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Abstract—Graph coloring is often used in parallelizing sci-
entific computations that run in distributed and multi-GPU
environments; it identifies sets of independent data that can be
updated in parallel. Many algorithms exist for graph coloring on
a single GPU or in distributed memory, but hybrid MPI+GPU al-
gorithms have been unexplored until this work, to the best of our
knowledge. We present several MPI+GPU coloring approaches
that use implementations of the distributed coloring algorithms of
Gebremedhin et al. and the shared-memory algorithms of Deveci
et al. The on-node parallel coloring uses implementations in
KokkosKernels, which provide parallelization for both multicore
CPUs and GPUs. We further extend our approaches to solve for
distance-2 coloring, giving the first known distributed and multi-
GPU algorithm for this problem. In addition, we propose novel
methods to reduce communication in distributed graph coloring.
Our experiments show that our approaches operate efficiently on
inputs too large to fit on a single GPU and scale up to graphs
with 76.7 billion edges running on 128 GPUs.

Index Terms—graph coloring; distributed algorithms; GPU;

I. INTRODUCTION

We present new multi-GPU, distributed memory implemen-
tations of distance-1 and distance-2 graph coloring. Distance-
1 graph coloring assigns colors (i.e., labels) to all vertices
in a graph such that no two neighboring vertices have the
same color. Similarly, distance-2 coloring assigns colors such
that no vertices within fwo hops, also called a “two-hop
neighborhood,” have the same color. Usually, these problems
are formulated as NP-hard optimization problems, where the
number of colors used to fully color a graph is minimized.
Serial heuristic algorithms have traditionally been used to
solve these problems, one of the most notable being the DSatur
algorithm of Brélaz [6]. More recently, parallel algorithms [5],
[10] have been proposed; such algorithms usually require
multiple rounds to correct for improper speculative colorings
produced in multi-threaded or distributed environments.

There are many useful applications of graph coloring. Most
commonly, it is employed to find concurrency in parallel
scientific computations [3], [10]; all data sharing a color can
be updated in parallel without incurring race conditions. Other
applications use coloring as a preprocessing step to speed up
the computation of Jacobian and Hessian matrices [14] and to
identify short circuits in printed circuit designs [13]. Despite
the intractability of minimizing the number of colors for non-
trivial graphs, such applications benefit from good heuristic
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algorithms that produce small numbers of colors. For instance,
Deveci et al. [10] show that a smaller number of colors used
by a coloring-based preconditioner reduces the runtime of a
conjugate gradient solver by 33%.

In particular, this work is motivated by the use of graph
coloring as a preprocessing step for distributed scientific
computations such as automatic differentiation [15]. For such
applications, assembling the associated graphs on a single node
to run a sequential coloring algorithm may not be feasible [5].
As such, we focus on running our algorithms on the parallel
architectures used by the underlying applications. These archi-
tectures typically are highly distributed, with multiple CPUs
and/or GPUs per node. Therefore, we specifically consider
coloring algorithms that can use the “MPI+X” paradigm,
where “X” is multicore CPU or GPU acceleration.

A. Contributions

We present and examine two MPI+X implementations of
distance-1 coloring as well as one MPI+X implementation
of distance-2 coloring. In order to run on a wide variety
of architectures, we use the Kokkos performance portability
framework [1], [12] for on-node parallelism and Trilinos [18]
for distributed MPI-based parallelism. The combination of
Kokkos and MPI allows our algorithms to run on multiple
multicore CPUs or multiple GPUs in a system. However, for
this paper, we focus on the performance of our algorithms
in MPI+GPU environments. For distance-1 coloring of real-
world networks, our algorithms see up to 28x speedup on 128
GPUs compared to a single GPU, and only a 7.5% increase in
colors on average. For distance-2 coloring, our algorithm also
sees up to 28x speedup, and a 4.9% increase in colors in the
worst case. We also demonstrate good weak scaling behavior
on up to 128 GPUs on graphs with up to 12.8 billion vertices
and 76.7 billion edges in size.

II. BACKGROUND
A. Coloring Problem

While there exist many definitions of the “graph coloring
problem,” we specifically consider variants of distance-1 and
distance-2 coloring. Consider graph G = (V, E) with vertex
set V and edge set E. Distance-1 coloring assigns to each
vertex v € V a color C(v) such that V(u,v) € E,C(u) #
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C(v). In distance-2 coloring, colors are assigned such that
Y(u,v), (v,w) € E,C(u) # C(v) # C(w); i.e., all vertices
within two hops of each other have different colors. When
a coloring satisfies one of the above constraints, it is called
proper. The goal is to find proper colorings of GG such that the
total number of different colors used is minimized.

