 0.9183 

TDS log dx 0.2298 0.2339 0.968 0.9675 0.9671 

TDS log dy 0.2298 0.2339 0.968 0.9675 0.9671 

TDS log dz 0.4261 0.4398 0.8423 0.8373 0.8310 

TDS log vol 1.5188 1.5503 0.964 0.9633 0.9612 
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Table 6. Train/test statistics for the AZMI model. 

Parameter  Metric MSE GCV RSQ GRSQ 
Prediction 

Score 
Dissolved CO2 log dx 0.3403 0.3468 0.9402 0.9391 0.9475 

Dissolved CO2 log dy 0.3403 0.3468 0.9402 0.9391 0.9475 

Dissolved CO2 log dz 0.2752 0.2823 0.7846 0.7791 0.7883 

Dissolved CO2 log vol 2.0688 2.1044 0.9295 0.9283 0.9424 

pH log dx 0.7289 0.747 0.9084 0.9061 0.9061 

pH log dy 0.7289 0.747 0.9084 0.9061 0.9061 

pH log dz 0.4022 0.413 0.8455 0.8415 0.8505 

pH log vol 5.8461 5.9801 0.8743 0.8714 0.8586 

Pressure log dx 2.3855 2.4425 0.9078 0.9057 0.9009 

Pressure log dy 2.3855 2.4425 0.9078 0.9057 0.9009 

Pressure log dz 0.6414 0.6591 0.829 0.8243 0.8239 

Pressure log vol 13.4567 13.7523 0.9045 0.9024 0.8976 

TDS log dx 1.0008 1.0161 0.8601 0.858 0.8612 

TDS log dy 1.0008 1.0161 0.8601 0.858 0.8612 

TDS log dz 0.6665 0.6927 0.7954 0.7875 0.8004 

TDS log vol 6.8869 6.9729 0.8496 0.8477 0.8524 

Temperature log dx 0.4575 0.4662 0.9437 0.9427 0.9370 

Temperature log dy 0.4575 0.4662 0.9437 0.9427 0.9370 

Temperature log dz 0.372 0.3816 0.8585 0.8549 0.8569 

Temperature log vol 2.9594 3.0076 0.9385 0.9376 0.9336 

3.8 Testing 

The prediction scores for the aquifer (Table 5) and AZMI (Table 6) models on the test set are 
generally acceptable. They are similar in magnitude to the RSQ and GRSQ obtained on the 
training set, indicating that the model is not overfitting to the training set. The plume volume (vol) 
and width (dx and dy) scores are higher, between 0.85 and 0.96, while the plume height (dz) 
scores are lower, between 0.78 and 0.85. 

Plots of the predicted vs actual plume dimensions are shown in Figures 7 and 8. Each of the 
plume dimensions, volume, width (dx and dy), and height (dz), were scaled using a ln(x + 1) 
transform, referred to in the numpy library (Harris et al. 2020) as log1p. This transform resulted 
in a better fit across the entire range of simulations.  
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Figure 15. Comparison between aquifer model predicted and actual plume dimensions. 
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Figure 16. Comparison between AZMI model predicted and actual plume dimensions. 
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4.0 Applications 
The FutureGen2 components have been used in two recent applications. 

NRAP-Open-IAM and DREAM (Figure 17) were used to determine a risk-based PISC period 
and optimized monitoring network for a commercial-scale CO2 storage project (Bacon et al. 
2019). Realizations from NRAP-Open-IAM revealed that maximum simulated leakage rates of 
brine were small, on the order of 10−5 kg/s, and maximum simulated leakage rates of CO2 were 
on the order of 10-3 kg/s and could be detected earliest during the injection phase in the 
Ironton-Galesville, the thief zone immediately overlying the injection reservoir. Using this 
information to design an optimized monitoring well network eliminated one of the three originally 
planned monitoring wells, resulting in a cost reduction for the project. Perhaps the most 
significant finding from this effort is that NRAP-Open-IAM can be used to define a risk-based, 
and substantially shorter, PISC period for the site. NRAP-Open-IAM realizations indicate that 
most of the risk of endangerment to USDWs decreases within the first 5 years after CO2 
injection ends. Doubling this timeframe would still lead to a net PISC period reduction of 40-
years and an operational cost reduction of more than $50 M for the project.  An example python 
script for this application, named iam_sys_lutreservoir_mswell_futuregen_dream.py, is included 
in the NRAP-Open-IAM source code. 

