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Abstract

This report describes the development and testing of three component models for NRAP-Open-
IAM, the National Risk Assessment Partnership’s open-source integrated assessment model.
The FutureGen2 Lookup Table Reservoir component model is based on interpolation of data
from a set of lookup tables. The lookup tables contain pressures and saturations predicted by
multiphase flow simulations performed with a reservoir simulator. The FutureGen2 Above Zone
Monitoring Interval (AZMI) component is a surrogate model that can be used to estimate the
impact that carbon dioxide (CO2) and brine leaks from the CO; storage reservoir at the
FutureGen 2.0 site might have had on overlying aquifers or monitoring units were a leak to
occur. The model estimates the size of “impact plumes” according to five metrics: pH, Total
Dissolved Solids (TDS), pressure, dissolved CO; and temperature. The FutureGen2 Aquifer
component is similar, but is limited to four metrics: pH, Total Dissolved Solids (TDS), pressure,
and dissolved CO.. The input parameters for each model are the same, but the Aquifer
component is applicable to depths between 100 m and 700 m and the AZMI component is
applicable from depths between 700 m and 1050 m.
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1.0 Introduction

Carbon capture, utilization, and storage (CCUS) technologies are being developed, both
domestically and internationally, for their potential to mitigate environmental impacts associated
with atmospheric release of carbon dioxide (COz) from anthropogenic sources, such as power
production from fossil fuels and other large industrial sources. Over the last decade, the United
States Department of Energy (US DOE) has invested millions of dollars developing carbon
capture technologies and demonstrating safe and secure geologic carbon storage via a number
of pilot-scale projects sited throughout the country (NETL 2015). To date, these projects have
stored more than 16 million tonnes of CO2 (NETL 2018).

Within the US, CO injection activities are overseen by the US Environmental Protection Agency
(EPA) following regulations (the Class VI Rule) promulgated under the Safe Drinking Water Act
(SDWA) (USEPA 2010). The Class VI regulations are designed to protect underground sources
of drinking water (USDWs), and include strict requirements for site characterization, CO.
injection well construction, injection operations, site monitoring, financial liability, and record
keeping/reporting. Key elements of the Class VI permitting process include delineating an Area
of Review (AoR) and defining an appropriate Post-Injection Site Care (PISC) period for the
project, both of which require simulated CO, saturations and pressure distributions from
computational models. The models are based on site-specific data and are updated periodically
during the lifetime of the project to evaluate reservoir performance and evolution of the storage
system.

Despite the sophistication of today’s multi-physics reactive transport codes, significant
uncertainty exists in predicting the performance of geologic storage reservoirs. Challenges
associated with developing greenfield sites include the inherit difficulty in scaling a few point
source measurements of geological structure and reservoir permeability derived from
characterization of borehole samples throughout the extensive area likely to be impacted by a
commercial-scale CO; injection, a lack of site-specific data on the behavior of supercritical CO>
in the reservoir being evaluated, and understanding changes in the transport behavior of carbon
dioxide caused by changes in pressure and/or temperature and the buoyant nature of CO, over
the long time scales required for geologic sequestration to have long-term benefit to
atmospheric CO- levels. Additionally, the computational resources required to run high fidelity
simulations limits their usefulness in performing sensitivity analysis for uncertainty reduction.

To help address this need, the US DOE established the National Risk Assessment Partnership
(NRAP), an initiative across five US DOE national laboratories with the goal of developing
defensible, science-based methodologies and platforms for quantifying risks amidst system
uncertainty. In 2017, the NRAP team released a set of ten tools (i.e., the NRAP Toolset) that
can be used to estimate risks associated with carbon sequestration
(https://edx.netl.doe.gov/nrap/). The toolset adopts a stochastic approach in which includes
uncertainties in storage reservoirs, leakage scenarios, and shallow groundwater impacts. It is
derived from detailed physics and chemistry simulation results that are used to train more
computationally efficient models, referred to here as reduced-order models (ROMs), for each
component of the system. These tools can be used to help regulators and operators define the
AoR and better understand the expected sizes and longevity of changes in water quality caused
by CO- and brine leakage from a storage reservoir into drinking water aquifers.

This report details the development and testing of surrogate models that can be used to
estimate the impact that carbon dioxide (CO2) and brine leaks from the CO. storage reservoir at

Introduction 7
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the FutureGen 2.0 site might have on overlying aquifers or monitoring units. The FutureGen2
Lookup Table Reservoir component model is a ROM based on interpolation of data from a set
of lookup tables. The lookup tables are based on multiphase flow simulations performed with a
reservoir simulator. Each row of the lookup table is related to a particular set of model input
parameters and contains pressures and saturations at selected time steps for a particular
vertical layer of the full-physics model. The FutureGen2 Above Zone Monitoring Interval (AZMI)
model estimates the size of “impact plumes” where changes in the values of five metrics exceed
detectable thresholds: pH, Total Dissolved Solids (TDS), pressure, dissolved CO- and
temperature. The FutureGen2 Aquifer model is similar, but is limited to four metrics: pH, Total
Dissolved Solids (TDS), pressure, and dissolved COz. The aquifer component model is based
on isothermal simulations because the model used to train the surrogate model, STOMP-CO2-
R, required prohibitively small times steps for the nonisothermal phase transition from
supercritical to liquid CO; at shallower depths.

Introduction 8



PNNL-31781

2.0 FutureGen2 Lookup Table Reservoir Component

The FutureGen2 Lookup Table Reservoir component model is a ROM based on interpolation of
data from a set of lookup tables. The lookup tables are based on multiphase flow simulations
performed with a reservoir simulator. Each row of the lookup table is related to a particular set of
model input parameters and contains pressures and saturations at selected time steps for a
particular vertical layer of the full-physics model.