B. Coloring Background

While minimizing the number of colors is NP-hard, serial
coloring algorithms using greedy heuristics have been effective
for many applications [16]. The serial greedy algorithm in
Algorithm 1 colors vertices one at a time. Colors are repre-
sented by integers, and the smallest usable color is assigned as
a vertex’s color. Most serial and parallel coloring algorithms
use some variation of greedy coloring, with algorithmic dif-
ferences usually involving the processing order of vertices or,
in parallel, the handling of conflicts and communication.

Algorithm 1 Serial greedy coloring algorithm

procedure SERIALGREEDY(Graph G = (V, E))
CVveV)«0 > Initialize all colors as null
for all v € V' in some order do

¢ < the smallest color not used by a neighbor of v

Cw) ¢

Conflicts in a coloring are edges that violate the color-
assignment criterion; for example, in distance-1 coloring, a
conflict is an edge with both endpoints sharing the same color.
Colorings that contain conflicts are not proper colorings, and
are referred to as pseudo-colorings. Pseudo-colorings arise
only in parallel coloring, as conflicts arise only when two
vertices are colored concurrently. A coloring’s “quality” refers
to the number of colors used; higher quality colorings of a
graph G use fewer colors, while lower quality colorings of G
use more colors.

C. Parallel Coloring Algorithms

There are two popular approaches to parallel graph coloring.
The first concurrently finds independent sets of vertices and
concurrently colors all of the vertices in each set; this approach
was used by Jones and Plassmann [20]. Osama et al. [22]
implement approaches based on finding independent sets on
a single GPU and explore the impact of varying the baseline
independent set algorithm.

The second approach, referred to as “speculate and iter-
ate” [8], colors as many vertices as possible in parallel and
then iteratively fixes conflicts in the resulting pseudo-coloring
until no conflicts remain. Catalyiirek et al. [8] and Rokos
et al. [23] present shared-memory implementations based on
the speculate and iterate approach. Deveci et al. [10] present
implementations based on the speculate and iterate approach
that are scalable on GPUs. Distributed-memory algorithms
such as those in [5], [25] use the speculate and iterate
approach. Grosset et al. [17] present a hybrid speculate and
iterate approach that splits computations between the CPU and
a single GPU, but does not operate on multiple GPUs in a

distributed memory context. Bozdag et al. [5] showed that, in
distributed memory, the speculative approach is more scalable
than methods based on the independent set approach of Jones
and Plassmann. As such, we choose a speculative and iterative
approach with our algorithms.

D. Distributed Coloring

In a typical distributed memory setting, an input graph is
split into subgraphs that are assigned to separate processes.
A process’s local graph G; = {V; + Vg, E; + E,} is the
subgraph assigned to the process. Its vertex set V; contains
local vertices, and a process is said to own its local vertices.
The intersection of all processes’ V; is null, and the union
equals V. The local graph also has non-local vertex set V,
with such non-local vertices commonly referred to as ghost
vertices; these vertices are copies of vertices owned by other
processes. To ensure a proper coloring, each process needs
to store color state information for both local vertices and
ghost vertices; typically, ghost vertices are treated as read-only.
The local graph contains edge set Ej, edges between local
vertices, and E,, edges containing at least one ghost vertex as
an endpoint. Bozdag et al. [5] also defines two subsets of local
vertices: boundary vertices and interior vertices. Boundary
vertices are locally owned vertices that share an edge with
at least one ghost; interior vertices are locally owned vertices
that do not neighbor ghosts. For processes to communicate
colors associated with their local vertices, each vertex has a
unique global identifier (GID).

III. METHODS

We present three hybrid MPI+GPU algorithms, called
Distance-1 (D1), Distance-1 Two Ghost Layer (D1-2GL)
and Distance-2 (D2). D1 and D1-2GL solve the distance-
1 coloring problem and D2 does distance-2 coloring. We
leverage Trilinos [18] for distributed MPI-based parallelism
and Kokkos [12] for on-node parallelism. KokkosKernels [1]
provides baseline implementations of distance-1 and distance-
2 coloring algorithms that we use and modify for our local
coloring and recoloring subroutines.