 
Figure 17. DREAM generated solution space which was used for optimization of a leakage 

monitoring network. Colored zones represent all locations where the leakage 
threshold of the respective monitoring parameter was exceeded.  

NRAP-Open-IAM was used to develop a probabilistic estimate of impact risk to USDW quality 
(Bacon, Demirkanli, and White 2020). CO2 and pressure predictions from the reservoir modeling 
conducted using the STOMP-CO2 simulator for the FutureGen 2.0 site are used in a NRAP-
Open-IAM model with reservoir, wellbore, and aquifer components to: (1) assess the extent of 
potential leakage into the USDW for the predicted reservoir pressure conditions; (2) evaluate 
the extent of potential impact using “no-net-degradation” thresholds; and (3) account for 
uncertainty in reservoir permeabilities. Regulatory oversight of a geologic carbon sequestration 
(GCS) project relies on iterative estimations, throughout the project lifetime, of the area where 
increased risks to underground sources of drinking water (USDWs) may occur due to injection 
of CO2. This area, referred to as Area of Review (AoR), is typically delineated by predicting the 
migration of fluid between the reservoir and the lowermost USDW via an open wellbore using 
predictions from physics-based reservoir simulators. Accounting for the probability of aquifer 
impact using NRAP-Open-IAM results in a smaller “risk-based Area of Review” (Figure 18). An 
example python script for this application (iam_sys_lutreservoir_openwell_futuregen_aor.py) is 
included in the NRAP-Open-IAM source code. 
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Figure 18. Risk-based AoR defined by the pressure differential corresponding to the pH and 
TDS nonzero impact probability distributions (black line indicating 0.1 MPa) compared to the 
permitted AoR for the FutureGen 2.0 site (pressure differential of 0.69 MPa/10 psi at 60 years 
after the start of injection) (Bacon et al. 2020). 
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5.0 Summary and Conclusions 
The FutureGen2 reservoir lookup table component provides a fast surrogate model for exploring 
the effect of variations in reservoir permeability. The reservoir component exactly reproduces 
the results of the multiphase flow simulator STOMP for a model of the FutureGen 2.0 site. The 
FutureGen2 Aquifer and AZMI components for NRAP-Open-IAM quickly calculate the potential 
impact of brine and CO2 leakage into high permeability formations overlying the Mt. Simon 
sandstone, including the Ironton-Galesville, Potosi Dolomite, New Richmond, and St. Peter 
sandstone. Model predictions of impact volume and width are more accurate, whereas the 
prediction of aquifer height is more challenging. The FutureGen2 components have been useful 
in two recent applications of NRAP-Open-IAM: calculating a risk-based post-injection site care 
(PISC) period and a risk-based area of review (AoR). 
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Appendix A Python Scripts 
A.1 plot_to_openiam.py 

 
import os 
import sys 
import argparse 
import string 
from math import ceil 
import numpy as np 
from os.path import join, getsize 
import pandas as pd 
import glob 
 