This study expands on the reservoir model developed by Zhang et al. (2014) used for the
sensitivity analysis performed for the FutureGen 2.0 Site. Division of stratigraphic layers into 31
computational model layers is provided in Table 1 of the main paper. Four horizontal injection
wells were screened within the layer named MtSimon11.

2.1 Input parameters

For the purposes of this application, additional simulations were conducted with this reservoir
model to create the lookup tables specific to the site to be used in system-scale modeling. In the
sensitivity analysis reported by Zhang et al. (2014), 11 distinct parameters for each of the 31
model layers were investigated relative to a reference base-case (i.e., the most representative
input values based on the characterization data available). They identified that the horizontal
permeability of the injection layer was the most sensitive parameter for injectivity. In our model,
leakage risk through a legacy well is driven by pressure and saturation in the reservoir. We
performed additional simulations varying permeability of each reservoir model layer
independently with uncertainty ranges shown in Figure 1.

FutureGen2 Lookup Table Reservoir Component 9
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Figure 1. Range of values for reservoir model layer permeability.

2.2 Parameter Sampling

To create an NRAP-Open-IAM lookup table reservoir component, ideally the minimum and
maximum value for each model input parameter must be specified, and a set of simulations
performed with sampled values for each input parameter. The original ELAN log and core data
was revisited to calculate the minimum and maximum permeability for each of the 31 model
layers (Figure 1). The current analysis assumed that the permeability values were lognormally
distributed; average values were calculated using the log of the permeabilities. The average
permeability values were assumed to be the most representative input values based on the
characterization data available. The minimum value was calculated using the lower 30th
percentile and the maximum value determined using the upper 70th percentile of the log of the
values within each vertical layer, roughly equal to one standard deviation about the mean.

2.3 STOMP Simulations

One thousand STOMP-CO2 simulation runs were performed to capture the effect of variability in
permeability at each layer of the injection reservoir. Predicted pressures (Figure 2) and
separate-phase CO: distribution (Figure 3) at the end of the injection period are shown for a
single run with the average permeability values. While most of the CO stays within Mount
Simon, vertical migration results in small amounts of CO: in the overlying EImhurst formation.

FutureGen2 Lookup Table Reservoir Component
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Figure 2. 2D cutaway view of the predicted pressure differential results in the reservoir at the
end of injection period (20 yr). Screened portion of horizontal injection wells #1 and #4 are
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shown in red.
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Saturation (20 yr)

—-900 0.60
0.48
—1050 A
= Lombard 0.36
g ~1200 4 — Elmhurst
) *
e L 0.24
Mt Simon
—1350 A
-0.12
—-1500 —- 0.00

234,000 235,500 237,000 238,500 240,000
Easting (m)

Figure 3. 2D cutaway view of the predicted gas saturation results in the reservoir at the end of
injection period (20 yr). Screened portion of horizontal injection wells #1 and #4 are shown in
red.

The pressure differentials (i.e., post-injection pressure in the injection formation minus the pre-
injection reservoir pressure) for the end of the injection period—when the highest reservoir
pressures were observed—are shown in Figure 4 and compared to the extent of the separate-
phase CO; plume as shown in Figure 5. The plan view represents the extent of the CO» plume
within the injection layer that is used for developing the lookup tables for the NRAP-Open-lIAM
model. The separate-phase CO- plume is confined to an area 4 km square around the injection
wells. The reservoir model grid was approximately 166 km square, but the figure depicting gas
saturations displays a 7.2 km square area to show more detail. The footprint of the pressure
impact due to the injection operation extends beyond the separate-phase CO; plume to an area
of approximately 56 km in diameter around the injection wells. The effect of the four injection
wells on the distribution of supercritical CO, plume near the injection well can also be observed.
Max saturation is 60% for the MtSimon11 layer of the model because, as shown in Figure 3,
some CO: has migrated upward from injection layer.

FutureGen2 Lookup Table Reservoir Component 12
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Figure 4. 2D areal view of predicted pressure differential in reservoir MtSimon11 layer at the

end of the injection period (shows 72-km square area). Screened portion of

horizontal injection wells #1 through #4 are shown in red.
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Saturation (20 yr)
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Figure 5. 2D areal view of predicted gas saturation in reservoir in MtSimon11 layer at the end of
the injection period (shows 7.2-km square area). Screened portion of horizontal
injection wells #1 through #4 are shown in red.

Pressure and free-phase CO; saturation simulation results for every year during the injection
period and every five years for the 50-year post-injection period were output during these runs
to create the lookup table format required by NRAP-Open-IAM. The STOMP-CO2 simulation
output consists of text files that contain the grid coordinates and output variables at a given time
step.

2.4 Lookup Tables

The pressure and saturation values for each horizontal grid location and time within a single
model layer were converted to lookup tables for each run for the reservoir component of the
NRAP-Open-IAM. For this application, the injection layer (MtSimon11) was selected to develop
the necessary lookup tables.

The lookup table files consist of 1008 comma-delimited text files (.csv) with the grid coordinates
and pressure, saturation, and salinity values vs. time. In addition, a file named
parameters_and_filenames.csv contains the permeability values for each model layer for each
of the 1008 simulations. Finally, a file named time_points.csv contains the simulation output
times in years.

The python script for converting STOMP output to a NRAP-Open-IAM lookup table,
plot_to_openiam.py, is included in Appendix A.1.

FutureGen2 Lookup Table Reservoir Component
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2.5 Testing

Given coordinates x and y and time as input, the FutureGen2 reservoir lookup table should
produce pressure and saturation that match the results output by STOMP. Saturations and
pressures were read at each grid location from a STOMP plot file at the end of a 20-year
injection period. NRAP-Open-IAM output at the same time and grid locations were compared
and show one-to-one correspondence (Figure 6). The python script to generate these plots is
given in Appendix A.2.
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Figure 6. Comparison of STOMP and NRAP-Open-IAM FutureGen2 reservoir lookup table
component output for saturation and pressure.