Our three proposed algorithms follow the same basic frame-
work, which builds upon that of Bozdag et al. [5]. Bozdag
et al. observe that interior vertices can be properly colored
independently on each process without creating conflicts or
requiring communication. They propose first coloring interior
vertices, and then coloring boundary vertices in small batches
over multiple rounds involving communication between pro-
cesses. This approach can reduce the occurrence of conflicts,
which in turn reduces the amount of communication necessary
to properly color the boundary. In our approach, we color all
local vertices first. Then we fix all conflicts after communi-
cation of boundary vertices’ colors. Several rounds of conflict
resolution and communication may be needed to resolve all
conflicts. We found that this approach was generally faster
than the batched boundary coloring, and it allowed us to use
existing parallel coloring routines in KokkosKernels without
substantial modification.



Algorithm 2 Distributed-Memory Speculative Coloring

Algorithm 4 Distance-1 conflict resolution and recoloring

procedure PARALLEL-COLOR(Graph G = (V, E))
Color all local vertices
Communicate colors of boundary vertices
do
Detect conflicts
Recolor conflicting vertices
Communicate updated boundary colors
while Conflicts exist

Algorithm 2 demonstrates the general approach for our
three speculative distributed algorithms. First, each process
colors all local vertices with a shared-memory algorithm.
Then, each process communicates its boundary vertices’ col-
ors to processes with corresponding ghosts. Processes detect
conflicts in a globally consistent way and remove the colors
of conflicted vertices. Finally, processes locally recolor all
uncolored vertices, communicate updates, detect conflicts, and
repeat until no conflicts are found.

A. Distance-1 Coloring (D1)

Our D1 method begins by independently coloring all owned
vertices on each process using the GPU-enabled algorithms
by Deveci et al. [10] VB_BIT and EB_BIT in KokkosKer-
nels [1]. VB_BIT uses vertex-based parallelism; each vertex
is colored by a single thread. VB_BIT uses compact bit-
based representations of colors to make it performant on
GPUs. EB_BIT uses edge-based parallelism; a thread colors
the endpoints of a single edge. EB_BIT also uses the compact
color representation to reduce memory usage on GPUs.

For graphs with skewed degree distribution (e.g., social
networks), edge-based parallelism typically yields better work-
load balance between GPU threads. We observed that for
graphs with a sufficiently large maximum degree, edge-based
EB_BIT outperformed vertex-based VB_BIT on Tesla V100
GPUs. Therefore, we use a simple heuristic based on max-
imum degree: we use EB_BIT for graphs with maximum
degree greater than 6000; otherwise, we use VB_BIT.

Algorithm 3 Algorithm to identify and resolve conflicts

procedure CHECK-CONFLICTS(v, u, colors, GID)
conflict «+ 0
if colors[v] = colors[u] then
if rand(GID[v]) > rand(GID[u]) then
colors[v] «+ 0
else if rand(GID[u]) > rand(GID[v]) then
colors[u] < 0
else
if GID[v] > GID[n] then
colors[v] <+ O
else
colors[u] < O
conflict + 1
return conflict

procedure RESOLVE-CONFLICTS(
Local Graph G; = {V; + V,, E; + Ey4}, colors, GID)
conflicts < 0
for all v € V; do in parallel
for all (v,u) € (E,) do
conflicts < conflicts + Check-Conflicts(v, u, . . .)
if colors[v] = O then
break
Allreduce(conflicts, SUM)
gc < current colors of all ghosts
if conflicts > O then
colors = Color(Gy, colors)
Replace ghost colors with gc
Communicate recolored vertices to ghost copies

> Get global conflicts

> Recolor vertices

return conflicts

Algorithm 4 shows the conflict-resolution inner loop of
Algorithm 2. This algorithm runs on each process using its
owned local graph G;. It detects conflicts across processor
boundaries and recolors vertices to resolve the conflicts.

After the initial coloring, only boundary vertices can be in
conflict with one another'. We perform a full exchange of
boundary vertices’ colors using Trilinos [18]. Specifically, we
use the FEMultiVector class of Tpetra [19] to communicate
the colors of boundary vertices to their ghost copies on other
processes via an all-to-all exchange. After the initial all-to-
all exchange, we only communicate the colors of boundary
vertices which have been recolored. After each process re-
ceives its ghosts’ colors, it detects conflicts by checking each
owned vertex’s color against the colors of its neighbor as in
Algorithm 4. The conflict detection is done in parallel over
the owned vertices using Kokkos. The overall time of conflict
detection is small enough that any imbalance resulting from
our use of vertex-based parallelism is insignificant relative to
end-to-end times for the D1 algorithm.