# STOMP plot file 
class Plot_File: 
 
    convert_length = {'m':1.0, 'ft':0.3048, 'km':1000., 'mi':1609.34, 
'mile':1609.34, 
        'nm':1e-9, 'cm':0.01, 'mm':0.001, 'yd':0.9144, 'in':0.0254} 
    convert_pressure = {'pa':1.0, 'psi':6894.76, 'mpa':1000000., 
'atm':101325., 'bar':100000.} 
 
    def __init__(self, file_name): 
 
        self.file_name = file_name 
        self.input_list = self.read_file(self.file_name) 
        self.nx = self.get_parameter('Number of X or R-Direction Nodes =') 
        self.ny = self.get_parameter('Number of Y or Theta-Direction Nodes 
=') 
        self.nz = self.get_parameter('Number of Z-Direction Nodes =') 
        self.nfield = self.get_parameter('Number of Field Nodes =') 
        self.nactive = self.get_parameter('Number of Active Nodes =') 
        self.nvert = self.get_parameter('Number of Vertices =') 
 
    # read file into list 
    def read_file(self, file_name): 
        input_list = [] 
        with open(file_name) as f: 
            input_list = f.readlines() 
            # remove whitespace characters 
            input_list = [line.strip() for line in input_list] 
        return input_list 
 
    # read x, y, or z dimension 
    def get_parameter(self, search_string): 
        for m,line in enumerate(self.input_list): 
            if search_string in line: 
                # remove whitespace characters 
                line_list = [item.strip() for item in line.split('=')] 
        return int(line_list[-1]) 
 
    # get line number with variable name 



PNNL-31781 

Appendix A A.2 
 

    def find_variable(self, search_string): 
        for m,line in enumerate(self.input_list): 
            if search_string in line: 
                break 
        return m      
 
    # read or calculate node centroids 
    def get_centroids(self, direction, layer): 
        zlist = [] 
        if direction == 'Z': 
            m = self.find_variable(direction + ' Node-Centroid Position') 
            if m < len(self.input_list) - 1: 
                start = m+1 
                end = start+int(ceil(self.nfield/10.)) 
                unit = self.input_list[m].split()[-1] 
                for line in self.input_list[start:end]: 
                    line_list = 
[float(item.strip())*self.convert_length[unit] for item in line.split()]  
                    zlist.extend(line_list) 
        elif direction == 'X': 
            m = self.find_variable('X-Direction Nodal Vertices') 
            start = m+1 
            end = start+self.nfield 
            unit = self.input_list[m].split()[-1] 
            for line in self.input_list[start:end]: 
                line_list = [float(item.strip()) for item in line.split()] 
                centroid = self.convert_length[unit] * (line_list[0] + 
line_list[1]) / 2. 
                zlist.append(centroid) 
        elif direction == 'Y': 
            m = self.find_variable('Y-Direction Nodal Vertices') 
            start = m+1 
            end = start+self.nfield 
            unit = self.input_list[m].split()[-1] 
            for line in self.input_list[start:end]: 
                line_list = [float(item.strip()) for item in line.split()] 
                centroid = self.convert_length[unit] * (line_list[0] + 
line_list[2]) / 2. 
                zlist.append(centroid) 
        else: 
            sys.exit('Plot file must contain Z Node-Centroid Position') 
        zarray = np.array(zlist).reshape((self.nx, self.ny, self.nz), 
order='F') 
        zlayer = zarray[:,:,layer-1] 
        return zlayer.flatten(order='F') 
 
    def get_variable(self, name, layer, unit_conversion=None): 
        vlist = [] 
        m = self.find_variable(name) 
        start = m+1 
        end = start+int(ceil(self.nfield/10.)) 
        unit = self.input_list[m].split()[-1] 
        if unit_conversion is not None: 
            conversion_factor = unit_conversion[unit] 
        else: 
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            conversion_factor = 1.0 
        for line in self.input_list[start:end]: 
            line_list = [float(item.strip())*conversion_factor for item in 
line.split()] 
            vlist.extend(line_list) 
        varray = np.array(vlist).reshape((self.nx, self.ny, self.nz), 
order='F') 
        vlayer = varray[:,:,layer-1] 
        return vlayer.flatten(order='F') 
 
    def get_time(self,unit): 
        m = self.find_variable('Time = ') 
        line_list = [item.strip() for item in self.input_list[m].split()] 
        time_list = [i.split(',') for i in line_list[2:]] 
        time_dict = {x[1]: x[0] for x in time_list}  
        return time_dict[unit] 
 