For a single run, a lookup table component can linearly interpolate between over space and
time. To demonstrate that the interpolation is working correctly, pressure and saturation at
known grid locations and times are compared to space and time-interpolated values at a
particular grid location (Figure 7). The python script to generate these plots is given in Appendix
A.3.
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Figure 7. Comparison of known and interpolated values from the FutureGen2 reservoir lookup
table component output for saturation and pressure. Blue (x=236681.772) and green
(x=236834.172) markers are known values and orange markers (x=236757.972) are

interpolated values (all at y=4409421.84).
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3.0 FutureGen2 Aquifer and AZMI Components
3.1 Background Data

Based on a model constructed for the original monitoring design at the FutureGen 2.0 site
(Vermeul et al. 2016), there are three high-permeability units between the injection reservoir
(Mt. Simon) and the lowermost USDW (St. Peter Sandstone): the Ironton-Galesville, the Potosi,
and the New Richmond. The aquifer properties used in this previous modeling effort (Table 1)
inspired the current work.

Table 1. Hydraulic parameters used in permit application monitoring model (Vermeul et al.

2016).
Bottom Horizontal Anisotropy
Thickness Depth (m Permeability (log10
Model Layer (m) bgs) (log10 m*2) Kh/Kv) Porosity
St Peter 61.6 -591.9 -11.92 0.30 0.18
New Richmond 31.1 -741.9 -12.48 0.30 0.132
Potosi 84.1 -936.3 -11.05 1.00 0.038
Ironton-Galesville  33.2 -1043.9 -13.39 0.30 0.118

A fluid sample collected from the St. Peter Sandstone during installation of the stratigraphic well
resulted in a laboratory-measured TDS value of 3,400 mg/L and field parameter values of 7.91
and 5,910 uS/cm for pH and electrical conductivity, respectively. Because the total dissolved
solids measured within this zone was below the upper regulatory limit of 10,000 mg/L for
potable aquifers the St. Peter Sandstone was considered to be the lowermost federal USDW for
the purposes of the UIC permit application (FutureGen Industrial Alliance 2013b). Salinity
measurements from the surficial aquifer (Groschen et al. 2000) and the St. Peter, Ironton, and
Mt. Simon (FutureGen Industrial Alliance 2013b) indicate that salinity increases logarithmically
with depth, so this relationship was used to interpolate salinity at intermediate depths (Figure 8).

FutureGen2 Aquifer and AZMI Components
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Figure 8. Increase in salinity with depth at the FutureGen 2.0 site.
The initial conditions in the reservoir (Mt. Simon) and USDW (St. Peter) are based on observed

values at depth in the stratigraphic well (FutureGen Industrial Alliance 2013c) and are listed in
Table 2. The St. Peter is an order of magnitude less saline than the Mt. Simon.

Table 2. Summary of reservoir and USDW initial conditions.

Reference Depth

Parameter (m GS) Value
Aqueous Saturation 1.0
Mt. Simon Pressure 1,230 12.343 MPa
St. Peter Pressure 533 4.9510 MPa
Mt. Simon Temperature 1,190 35.9°C
Temperature Gradient 0.0122 °C/m
Mt. Simon Salinity 1342 47,500 ppm
Ironton-Galesville Salinity 1044 15,000 ppm
St. Peter Salinity 592 3,700 mg/L

As indicated in Figure 9, the St. Peter is underpressured relative to a uniform hydrostatic
pressure gradient.

FutureGen2 Aquifer and AZMI Components
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Figure 9. FutureGen pilot (stratigraphic) well formation vs. hydrostatic pressure difference
(FutureGen Industrial Alliance 2013c).

3.2 Input Parameters

The AZMI and aquifer components were trained on a range of hydraulic properties (Table 3) so
they could be applicable to all four of these high permeability zones. The AZMI simulations were
performed with depths ranging from 700 m to 1050 m, whereas the aquifer simulations were
performed at shallower depths ranging from 100 m to 700 m. The AZMI and aquifer simulations
were performed using a wide range of CO; and brine leakage rates, ranging from 1x10° kg/s to
30 kg/s, so that the resulting AZMI Component model could be used with any of the wellbore
models currently included in NRAP-Open-IAM.

FutureGen2 Aquifer and AZMI Components 18



Table 3. Ranges of input parameters for the Aquifer and AZMI components.

Aquifer Parameters min max
Thickness (m) 30 90
Depth (m bgs)

AZMI -1050 -700

Aquifer -700 -100
Porosity 0.02 0.2
Horizontal Permeability (log1o m?) -14 -1
Anisotropy (logio Kh/Kv) 0 3
Calcite (solid volume fraction) 0 1
Leakage Parameters min max
CO- Rate (log1o kg/s) -9 1.5
Brine Rate (log1o kg/s) -9 1.5

3.3 Parameter Sampling

PNNL-31781

Model input parameters for each simulation run were selected using Latin Hypercube Sampling

(Iman, Helton, and Campbell 1981). The parameters listed in Table 2 were assumed to be
uniformly distributed. For both the aquifer (Figure 10) and AZMI (Figure 11) models, 480

different combinations of the input parameters were generated.

FutureGen2 Aquifer and AZMI Components
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Figure 10. Pair plot for input parameters of simulations used to train the aquifer model, showing
the uniform distribution of values in 480 samples.
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Figure 11. Pair plot for input parameters of simulations used to train the AZMI model, showing
the uniform distribution of values in 480 samples

3.4 STOMP Simulations

A series of STOMP simulations were conducted using the parameter samples from section 3.3.
Simulations were performed using STOMP-CO2E-R (multiphase flow of CO,, brine and heat
with geochemical reactions). Nonisothermal simulations were performed for training the AZMI
component ROM and isothermal simulations were performed for training the aquifer component
ROM.