When a conflict is found, only one vertex involved in the
conflict needs to be recolored. Since conflicts happen on edges
between two processes’ vertices, both processes must agree on
which vertex will be recolored. We adopt the random conflict
resolution scheme of Bozdag et al. We use a random number
generator (given as the “rand” function in Algorithm 3) seeded
by the GID of each conflicted vertex, as this produces a
consistent set of random numbers across processes without
communication. In a conflict, the vertex with the larger random
number is chosen for recoloring. For the rare case in which
both random numbers are equal, the tie is broken based on
GID. Using random numbers instead of simply using GIDs
helps balance recoloring workload across processes.

Once we have identified all conflicts, we again use VB_BIT
or EB_BIT to recolor the determined set of conflicting vertices.

1 As suggested by Bozdag et al., we considered reordering local vertices to
group all boundary vertices together for ease of processing. This optimization
did not show benefit in our implementation, as reordering tended to be slower
than coloring of the entire local graph.



We modified KokkosKernels’ coloring implementations to
accept a “partial” coloring and the full local graph, includ-
ing ghosts. (Our initial coloring phase did not need ghost
information.) We also modified VB_BIT to accept a list of
vertices to be recolored. Such a modification was not feasible
for EB_BIT.

Before we detect conflicts and recolor vertices, we save a
copy of the ghosts’ colors (gc in Algorithm 4). Then we give
color zero to all vertices that will be recolored; our coloring
functions interpret color zero as uncolored. To prevent the col-
oring functions from resolving conflicts without respecting our
conflict resolution rules (thus preventing convergence of our
parallel coloring), we allow a process to temporarily recolor
some ghosts, even though the process does not have enough
color information to correctly recolor them. The ghosts’ colors
are then restored to their original values in order to keep
ghosts’ colors consistent with their owning process. Then,
we communicate only recolored owned vertices, ensuring that
recoloring changes only owned vertices.

B. Two Ghost Layers Coloring (DI1-2GL)

Our second algorithm for distance-1 coloring, D1-2GL,
follows the D1 method, but adds another ghost vertex “layer”
to the subgraphs on each process. In D1, a process’ sub-
graph does not include neighbors of ghost vertices unless
those neighbors are already owned by the process. In DI-
2GL, we include all neighbors of ghost vertices (the two-hop
neighborhood of local vertices) in each process’s subgraph,
giving us “two ghost layers.” To the best of our knowledge,
this approach has not been explored before with respect to
graph coloring.

This method can reduce the total amount of communication
relative to D1 for certain graphs by reducing the total number
of recoloring rounds needed. In particular, for mesh or other-
wise regular graphs, the second ghost layer is primarily made
up of interior vertices on other processes. Interior vertices
are never recolored, so the colors of the vertices in the
second ghost layer are fixed. Each process can then directly
resolve more conflicts in a consistent way, thus requiring fewer
rounds of recoloring. Fewer recoloring rounds results in fewer
collective communications.

However, in D1-2GL, each communication can be more
expensive, because a larger boundary from each process is
communicated. Also, in irregular graphs, the second ghost
layer often does not have mostly interior vertices. The relative
proportion of interior vertices in the second layer also gets
smaller as the number of processes increases. For the extra
ghost layer to pay off, it must reduce the number of rounds
of communications enough to make up for the increased cost
of each communication. We discuss this more in our results.

To construct the second ghost layer on each process, pro-
cesses exchange the adjacency lists of their boundary vertices;
this step is needed only once. After the ghosts’ connectivity
information is added, we use the same coloring approach
as in D1. However, we optimize our conflict detection by
looking through only the ghost vertices’ adjacencies (), as

they neighbor all local boundary vertices. By keeping the new
ghost adjacency information separate from the local graph, we
can detect all conflicts by examining only the edges between
ghosts and their neighbors.

C. Distance-2 Coloring (D2)

Our distance-2 coloring algorithm, D2, builds upon both D1
and D1-2GL. As with distance-1 coloring, we use algorithms
from Deveci et al. in KokkosKernels for local distance-2
coloring. Specifically, we use NB_BIT, which is a “net-based”
distance-2 coloring algorithm that uses the approach described
by Tas et al. [28]. Instead of checking for distance-2 conflicts
only between a single vertex and its two-hop neighborhood,
the net-based approach detects distance-2 conflicts among
the immediate neighbors of a vertex. Our D2 approach also
utilizes a second ghost layer to give each process the full two-
hop neighborhood of its boundary vertices. This enables each
process to directly check for distance-2 conflicts with local
adjacency information. To find a distance-2 conflict for a given
vertex, its entire two-hop neighborhood must be checked for
potential conflicting colors.