# input arguments 
parser = argparse.ArgumentParser(description='Convert STOMP plot files into 
OpenIAM reservoir lookup table file') 
parser.add_argument('--dir', default='.', help='directory with results of 
STOMP simulation') 
# parser.add_argument('--inact', help='inactive nodes file name') 
parser.add_argument('--layer', default=9, type=int, help='model layer to 
extract results from') 
parser.add_argument('--out', default='output.csv', help='output file name') 
args = parser.parse_args() 
 
layer = args.layer  
times = [] 
 
# get plot file names 
files = glob.glob(os.path.join(args.dir,'plot.*')) 
files.sort() 
 
# get grid info from first file 
pf = Plot_File(files[0]) 
 
# validate layer number 
if args.layer < 1 or args.layer > pf.nz: 
    sys.exit('ERROR: User-specified layer '+str(args.layer)+' is out of 
range: '+str(1)+' to '+str(pf.nz)) 
 
x = pf.get_centroids('X',layer) 
y = pf.get_centroids('Y',layer) 
z = pf.get_centroids('Z',layer) 
z = z - 633 * 0.3048 # Kelly bushing 
df = pd.DataFrame({'x': x, 'y': y, 'z': z}) 
 
df['area'] = pf.get_variable('Z-Dir. Surface Area',layer) 
df['rock'] = pf.get_variable('Rock/Soil Type',layer) 
 
# read variables and times from each plot file 
for i,file_path in enumerate(files): 
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        # create plot file object 
        pf = Plot_File(file_path) 
 
        t = pf.get_time('yr') 
        times.append(t) 
        print(t) 
 
        df['pressure_' + str(i+1)] = pf.get_variable('Gas 
Pressure',layer,pf.convert_pressure) 
        df['CO2saturation_' + str(i+1)] = pf.get_variable('Gas 
Saturation',layer) 
        df['salinity_' + str(i+1)] = pf.get_variable('Aqueous Salt Mass 
Fraction',layer) 
 
# use rock type to filter out inactive nodes, then remove 
df.drop(df[df.rock == 0].index, inplace=True) 
 
# write OpenIAM reservoir lookup table 
df.drop(['rock'], axis=1).to_csv(args.out,index=False) 
 
# write times to file 
filename = 'time_points.csv' 
f = open(filename,"w+") 
f.write(','.join(times) + '\n') 
f.close() 
 

A.2 Test script for FutureGen2 reservoir lookup table 
''' 
Test FutureGen2 Reservoir Lookup Table 
 
Compares STOMP output to FutureGen2 reservoir lookup table predictions. 
 
This example requires the additional FutureGen 2.0 data set. 
FutureGen 2.0 data set can be downloaded from the following source: 
https://edx.netl.doe.gov/dataset/futuregen-2-0-1008-simulation-reservoir-
lookup-table 
 
The downloaded data set should be placed here: 
    source/components/reservoir/lookuptables/FutureGen2/1008_sims 
 
Usage examples: 
$ python test_iam_sys_lutreservoir.py --run 1 
''' 
# @author: Diana Bacon 
# diana.bacon@pnnl.gov 
 
import os 
import sys 
import argparse 
import datetime 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.ticker as ticker 
from plot_to_openiam import Plot_File 
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import pandas as pd 
import glob 
 
 
base_path = 
os.path.join(os.sep,'Users','d3a926','Desktop','OpenIAM','UQ_example_setup','
source') 
sys.path.insert(0, base_path) 
from openiam import (SystemModel, ReservoirDataInterpolator, 
LookupTableReservoir) 
 
# read STOMP plot file into dataframe 
def plot_to_df(file, layer): 
 
    pf = Plot_File(file) 
 