FutureGen2 Aquifer and AZMI Components 21



PNNL-31781

In order to encompass impact plumes for both very small and very large CO; or brine leaks, a
radial grid of 50 miles (80,467 meters) in radius was used. Grid radii ranged in size from 3.24 m
to 5,877 m in the horizontal direction. Ten vertical grids were used, varying in height from 3 to 9

m, for a total of 1000 nodes. For each of the leakage scenarios, distributions of pressure,

temperature, dissolved CO,, pH and TDS were calculated.

The initial temperature and salinity in the aquifer/AZMI simulations were assumed to be a

function of depth, based on site characterization data in section 3.1. Hydrostatic initial pressures

were assumed.

Figure 12 shows supercritical CO2, pH and TDS distributions in the St. Peter Sandstone after 20

years of a single, illustrative leakage simulation with equal CO; and brine leakage rates of

2.5x10* kg/s. Free-phase CO2 accumulates within the top 60 m of the aquifer, extending about
260 m from the leakage location. The pH is inversely related to dissolved CO,, and it decreases
from the background value of 7.91 to 4.8. This effect is seen where supercritical CO2 migrates
and where dissolved CO; spreads beyond the supercritical CO» plume due to density effects

and mixing with brine.
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Figure 12. Supercritical CO; saturation, pH and TDS in a single aquifer leakage simulation after
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3.5 Impact Thresholds

In order to delineate the impact in the AZMI or aquifer, a threshold that represents a monitoring
detection must be set. The precision thresholds of various sensors were used when developing
the FutureGen2 aquifer and AZMI ROMs (Table 4).

Table 4. Monitoring detection thresholds.

Table A.5 & A.7 (FutureGen Industrial

Alliance 2013a) ROM
Variable Min Max Unit Precision +/- Indicator Threshold
Pressure 0 2500 psi 0.065% relative 0.00065
Temperature 0 150 F 0.03% relative 0.0003
DIC 02 - mg/L  20% relative 0.2
pH 2 12 pH 0.2 absolute 0.2
TDS 10 - mg/L  10% relative 0.1

The original monitoring plan states that “Central to this monitoring strategy is the measurement
of CO; saturation ... using pulsed-neutron capture logging” (FutureGen Industrial Alliance
2013a). However, dissolved inorganic carbon (DIC) was used instead as it would indicate the
presence of small leaks where free-phase CO2 would not be present. Romanak et al. (2012),
found that dissolved inorganic carbon (DIC) was a useful monitoring metric because changes in
DIC with CO; leakage were consistent across geochemical environments, indicating that prior
characterization of aquifer minerals may not be necessary if DIC is used as the primary
monitoring parameter.

3.6 Plume Delineation

For each original STOMP-COZ2E-R leakage simulation, the total volume and dimensions of
impacted aquifer/AZMI are calculated for each of the five monitoring variables. For example, the
volume of impacted aquifer for pH is calculated by summing the volume of each grid cell in the
model where pH changes by more than 2 pH points. The dataset includes the width (dx, dy),
height (dz) and volume of the impacted aquifer recorded at 17 times (0, 1, 2, 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 55, 60, 65, and 70 years). Plots of these plume dimensions vs. time are
shown in Figure 13 (aquifer) and Figure 14 (AZMlI).
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3.7 Training

The FutureGen2 Aquifer component model is a regression model, fit to the simulations of CO,
and brine leakage into an aquifer, described in the previous chapter. Each of the 480-simulation
datasets, one for the aquifer model and one for the AZMI model, were randomly split 70%/30%
into training and testing sets.

The regression model was trained using using py-earth (https://contrib.scikit-learn.org/py-
earth/index.html). The py-earth package is a Python implementation of the Multivariate Adaptive
Regression Splines algorithm (Friedman 1991) in the style of scikit-learn (http://scikit-learn.org),
a library of machine-learning methods written in Python.

Multivariate adaptive regression splines is a flexible regression method that automatically
searches for interactions and non-linear relationships. Earth models can be thought of as linear
models in a higher dimensional basis space (specifically, a multivariate truncated power spline
basis). Each term in an Earth model is a product of so called “hinge functions”. A hinge function
is a function that’s equal to its argument where that argument is greater than zero and is zero
everywhere else.

The multivariate adaptive regression splines algorithm has two stages. First, the forward pass
searches for terms in the truncated power spline basis that locally minimize the squared error
loss of the training set. Next, a pruning pass selects a subset of those terms that produces a
locally minimal generalized cross-validation (GCV) score. The GCV score is not actually based
on cross-validation, but rather is meant to approximate a true cross-validation score by
penalizing model complexity. The final result is a set of terms that is nonlinear in the original
feature space, may include interactions, and is likely to generalize well.

The training statistics for the aquifer (Table 5) and AZMI (Table 6) model are shown below. The
volume (vol) and dimensions in the x-, y- and z- dimensions are given. The statistics for dx and
dy are always the same, because these are radially symmetric models. By convention, NRAP-
Open-IAM aquifer models predict the dimensions of impact plumes in three dimensions. Ideally,
the mean square error (MSE) and generalized cross-validation (GCV) scores should be similar
and relatively low, indicating that the model is not overfitting. Similarly, the generalized R? error
(RSQ) and the R*like score based on the GCV should be similar and close to one.
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Table 5. Train/test statistics for the aquifer model.