Algorithm 5 Distance-2 conflict detection

procedure DETECT-D2-CONFLICTS(
Local Graph G; = {V; + V,, E; + E}, colors, GID)
conflicts < 0
for all v € V; do in parallel
for all (v,u) € (E; + E;) do
conflicts <— conflicts + Check-Conflicts(v, u, . . .)
if colors[v] = O then
break
for all (u,z) € (E; + E,) do
> u is one hop and z is two hops from v
conflicts <— conflicts + Check-Conflicts(v, x, . . .)
if colors[v] = O then
break
if colors[v] = O then
break
return conflicts

Algorithm 5 shows the straightforward way in which we
detect conflicts in D2 for each process. We again use vertex-
based parallelism while detecting conflicts; each thread exam-
ines the entire two-hop neighborhood of a vertex v. As with
distance-1 conflict detection, we identify all local conflicts
and use a random number generator to ensure that vertices
to be recolored are chosen consistently across processes. The
iterative recoloring method of D1 then also works for D2 —
we recolor all conflicts, replace the old ghost colors, and then
communicate local changes.

D. PFartitioning

We assume that target applications partition and distribute
their input graphs in some way before calling these coloring
algorithms. In our experiments, we used XtraPuLP v0.3 [27]
to partition our graphs. Determining optimal partitions for



TABLE I: Summary of input graphs. §4.4 refers to average degree and 6,4, refers to maximum degree. Numeric values listed
are after preprocessing to remove multi-edges and self-loops. k = thousand, M = million, B = billion.

Graph Class #Vertices #Edges | davg vivas Memory (GB)

ldoor PDE Problem 0.9 M 21 M 45 77 0.32

Audikw_1 PDE Problem 09 M 39M 81 345 0.59
Bump_2911 PDE Problem 29 M 63 M 43 194 0.96
Queen_4147 PDE Problem 41 M 163 M 78 89 2.5
soc-LiveJournall Social Network 48 M 43 M 18 20 k 0.67
hollywood-2009 Social Network 1.1 M 57T M 99 12 k 0.86
twitter7 Social Network 42 M 14 B 35 | 29 M 21
com-Friendster Social Network 66 M 1.8 B 55 52k 27
europe_osm Road Network 51 M 54 M 2.1 13 1.2
indochina-2004 Web Graph 74 M 194 M 26 | 256 k 29
MOLIERE_2016 | Document Mining Network 30 M 33B 80 | 2.1 M 49
rgg n_ 2 24 s0 Synthetic Graph 17 M 133 M 15 40 2.1
kron_g500-logn21 Synthetic Graph 20M 182 M 87 8.7 2.7
mycielskian19 Synthetic Graph 393 k 452 M | 23k | 196k 6.7
mycielskian20 Synthetic Graph 786 k 14B | 34k | 393k 21
hexahedral Weak Scaling Tests | 125 M - 12.8B | 75M -76.7 B 6 6 | 1.2GB-1.1TB

coloring is not our goal in this work. Rather, we have chosen
a partitioning strategy representative of that used in many
applications. We partition graphs by balancing the number of
edges per-process and minimizing a global edge-cut metric.
This approach effectively balances per-process workload and
helps minimize global communication requirements.

IV. EXPERIMENTAL SETUP

We performed scaling experiments on the AiMOS super-
computer housed at Rensselaer Polytechnic Institute. The
system has 268 nodes, each equipped with 2 IBM Power 9 pro-
cessors clocked at 3.15 GHz, 4x NVIDIA Tesla V100 GPUs
with 16 GB of memory connected via NVLink, 512 GB of
RAM, and 1.6 TB Samsung NVMe Flash memory. Inter-node
communications uses a Mellanox Infiniband interconnect. We
compile with xIC 16.1.1 and use Spectrum MPI with GPU-
Direct communication disabled.

The input graphs we used are listed in Table I. We primarily
used graphs from the SuiteSparse Matrix Collection [9]. The
maximum degree, d,,q., can be considered an upper bound
for the number of colors used, as any incomplete, connected,
and undirected graph can be colored using at most 0,4,
colors [7]. We selected many of the same graphs used by
Deveci et al. to allow for direct performance comparisons. We
include many graphs from Partial Differential Equation (PDE)
problems because they are representative of graphs used with
Automatic Differentiation [15], which is a target application
for graph coloring algorithms. We also include social network
graphs and a web crawl to demonstrate scaling of our methods
on irregular real-world datasets. We preprocessed all graphs to
remove multi-edges and self-loops, and we used subroutines
from HPCGraph [26] for efficient I/O.