    # validate layer number 
    if layer < 1 or layer > pf.nz: 
        sys.exit('ERROR: User-specified layer '+str(layer)+' is out of range: 
'+str(1)+' to '+str(pf.nz)) 
 
    x = pf.get_centroids('X',layer) 
    y = pf.get_centroids('Y',layer) 
    z = pf.get_centroids('Z',layer) 
    z = z - 633 * 0.3048 # Kelly bushing 
    df = pd.DataFrame({'x': x, 'y': y, 'z': z}) 
 
    df['area'] = pf.get_variable('Z-Dir. Surface Area',layer) 
    df['rock'] = pf.get_variable('Rock/Soil Type',layer) 
 
    t = pf.get_time('yr') 
 
    df['pressure'] = pf.get_variable('Gas 
Pressure',layer,pf.convert_pressure) 
    df['CO2saturation'] = pf.get_variable('Gas Saturation',layer) 
    df['salinity'] = pf.get_variable('Aqueous Salt Mass Fraction',layer) 
 
    # use rock type to filter out inactive nodes, then remove 
    df.drop(df[df.rock == 0].index, inplace=True) 
 
    return (df, float(t)) 
 
if __name__ == "__main__": 
    # For multiprocessing in Spyder 
    __spec__ = None 
 
    file_directory = os.sep.join([base_path, 'components', 'reservoir', 
                                  'lookuptables', 'FutureGen2', '1008_sims']) 
 
    if not os.path.exists(os.sep.join([file_directory, 'fg1.csv'])): 
        url = ''.join([ 
            'https://edx.netl.doe.gov/dataset/', 
            'futuregen-2-0-1008-simulation-reservoir-lookup-table \n']) 
        msg = ''.join([ 
            '\nFutureGen 2.0 data set can be downloaded ', 
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            'from the following source:\n', 
            url, 
            'Check this example description for more information.']) 
        print(msg) 
 
    # Input arguments 
    parser = argparse.ArgumentParser(description='Test FutureGen2 reservoir 
lookup table') 
    parser.add_argument('--run', default='1', help='run number to process') 
    parser.add_argument('--file', default='.', help='plot file with results 
of STOMP simulation') 
    parser.add_argument('--layer', default=9, type=int, help='model layer to 
extract results from')     
    args = parser.parse_args() 
    run = int(args.run) 
 
    # read STOMP results 
    df,time = plot_to_df(args.file, args.layer) 
    print(df.head()) 
 
    # Define keyword arguments of the system model 
    num_years = int(time) 
    time_array = 365*np.arange(0.0, num_years+1) 
    sm_model_kwargs = {'time_array': time_array} # time is given in days 
 
    # Read file with signatures of interpolators and names of files with the 
corresponding data 
    signature_data = np.genfromtxt( 
        os.sep.join([file_directory, 'parameters_and_filenames_trunc.csv']), 
        delimiter=",", dtype='str') 
 
    # The first row (except the last element) of the file contains names of 
the parameters 
    par_names = signature_data[0, 1:-1] 
 
    num_pars = len(par_names) 
 
    num_interpolators = signature_data.shape[0]-1  # -1 since the first line 
is a header 
 
    def last_results(coords): 
 
        x,y,z = coords 
 
        # Create system model 
        sm = SystemModel(model_kwargs=sm_model_kwargs) 
 
        # Create and add interpolator to the system model 
        ind = run-1 
        signature = {par_names[j]: float(signature_data[ind+1, j+1]) for j in 
range(num_pars)} 
 
        sm.add_interpolator(ReservoirDataInterpolator( 
            name='int{}'.format(ind+1), parent=sm, 
            header_file_dir=file_directory, 
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            time_file='time_points.csv', 
            data_file='fg{}.csv'.format(ind+1), 
            index=int(signature_data[ind+1, 0]), 
            signature=signature), intr_family='reservoir') 
 
        # Add reservoir component 
        ltres = sm.add_component_model_object(LookupTableReservoir( 
            name='ltres', parent=sm, intr_family='reservoir', locX=x, 
locY=y)) 
 