PNNL-31781

Prediction
Variable Metric MSE GCV RSQ GRSQ Score
Dissolved CO2 log dx 0.3662 0.3746 0.9418  0.9405  0.9437
Dissolved CO2 log dy 0.3662 0.3746 0.9418 0.9405  0.9437
Dissolved CO2 log dz 0.2651 0.2759 0.7859  0.7773  0.7674
Dissolved CO2 log vol 2.2255 2.2602 0.9283 0.9272  0.9307
pH log dx 0.7156 0.7446 0.9201 0.9169  0.9130
pH log dy 0.7156 0.7446 0.9201 0.9169  0.9130
pH log dz 0.545 0.5579 0.785 0.78 0.7768
pH log vol 6.0776 6.1848 0.8785 0.8764  0.8598
Pressure log dx 2.0994 2.1582 0.9252  0.9231 0.9213
Pressure log dy 2.0994 2.1582 0.9252 0.9231 0.9213
Pressure log dz 0.6325 0.6535 0.8275 0.8218  0.8103
Pressure log vol 11.7228 12.0508 0.9221 0.92 0.9183
TDS log dx 0.2298 0.2339 0.968 0.9675  0.9671
TDS log dy 0.2298 0.2339 0.968 0.9675  0.9671
TDS log dz 0.4261 0.4398 0.8423  0.8373  0.8310
TDS log vol 1.5188 1.5503 0.964 0.9633  0.9612
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Table 6. Train/test statistics for the AZMI| model.

Prediction
Parameter Metric MSE GCV RSQ GRsQ Score
Dissolved CO2 log dx 0.3403 0.3468 0.9402 0.9391 0.9475
Dissolved CO2 log dy 0.3403 0.3468 0.9402 0.9391 0.9475
Dissolved CO2 log dz 0.2752 0.2823 0.7846 0.7791 0.7883
Dissolved CO2 log vol 2.0688 2.1044 0.9295 0.9283 0.9424
pH log dx 0.7289 0.747 0.9084 0.9061 0.9061
pH log dy 0.7289 0.747 0.9084 0.9061 0.9061
pH log dz 0.4022 0.413 0.8455 0.8415 0.8505
pH log vol 5.8461 5.9801 0.8743 0.8714 0.8586
Pressure log dx 2.3855 2.4425 0.9078 0.9057 0.9009
Pressure log dy 2.3855 2.4425 0.9078 0.9057 0.9009
Pressure log dz 0.6414 0.6591 0.829 0.8243 0.8239
Pressure log vol 13.4567 13.7523 0.9045 0.9024 0.8976
TDS log dx 1.0008 1.0161 0.8601 0.858 0.8612
TDS log dy 1.0008 1.0161 0.8601 0.858 0.8612
TDS log dz 0.6665 0.6927 0.7954 0.7875 0.8004
TDS log vol 6.8869 6.9729 0.8496 0.8477 0.8524
Temperature log dx 0.4575 0.4662 0.9437 0.9427 0.9370
Temperature log dy 0.4575 0.4662 0.9437 0.9427 0.9370
Temperature log dz 0.372 0.3816 0.8585 0.8549 0.8569
Temperature log vol 2.9594 3.0076 0.9385 0.9376 0.9336
3.8 Testing

PNNL-31781

The prediction scores for the aquifer (Table 5) and AZMI (Table 6) models on the test set are
generally acceptable. They are similar in magnitude to the RSQ and GRSQ obtained on the
training set, indicating that the model is not overfitting to the training set. The plume volume (vol)
and width (dx and dy) scores are higher, between 0.85 and 0.96, while the plume height (dz)
scores are lower, between 0.78 and 0.85.

Plots of the predicted vs actual plume dimensions are shown in Figures 7 and 8. Each of the
plume dimensions, volume, width (dx and dy), and height (dz), were scaled using a In(x + 1)
transform, referred to in the numpy library (Harris et al. 2020) as log1p. This transform resulted
in a better fit across the entire range of simulations.
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Figure 15. Comparison between aquifer model predicted and actual plume dimensions.
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4.0 Applications
The FutureGen2 components have been used in two recent applications.

NRAP-Open-IAM and DREAM (Figure 17) were used to determine a risk-based PISC period
and optimized monitoring network for a commercial-scale CO2 storage project (Bacon et al.
2019). Realizations from NRAP-Open-IAM revealed that maximum simulated leakage rates of
brine were small, on the order of 10-5 kg/s, and maximum simulated leakage rates of CO, were
on the order of 10-3 kg/s and could be detected earliest during the injection phase in the
Ironton-Galesville, the thief zone immediately overlying the injection reservoir. Using this
information to design an optimized monitoring well network eliminated one of the three originally
planned monitoring wells, resulting in a cost reduction for the project. Perhaps the most
significant finding from this effort is that NRAP-Open-IAM can be used to define a risk-based,
and substantially shorter, PISC period for the site. NRAP-Open-IAM realizations indicate that
most of the risk of endangerment to USDWs decreases within the first 5 years after CO,
injection ends. Doubling this timeframe would still lead to a net PISC period reduction of 40-
years and an operational cost reduction of more than $50 M for the project. An example python
script for this application, named iam_sys_lutreservoir_mswell_futuregen_dream.py, is included
in the NRAP-Open-IAM source code.
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Figure 17. DREAM generated solution space which was used for optimization of a leakage
monitoring network. Colored zones represent all locations where the leakage
threshold of the respective monitoring parameter was exceeded.