We compare our implementation against the distributed
distance-1 and distance-2 coloring in the Zoltan [11] package
of Trilinos. Zoltan’s implementations are based directly on
Bozdag et al. [S5]. Zoltan’s distributed algorithm for distance-
2 coloring requires only a single ghost layer, and to reduce
conflicts, the boundary vertices are colored in small batches.
For our results, we ran Zoltan and our approaches with four

MPI ranks per node on AiMOS, and used the same partitioning
method across all of our comparisons. Our methods D1, D1-
2GL, and D2 were run with four GPUs and four MPI ranks
(one per GPU) per node. Zoltan uses only MPI parallelism; it
does not use GPU or multicore parallelism. For consistency,
we set Zoltan to four MPI ranks per node, and use the same
number of nodes for experiments with Zoltan and our methods.
We used Zoltan’s default coloring parameters; we did not
experiment with options for vertex visit ordering, boundary
coloring batch size, etc.

We omit direct comparison to single-node GPU coloring
codes such as CuSPARSE [21], as we use subroutines for
on-node coloring from Deveci et al. [10]. Deveci et al.
have already performed a comprehensive comparison between
their coloring methods and those in CuSPARSE, reporting an
average speedup of 50% across a similar set of test instances.
As such, we are confident that our on-node GPU coloring is
representative of the current state-of-the-art.

V. RESULTS

For our experiments, we compare overall performance for
D1 and D2 on up to 128 ranks versus Zoltan. Our performance
metrics include execution time, parallel scaling, and number
of colors used. We do not include the partitioning time for
XtraPuLP; we assume target applications will partition and
distribute their graphs. Each of the results reported represents
an average of five runs.

A. Distance-1 Performance

We summarize the performance of our algorithms relative
to Zoltan using performance profiles. Performance profiles
plot the proportion of problems an algorithm can solve for
a given relative cost. The relative cost is obtained by dividing
each approach’s execution time (or colors used) by the better
approach’s execution time (or colors used) for a given problem.
In these plots, the line that is higher represents the better per-
forming algorithm. The further to the right that an algorithm’s
profile is, the worse it is relative to the other algorithm.



Fig. 1: Performance profiles comparing D1 on 128 Tesla V100
GPUs with Zoltan’s distance-1 coloring on 128 Power9 cores
in terms of (a) execution time and (b) number of colors
computed for the graphs listed in Table I.
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We ran D1 and Zoltan with 128 MPI ranks to color the 15
SuiteSparse graphs in Table I. Some skewed graphs (e.g., twit-
ter7) did not run on 128 ranks on Zoltan or D1; in those cases
we use the largest run that completed for both approaches. D1
used MPI plus 128 Tesla V100 GPUs, while Zoltan used MPI
on 128 Power9 CPU cores across 32 nodes (four MPI ranks
per node). Figure la shows that D1 outperforms Zoltan in
terms of execution time in these experiments. The D1 method
is the fastest in roughly 95% of the cases; Zoltan outperforms
DI in only a single instance. D1 has at most a 11.6x speedup
over Zoltan (with the europe_osm graph) and at worst an 8%
slowdown relative to Zoltan (with Audikw_1).

Figure 1b shows that Zoltan outperforms D1 in terms of
color usage. Zoltan uses fewer colors in over 60% of our
experiments. However, in most cases, D1 uses no more than
5% more colors than Zoltan. With the twitter7 graph, Zoltan
uses 45% fewer colors than D1, but with Mycielskian20, D1
uses 41% fewer colors than Zoltan. On average, D1 uses 6.8%
more colors than Zoltan. These increases in the number of
colors exist because of the higher concurrency used by D1
relative to Zoltan.

B. Distance-1 Strong Scaling

Figure 2 shows strong scaling times for Queen_4147 and
com-Friendster. These graphs are selected for presentation
because they are the largest graphs for their respective problem
domains. Data points that are absent were the result of out-
of-memory issues or execution times (including partitioning)
that were longer than our single job allocation limits. D1 scales
better on the com-Friendster graph than on Queen_4147, as
the GPUs can be more fully utilized with the much larger com-
Friendster graph. For Queen_4147, DI is at least 2.7x faster
than Zoltan for each run, and D1 uses 12% fewer colors than
Zoltan in the 128 rank run. For com-Friendster, D1 is roughly
8x faster than Zoltan in the 128 rank run, but D1 uses 26%
more colors than Zoltan in that case.