        # Add parameters of reservoir component model 
        for j in range(num_pars): 
            # add arbitrary line of values from signature_file 
            ltres.add_par(par_names[j], value=float(signature_data[run, 
j+1]), vary=False) 
 
        # Add observations of reservoir component model 
        ltres.add_obs('pressure') 
        ltres.add_obs('CO2saturation') 
        ltres.add_obs_to_be_linked('pressure') 
        ltres.add_obs_to_be_linked('CO2saturation') 
 
        # Run system model using current values of its parameters 
        sm.forward()  # system model is run deterministically 
 
        # Get results 
        pressure = sm.collect_observations_as_time_series(ltres, 'pressure') 
        sat = sm.collect_observations_as_time_series(ltres, 'CO2saturation') 
 
        return [pressure[-1], sat[-1]] 
 
    from sys import platform 
    if platform == "win32": 
        # Loop replaces parallel execution of the simulations on Windows 
        results = [last_results((x,y,z)) for x,y,z in 
zip(df['x'],df['y'],df['z'])] 
    else: 
        # The following code should work on Mac but not on Windows. 
        from multiprocessing import Pool 
        with Pool(processes=8) as pool: 
            results = pool.map(last_results, [(x,y,z) for x,y,z in 
zip(df['x'],df['y'],df['z'])]) 
    results = np.array(results) 
 
    def scatterplot(y_true, y_pred, title): 
        plt.figure() 
        plt.plot(y_true, y_pred, '.', markersize=4) 
        plt.xlabel('STOMP') 
        plt.ylabel('NRAP-Open-IAM') 
        plt.title(title.title()) 
        plt.savefig(title+'.png') 
        plt.close() 
 
    scatterplot(df['CO2saturation'], results[:, 1], 'saturation') 
    scatterplot(df['pressure'], results[:, 0], 'pressure') 
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A.3 Test script for reservoir lookup table interpolation 

 
''' 
Test FutureGen2 Reservoir Lookup Table 
 
Compares STOMP output to FutureGen2 reservoir lookup table 
predictions. 
 
This example requires the additional FutureGen 2.0 data set. 
FutureGen 2.0 data set can be downloaded from the following 
source: 
https://edx.netl.doe.gov/dataset/futuregen-2-0-1008-simulation-
reservoir-lookup-table 
 
The downloaded data set should be placed here: 
    
source/components/reservoir/lookuptables/FutureGen2/1008_sims 
 
Usage examples: 
$ python test_iam_sys_lutreservoir.py --run 1 
''' 
# @author: Diana Bacon 
# diana.bacon@pnnl.gov 
 
import os 
import sys 
import argparse 
import datetime 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.ticker as ticker 
# from plot_to_openiam import Plot_File 
# import pandas as pd 
import glob 
 
base_path = 
os.path.join(os.sep,'Users','d3a926','Desktop','OpenIAM','UQ_exa
mple_setup','source') 
sys.path.insert(0, base_path) 
from openiam import (SystemModel, ReservoirDataInterpolator, 
LookupTableReservoir) 
 
if __name__ == "__main__": 
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    # For multiprocessing in Spyder 
    __spec__ = None 
 
    file_directory = os.sep.join([base_path, 'components', 
'reservoir', 
                                  'lookuptables', 'FutureGen2', 
'1008_sims']) 
 
    if not os.path.exists(os.sep.join([file_directory, 
'fg1.csv'])): 
        url = ''.join([ 
            'https://edx.netl.doe.gov/dataset/', 
            'futuregen-2-0-1008-simulation-reservoir-lookup-
table \n']) 
        msg = ''.join([ 
            '\nFutureGen 2.0 data set can be downloaded ', 
            'from the following source:\n', 
            url, 
            'Check this example description for more 
information.']) 
        print(msg) 
 
    # Input arguments 
    parser = argparse.ArgumentParser(description='Test 
FutureGen2 reservoir lookup table') 
    parser.add_argument('--run', default='1', help='run number 
to process') 
    parser.add_argument('--file', default='.', help='plot file 
with results of STOMP simulation') 
    args = parser.parse_args() 
    run = int(args.run) 
 
 
    def get_results(x, y, time_array): 
 