NRAP-Open-IAM was used to develop a probabilistic estimate of impact risk to USDW quality
(Bacon, Demirkanli, and White 2020). CO, and pressure predictions from the reservoir modeling
conducted using the STOMP-CO2 simulator for the FutureGen 2.0 site are used in a NRAP-
Open-IAM model with reservoir, wellbore, and aquifer components to: (1) assess the extent of
potential leakage into the USDW for the predicted reservoir pressure conditions; (2) evaluate
the extent of potential impact using “no-net-degradation” thresholds; and (3) account for
uncertainty in reservoir permeabilities. Regulatory oversight of a geologic carbon sequestration
(GCS) project relies on iterative estimations, throughout the project lifetime, of the area where
increased risks to underground sources of drinking water (USDWs) may occur due to injection
of COz. This area, referred to as Area of Review (AoR), is typically delineated by predicting the
migration of fluid between the reservoir and the lowermost USDW via an open wellbore using
predictions from physics-based reservoir simulators. Accounting for the probability of aquifer
impact using NRAP-Open-IAM results in a smaller “risk-based Area of Review” (Figure 18). An
example python script for this application (iam_sys_lutreservoir_openwell_futuregen_aor.py) is
included in the NRAP-Open-IAM source code.
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Figure 18. Risk-based AoR defined by the pressure differential corresponding to the pH and
TDS nonzero impact probability distributions (black line indicating 0.1 MPa) compared to the
permitted AoR for the FutureGen 2.0 site (pressure differential of 0.69 MPa/10 psi at 60 years

after the start of injection) (Bacon et al. 2020).
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5.0 Summary and Conclusions

The FutureGen2 reservoir lookup table component provides a fast surrogate model for exploring
the effect of variations in reservoir permeability. The reservoir component exactly reproduces
the results of the multiphase flow simulator STOMP for a model of the FutureGen 2.0 site. The
FutureGen2 Aquifer and AZMI components for NRAP-Open-IAM quickly calculate the potential
impact of brine and CO; leakage into high permeability formations overlying the Mt. Simon
sandstone, including the Ironton-Galesville, Potosi Dolomite, New Richmond, and St. Peter
sandstone. Model predictions of impact volume and width are more accurate, whereas the
prediction of aquifer height is more challenging. The FutureGen2 components have been useful
in two recent applications of NRAP-Open-IAM: calculating a risk-based post-injection site care
(PISC) period and a risk-based area of review (AoR).
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Appendix A Python Scripts
A.1 plot_to_openiam.py

import os

import sys

import argparse

import string

from math import ceil

import numpy as np

from os.path import join, getsize
import pandas as pd

import glob

# STOMP plot file
class Plot_File:

convert_length = {'m':1.0, 'ft':0.3048, 'km':1000., 'mi':1609.34,
'mile':1609.34,
‘'nm':1e-9, 'cm':0.01, 'mm':0.001, 'yd':0.9144, 'in':0.0254}
convert_pressure = {'pa':1.0, 'psi':6894.76, 'mpa':1000000.,
'atm':101325., 'bar':100000.}

def _init_(self, file_name):
self.file_name = file_name
self.input_list = self.read_file(self.file_name)
self.nx = self.get_parameter('Number of X or R-Direction Nodes ='
self.ny = self.get_parameter('Number of Y or Theta-Direction Nodes
")
")

self.nz = self.get_parameter('Number of Z-Direction Nodes =
self.nfield = self.get_parameter('Number of Field Nodes =')
self.nactive = self.get_parameter('Number of Active Nodes =
self.nvert = self.get_parameter('Number of Vertices =')

# read file into list
def read_file(self, file_name):
input_list = []
with open(file_name) as f:
input_list = f.readlines()
# remove whitespace characters
input_list = [line.strip() for line in input_list]
return input_Tlist

# read x, y, or z dimension
def get_parameter(self, search_string):
for m,line in enumerate(self.input_list):
if search_string in line:
# remove whitespace characters
line_list = [item.strip() for item in line.split('=')]
return int(line_list[-1])

# get line number with variable name
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def find_variable( , ):
for m,line in enumerate(self.input_list):
if search_string in line:
break
return m

# read or calculate node centroids
def get_centroids( , ) ) E
zlist = []
it direction == 'Z':
m = self.find_variable(direction + ' Node-Centroid Position')
if m < len(self.input_list) -
start = m+
end = start+int(ceil(self.nfield/10.))
unit = self.input_list[m].split()[-1]
for line in self.input_list[start:end]:
line_1list =
[float(item.strip())*xself.convert_length[unit] for item in line.split()]
zlist.extend(line_list)

elif direction == "X':
m = self.find variable('X-Direction Nodal Vertices')
start = m+

end = start+self.nfield
unit = self.input_list[m].split()[-1]
for line in self.input_list[start:end]:
line_list = [float(item.strip()) for item in line.split()]
centroid = self.convert_length[unit] * (line_list[0] +
line_list[1]1) /
zlist.append(centroid)

elif direction == 'Y':
m = self.find variable('Y-Direction Nodal Vertices')
start = m+

end = start+self.nfield
unit = self.input_list[m].split()[-1]
for line in self.input_list[start:end]:
line_list = [float(item.strip()) for item in line.split()]
centroid = self.convert_length[unit] * (line_list[0] +
line_list[2]1) /
zlist.append(centroid)
else:
sys.exit('Plot file must contain Z Node-Centroid Position')
zarray = np.array(zlist).reshape((self.nx, self.ny, self.nz),
:IFI)
zlayer = zarrayl:,:, layer-1]
return zlayer.flatten( ='F")

def get_variable( ) ) ) =None) :
vlist = []
m = self.find_variable(name)
start = m+
end = start+int(ceil(self.nfield/10.))
unit = self.input_list[m].split()[-1]
iT unit_conversion is not None:
conversion_factor = unit_conversion[unit]
else:
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conversion_factor = 1.0
for line in self.input_list[start:end]:
line_list = [float(item.strip())*conversion_factor for item in
line.split()]
vlist.extend(line_list)
varray = np.array(vlist).reshape((self.nx, self.ny, self.nz),
order="F")
vlayer = varrayl[:,:, layer-1]
return vlayer.flatten(order="'F")

def get_time(self,unit):
m = self.find_variable('Time = ')

line_list = [item.strip() for item in self.input_list[m].split()]
time_list = [i.split(',') for i in line_list[2:]]
time_dict = {x[1]: x[?] for x in time_list}

return time_dict[unit]