For graph processing in general, it is often difficult to
demonstrate good strong scaling relative to single node runs.
From the Graph500.org benchmark (June 2020 BFS re-
sults) [2], the relative per-node performance difference in the

Fig. 2: Zoltan and D1 strong scaling on select (a) PDE and
(b) Social Network graphs.
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metric of “edges processed per second” between the fastest
multi-node results and fastest single node results are well
over 100x. For coloring on GPUs, graphs that can fit into
a single GPU do not provide sufficient work parallelism for
large numbers of GPUs, and multi-GPU execution incurs
communication overheads and additional required rounds for
speculative coloring. However, on average over all the graphs
for which we have results, D1 still shows a 5.4x speedup over
the single GPU run on 128 GPUs. On small or highly skewed
graphs that fit on a single GPU, we do not see much speedup,
due to the communication overheads and work imbalances that
result from distribution even with relatively good partitioning.

On average over all our graphs, D1 sees a 47.2% increase
in the number of colors from the single GPU run, while
Zoltan sees an 53.6% increase in color use over the single
GPU run. Such large color usage increases are mostly due to
the Mycielskian19 and Mycielskian20 graphs. These graphs
were generated to have known minimum number of colors
(chromatic numbers) of 19 and 20 respectively, and our single
GPU runs use 19 and 21 colors to color those graphs. Both our
approach and the Zoltan implementation have trouble coloring
these graphs in distributed memory, but our D1 implementa-
tion colors these graphs in fewer colors than Zoltan. Without
these two outliers, the average color increase from the single
GPU run is only 3.15% for D1, and Zoltan decreases color
usage by 0.1% on average. Zoltan’s smaller observed increase
is due to its inherently lower concurrency giving a better
quality coloring.

Fig. 3: D1 communication time (Comm) and computation time
(Comp) from 1 to 128 GPUs.
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Figure 3 shows the total communication and computation



time associated with each run. For the Queen_4147 graph,
computation time is the dominant factor in the larger rank runs.
Figure 3a shows that we initially see computational scaling
that levels off for large numbers of ranks. The computation
time includes any computational imbalance and the time
needed to launch GPU kernels. At high GPU counts, imbal-
ance or kernel launches are likely the dominant component
of the computation time for this graph, causing scaling to
drop off above 64 GPUs. The com-Friendster graph shows
computational scaling all the way to 128 GPUs, but, in this
case, communication is the dominant factor of the execution
time; computation scaling is not visible in the plot.

C. Distance-1 Weak Scaling

The greatest benefit of our approach is its ability to ef-
ficiently process massive-scale graphs. We demonstrate this
benefit with a weak-scaling study conducted with uniform
3D hexahedral meshes. The meshes were partitioned with
block partitioning along a single axis, resulting in the mesh
being distributed in “slabs.” Larger meshes were generated by
doubling the number of elements in a single dimension to keep
the per-process communication and computational workload
constant. We run with up to 100 million vertices per GPU,
yielding a graph of 12.8 billion vertices and 76.7 billion edges
in our largest tests — this graph was colored in less than half
a second.

Fig. 4: Distance-1 weak scaling of D1 on 3D mesh graphs.
Tests use 12.5, 25, 50, and 100 million vertices per GPU.
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Figure 4 shows that the weak scaling behavior for D1 is
very consistent. After a jump in execution time from one to
two GPUs due to conflict resolution, the overall time increase
from 2 to 128 GPUs is roughly 10% for each workload.

D. DI-2GL Performance

In general, D1-2GL does reduce the number of collective
communications used in the distributed distance-1 coloring.
Figure 5 compares the number of rounds for D1 and D1-2GL.
Unfortunately, due to the increased cost of each communica-
tion round, D1-2GL does not generally achieve a speedup over
D1. Additionally, second ghost layer vertices may be recolored
if they are boundary vertices on another processor; this occurs
often in dense inputs and incurs further communication costs.
However, in distributed system with much higher latency, D1-
2GL could be beneficial.

Fig. 5: Number of communication rounds for D1 and D1-2GL
on Queen_4147 from 2 to 128 ranks.

~ o o
T

o

Collective Communications (avg)

I b1
fiD1-2GL
0 T

2 4 8 16 32 64 128
MPI Ranks

E. Distance-2 Performance

We also compare our D2 method to Zoltan’s distance-
2 coloring using eight graphs from Table I: Bump_2911,
Queen_4147, hollywood-2009, europe_osm, rgg_n_2_24 s0,
Idoor, Audikw_1, and soc-LiveJournall. We use the same
experimental setup as with the distance-1 performance com-
parison. Figure 6a shows that D2 compares well against Zoltan
in terms of execution time, with D2 outperforming Zoltan on
a majority of graphs. In the best case, we see a 4.5x speedup
over Zoltan on the europe_osm graph.