        # Define keyword arguments of the system model 
 
        sm_model_kwargs = {'time_array': time_array} # time is 
given in days 
 
        # Read file with signatures of interpolators and names 
of files with the corresponding data 
        signature_data = np.genfromtxt( 
            os.sep.join([file_directory, 
'parameters_and_filenames_trunc.csv']), 
            delimiter=",", dtype='str') 
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        # The first row (except the last element) of the file 
contains names of the parameters 
        par_names = signature_data[0, 1:-1] 
 
        num_pars = len(par_names) 
 
        num_interpolators = signature_data.shape[0]-1  # -1 
since the first line is a header 
        # Create system model 
        sm = SystemModel(model_kwargs=sm_model_kwargs) 
 
        # Create and add interpolator to the system model 
        ind = run-1 
        signature = {par_names[j]: float(signature_data[ind+1, 
j+1]) for j in range(num_pars)} 
 
        sm.add_interpolator(ReservoirDataInterpolator( 
            name='int{}'.format(ind+1), parent=sm, 
            header_file_dir=file_directory, 
            time_file='time_points.csv', 
            data_file='fg{}.csv'.format(ind+1), 
            index=int(signature_data[ind+1, 0]), 
            signature=signature), intr_family='reservoir') 
 
        # Add reservoir component 
        ltres = 
sm.add_component_model_object(LookupTableReservoir( 
            name='ltres', parent=sm, intr_family='reservoir', 
locX=x, locY=y)) 
 
        # Add parameters of reservoir component model 
        for j in range(num_pars): 
            # add arbitrary line of values from signature_file 
            ltres.add_par(par_names[j], 
value=float(signature_data[run, j+1]), vary=False) 
 
        # Add observations of reservoir component model 
        ltres.add_obs('pressure') 
        ltres.add_obs('CO2saturation') 
        ltres.add_obs_to_be_linked('pressure') 
        ltres.add_obs_to_be_linked('CO2saturation') 
 
        # Run system model using current values of its 
parameters 
        sm.forward()  # system model is run deterministically 
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        # Get results 
        pres = sm.collect_observations_as_time_series(ltres, 
'pressure') 
        sat = sm.collect_observations_as_time_series(ltres, 
'CO2saturation') 
 
        return pres, sat 
 
    num_years = 20 
    time1 = 365*np.arange(0.0, num_years+1) 
    time2 = 365*np.arange(0.0, num_years+1, 0.5) 
 
    pres_x1, sat_x1 = get_results(236681.772, 4409421.814, 
time1) 
    pres_x2, sat_x2 = get_results(236834.172, 4409421.814, 
time1) 
    pres_interp, sat_interp = get_results(236757.972, 
4409421.814,time2) 
 
    plt.figure() 
    plt.plot(time1/365.25, sat_x1, '.', markersize=4) 
    plt.plot(time2/365.25, sat_interp, '.', markersize=4) 
    plt.plot(time1/365.25, sat_x2, '.', markersize=4) 
    plt.xlabel('Time') 
    plt.ylabel('Saturation') 
    plt.savefig('saturation_vs_time.png') 
    plt.close() 
 
    # pres_x1, sat_x1 = get_results(236681.772, 4409421.814, 
time1) 
    # pres_x2, sat_x2 = get_results(236834.172, 4409421.814, 
time1) 
    # pres_interp, sat_interp = get_results(236757.972, 
4409421.814,time2) 
 
    plt.figure() 
    plt.plot(time1/365.25, pres_x1, '.', markersize=4) 
    plt.plot(time2/365.25, pres_interp, '.', markersize=4) 
    plt.plot(time1/365.25, pres_x2, '.', markersize=4) 
    plt.xlabel('Time') 
    plt.ylabel('Pressure') 
    plt.savefig('pressure_vs_time.png') 
    plt.close() 
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