# input arguments

parser = argparse.ArgumentParser(description="'Convert STOMP plot files into
OpenIAM reservoir lookup table file')

parser.add_argument('-—dir', default='."', help='directory with results of
STOMP simulation')

# parser.add_argument('——inact', help='inactive nodes file name')
parser.add_argument('--layer', default=9, type=int, help='model layer to
extract results from')

parser.add_argument('-—out', default='output.csv', help='output file name')
args = parser.parse_args()

layer
times

= args. layer

= [l

# get plot file names

files = glob.glob(os.path.join(args.dir, 'plot.x"'))
files.sort()

# get grid info from first file
pf = Plot_File(files[0])

# validate layer number
it args.layer < 1 or args.layer > pf.nz:

sys.exit('ERROR: User-specified layer '+str(args.layer)+' is out of
range: '+str(1)+' to '+str(pf.nz))

pf.get_centroids('X", layer)
pf.get_centroids('Y"', layer)
pf.get_centroids('Z', layer)
Z — 633 x 0.3048 # Kelly bushing

f = pd.DataFrame({'x': x, 'y': vy, '

X
y
Z
Z
d z': z})

df['area’
df['rock"'

pf.get_variable('Z-Dir. Surface Area', layer)

I =
] = pf.get_variable('Rock/Soil Type', layer)

# read variables and times from each plot file
for i,file_path in enumerate(files):
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# create plot file object
pf = Plot_File(file_path)

t = pf.get_time('yr")
times.append(t)
print(t)
df['pressure_' + str(i+1)] = pf.get_variable('Gas
Pressure',layer,pf.convert_pressure)

df['C02saturation_' + str(i+1)] = pf.get_variable('Gas
Saturation', layer)

df['salinity_' + str(i+1)] = pf.get_variable('Aqueous Salt Mass
Fraction', layer)

# use rock type to filter out inactive nodes, then remove

df.drop(df[df.rock == 0].index, =True)

# write OpenIAM reservoir lookup table
df.drop(['rock'l], =1).to_csv(args.out, =False)
# write times to file

filename = 'time_points.csv'

f = open(filename, "w+")

f.write(','.join(times) + '\n')

f.close()

A.2 Test script for FutureGen2 reservoir lookup table

Test FutureGen2 Reservoir Lookup Table
Compares STOMP output to FutureGen2 reservoir lookup table predictions.

This example requires the additional FutureGen 2.0 data set.

FutureGen 2.0 data set can be downloaded from the following source:
https://edx.netl.doe.gov/dataset/futuregen-2-0-1008-simulation-reservoir-
lookup-table

The downloaded data set should be placed here:
source/components/reservoir/lookuptables/FutureGen2/1008_sims

Usage examples:
$ python test_iam_sys_lutreservoir.py ——run 1

# @author: Diana Bacon
# diana.bacon@pnnl.gov
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import as
import
.join , 'Users', 'd3a926"', 'Desktop’', 'OpenIAM', 'UQ_example_setup',"
source'
.insert 0,
from import , ,

# read STOMP plot file into dataframe
def plot_to_df file, layer

= Plot_File
# validate layer number
if <1 or >
.exit 'ERROR: User- spec1f1ed layer '+str +' is out of range:
'+str 1 +' to '+4str
= .get_centroids 'X',
= .get_centroids 'Y',
= .get_centroids 'Z',
= = 0633 % 0.3048 # Kelly bushing
= .DataFrame 'x': x, 'y': vy, 'z':
'area' = .get_variable 'Z-Dir. Surface Area',
'rock' = .get_variable 'Rock/Soil Type',
= .get_time 'yr'
'pressure' = .get_variable 'Gas
Pressure',
'COZsaturatlon = .get_variable 'Gas Saturation',
'salinity' = .get_variable 'Aqueous Salt Mass Fraction',
# use rock type to fllter out inactive nodes, then remove
.drop == , inplace=True
return , Tloat
if == "__main__"
# For multiprocessing in Spyder
= None
= .join , 'components', 'reservoir',
'lookuptables', 'FutureGen2', '1008_sims'
if not .exists .join , 'fgl.csv'
= '',join

"https://edx.netl.doe.gov/dataset/"',
'futuregen-2-0-1008-simulation-reservoir—-lookup—-table \n'
'.join

"\nFutureGen 2.0 data set can be downloaded ',
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print

# Input arguments

= .ArgumentParser ="'

.add_argument ' ', ='1l', = !
.add_argument ' ', ='.", =

.add_argument ' ', =9, =int, =

= .parse_args
= int

# read STOMP results
, = plot_to_df . )
print .head

# Define keyword arguments of the system model
= int
= *np.arange 0.0, +

# time is given in days

# Read file with signatures of interpolators and names of files with the
corresponding data
= .genfromtxt
.join , ! '

# The first row (except the last element) of the file contains names of
the parameters

= . - # -1 since the first line
is a header

last_results

# Create system model
= SystemModel =

# Create and add interpolator to the system model

= 1 float +
range

.add_interpolator ReservoirDatalnterpolator

="' {}'.format +1 , =sm,
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"fg{} '.format +1 ,
=int +1, ,

# Add reservoir component
= .add_component_model_object LookupTableReservoir

- ’ - ’ - ’ ’

# Add parameters of reservoir component model

range
# add arbitrary line of values from signature_file
.add_par , =float ,
+ , =False

# Add observations of reservoir component model
.add_obs ' :
.add_obs ' '
.add_obs_to_be_ linked ' '
.add_obs_to_be_ linked ' !