Fig. 6: Performance profiles comparing D2 on 128 Tesla V100
GPUs with Zoltan’s distance-2 coloring on 128 Power9 cores
in terms of (a) execution time and (b) number of colors
computed for a subset of graphs listed in Table L.
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Figure 6b shows that D2 has similar color usage as Zoltan.
D2 and Zoltan each produce the lower number of colors in
half of the experiments. In all but one of the cases in which
Zoltan uses fewer colors, D2 uses no more than 10% more
colors. Interestingly, the number of colors used by D2 on the
soc-LiveJournall graph is unchanged with one and 128 GPUs.

F. Distance-2 Strong Scaling

Figures 7a and 7b show the strong scaling behavior of
D2 and Zoltan on Bump_2911 and Queen_4147. Bump_2911
shows similar scaling for both Zoltan and D2. For 128 ranks on
Bump_2911, D2 uses 1.2% more colors than Zoltan, but runs
1.7x faster than Zoltan. With Queen_4147, D2 shows a brief
scaling plateau from four to eight GPUs. This performance is
an artifact of graph partitioning; the boundary size for eight



ranks is the second largest out of all GPU counts except for
128 GPUs, resulting in a larger-than-expected communication
cost. Zoltan is less sensitive to boundary sizes in the distance-2
case because it uses a more optimized communication pattern
than our approach. After the eight-rank run, D2 scales slightly
better than Zoltan up to 128 ranks. For the 128-rank run, D2
runs 2.1x faster than Zoltan, and uses 10% fewer colors.

Fig. 7: D2 and Zoltan strong scaling for distance-2 coloring.
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On average over the eight graphs, D2 exhibits 9.32x speedup
on 128 GPUs over a single GPU, and uses 2.7% more colors
than single GPU runs. Speedup is greater with D2 than D1
because distance-2 coloring is more computationally intensive,
and thus has a larger work-to-overhead ratio.

Fig. 8: D2 communication time (comm) and computation time
(comp) from 1 to 128 GPUs.
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Figures 8a and 8b show the communication and compu-
tation breakdown of D2 on Bump_2911 and Queen_4147.
Bump_2911 shows computation and communication scaling
for up to 128 ranks, while color usage increases by only
2.7%. In general, the relative increase in color usage from
a single rank for distance-2 coloring is less than for distance-
1 coloring. The number of colors used for distance-2 coloring
is greater than for distance-1; therefore, a similar absolute
increase in color count results in a lower proportional increase.
Figure 8b shows that communication is the source of the
runtime plateau shown in Figure 7b.

G. Distance-2 Weak Scaling

Figure 9 demonstrates the weak scaling behavior for D2.
The same hexahedral mesh graphs were used as in the D1
weak scaling experiments. For small per-node workloads,
the weak scaling is good. For larger per-node workloads,
execution times increase slightly. For these larger tests, the

communication time, conflict detection time and initial col-
oring time all stay relatively flat, as does the number of
rounds of communication. However, we observe an increase in
imbalance for recoloring times across GPUs in these instances.
Identifying and correcting the source of this imbalance is
future work.

Fig. 9: Distance-2 weak scaling of D2 on 3D mesh graphs.

Hybrid Distance-2 Weak Scaling on Mesh Inputs

o

=

Time(seconds)

—e— 100M vertices/MPI rank
2 —=— 50M vertices/MPI rank
—e— 25M vertices/MPI rank
——12.5M vertices/MPI rank

10 20 30 40 50 60
MPI Ranks

VI. FUTURE WORK

We plan to extend our distance-2 coloring to partial
distance-2 coloring to support automatic differentiation ap-
plications. In partial distance-2 coloring, coloring criteria are
applied only to vertices that are two hops apart. Since the
colors of adjacent vertices are not considered, a proper partial
distance-2 coloring may not be a proper distance-2 or even a
proper distance-1 coloring. Our goal is to deliver a complete
suite of MPI+X algorithms for distance-1, distance-2, and
partial distance-2 coloring in the Zoltan2 package of Trilinos.
This work’s target application is the optimization of the com-
putation of sparse Jacobian [24] and Hessian matrices [15],
both of which are used in automatic differentiation and other
computational problems [4].
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