# Run system model using current values of its parameters
. forward # system model is run deterministically

# Get results
= .collect_observations_as_time_series ,
= .collect_observations_as_time_series ,

# Loop replaces parallel execution of the simulations on Windows
= Tlast_results 'Y 'Y

zip ’ )

# The following code should work on Mac but not on Windows.

Pool =

zip ’ )
= .array

scatterplot , ,
. figure
.plot , , , =

Ltitle Ltitle
.savefig +
.Close

scatterplot , H ,
scatterplot , H ,
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A.3 Test script for reservoir lookup table interpolation

Test FutureGen2 Reservoir Lookup Table

Compares STOMP output to FutureGen2 reservoir lookup table
predictions.

This example requires the additional FutureGen 2.0 data set.
FutureGen 2.0 data set can be downloaded from the following
source:
https://edx.netl.doe.gov/dataset/futuregen-2-0-1008-simulation-
reservoir-Llookup—table

The downloaded data set should be placed here:
source/components/reservoir/lookuptables/FutureGen2/1008_sims

Usage examples:

$ python test_iam_sys_lutreservoir.py ——run 1
# @author: Diana Bacon

# diana.bacon@pnnl.gov

import os

import sys

import argparse

import datetime

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.ticker as ticker

# from plot_to_openiam import Plot_File
# import pandas as pd

import glob

base_path =
os.path.join(os.sep, 'Users', 'd3a926"', 'Desktop', 'OpenIAM', 'UQ_exa
mple_setup', 'source")

sys.path.insert(?, base_path)

from openiam import (SystemModel, ReservoirDatalnterpolator,
LookupTableReservoir)

if __name__ == "__main__":
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# For multiprocessing in Spyder
__spec__ = None

file_directory = os.sep.join([base_path, 'components',
'reservoir’',
'lookuptables', 'FutureGen2',
'1008_sims'])

if not os.path.exists(os.sep.join([file_directory,
'fgl.csv'])):
url = '"'.join([
"https://edx.netl.doe.gov/dataset/",
'futuregen-2-0-1008-simulation-reservoir—-lookup-
table \n'l)
msg = ''.join([
‘\nFutureGen 2.0 data set can be downloaded ',
‘from the following source:\n',
url,
'Check this example description for more
information.'])
print(msg)

# Input arguments

parser = argparse.ArgumentParser(description="'Test
FutureGen2 reservoir lookup table')

parser.add_argument('—--run', default='1"', help="'run number
to process')

parser.add_argument('--file', default='."', help='plot file
with results of STOMP simulation')

args = parser.parse_args()

run = int(args.run)

def get_results(x, y, time_array):
# Define keyword arguments of the system model

sm_model_kwargs = {'time_array': time_array} # time is
given in days

# Read file with signatures of interpolators and names
of files with the corresponding data
signature_data = np.genfromtxt(
os.sep.join([file_directory,
'parameters_and_filenames_trunc.csv']),

delimiter=",", dtype='str')
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# The first row (except the last element) of the file
contains names of the parameters

par_names = signature_datal[0, 1:-11]
num_pars = len(par_names)

num_interpolators = signature_data.shape[0]-1 # -1
since the first line is a header

# Create system model

sm = SystemModel(model_kwargs=sm_model_kwargs)

# Create and add interpolator to the system model

ind = run-1

signature = {par_names[jl: float(signature_datal[ind+1,
j+11) for j in range(num_pars)}

sm.add_interpolator(ReservoirDatalnterpolator(
name="int{}'.format(ind+1), parent=sm,
header_file_dir=file_directory,
time_file='time_points.csv',
data_file="'fg{}.csv'.format(ind+1),
index=int(signature_datal[ind+1, 01),
signature=signature), intr_family="'reservoir"')

# Add reservoir component
ltres =
sm.add_component_model_object(LookupTableReservoir(

name='1ltres', parent=sm, intr_family='reservoir',
locX=x, locY=y))

# Add parameters of reservoir component model
for j in range(num_pars):
# add arbitrary line of values from signature_file
ltres.add_par(par_names[j],
value=float(signature_datalrun, j+1]), vary=False)

# Add observations of reservoir component model
ltres.add_obs('pressure')
ltres.add_obs('C02saturation')
ltres.add_obs_to_be_linked('pressure')
ltres.add_obs_to_be_linked('C02saturation')

# Run system model using current values of its

parameters
sm.forward() # system model is run deterministically
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# Get results

pres = sm.collect_observations_as_time_series(1ltres,
'pressure')

sat = sm.collect_observations_as_time_series(1ltres,
'CO02saturation')

return pres, sat
num_years = 20

timel = 365%np.arange(0.0, num_years+1)
time2 = 365%np.arange(0.0, num_years+l, 0.5)

pres_x1, sat_x1 = get_results(236681.772, 4409421.814,
timel)

pres_x2, sat_x2
timel)

pres_interp, sat_interp = get_results(236757.972,

4409421.814,time2)

get_results(236834.172, 4409421.814,

plt.figure()

plt.plot(timel/365.25, sat_x1, '.', markersize=4)
plt.plot(time2/365.25, sat_interp, '.', markersize=4)
plt.plot(timel/365.25, sat_x2, '.', markersize=4)
plt.xlabel('Time")

plt.ylabel('Saturation')
plt.savefig('saturation_vs_time.png')

plt.close()

# pres_x1, sat_x1 = get_results(236681.772, 4409421.814,
timel)

# pres_x2, sat_x2 = get_results(236834.172, 4409421.814,
timel)

# pres_interp, sat_interp = get_results(236757.972,
4409421.814,time2)

plt.figure()

plt.plot(timel/365.25, pres_x1, '.', markersize=4)
plt.plot(time2/365.25, pres_interp, '.', markersize=4)
plt.plot(timel/365.25, pres_x2, '.', markersize=4)
plt.xlabel('Time")

plt.ylabel('Pressure')
plt.savefig('pressure_vs_time.png')

plt.close()
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