This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
"‘ - in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

ECP

SAND2020- 10981C

S Rensselaer \[ammmn&s

Distributed Graph Coloring
on Multiple GPUs

lan Bogle - RPI/Sandia National Laboratories
Erik Boman, Karen Devine, Siva Rajamanickam — Sandia National Laboratories
George Slota - RPI

We thank the Center of Computational Innovations at RPI for maintaining the equipment used in this research, including the AiMOS
supercomputer supported by the National Science Foundation under Grant No. 1828083. This research was also supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Main contributions and results

* We present the first distributed memory multi-GPU graph coloring
implementation, to our knowledge

e Our distributed distance-1 coloring implementation sees up to a 28x
speedup on 128 GPUs over a single GPU, and only a 7.5% increase in colors
on average

e Our distributed distance-2 coloring implementation also sees up to a 28x
SEeedup on 128 GPUs over a single GPU, and a 4.9% increase in colors in
the worst case

e Our approach is able to color a 12.8 Billion vertex mesh with 76.7 Billion
edges in under half a second

* We also present an approach that reduces the number of collective
communications by increasing the cost of each communication.

Graph Coloring is Useful for Finding
Concurrency

 Computations with specific data access patterns can be parallelized
with colorings

* Compiler parallelization, register allocation
* Preprocessing Jacobian and Hessian matrix computations
 Also useful for finding short-circuits in circuit designs

Distance-1 Graph Coloring

Each vertex ends Minimizing the
up with a different number of colors
used in the

color from its

neighbors. coloring is known

to be NP-Hard.

Distance-2 Graph Coloring

A valid distance-2

coloring assigns Minimizing the
each vertex a color number of colors
not used by any used in the

vertex at most two
edges away

coloring is known
to be NP-Hard.

Related Work

* Coloring heuristics use few enough colors to be useful to applications

* Two main parallelization approaches
e Jones & Plassmann (1993) uses independent sets to color vertices in parallel

» “Speculate & Iterate” approaches use heuristics in parallel and fix conflicts
* Gebremedhin and Manne (2000)
* More popular approach recently

e Shared Memory & GPU Implementations

e Catalyurek et al. (2012) and Rokos et al. (2015) present shared-memory implementations
* Deveci et al. (2016) and Grosset et al. (2011) present coloring implementations on the GPU

e Distributed approaches

* Bozdag et al. (2008) adapt the “Speculate & Iterate” approach in distributed memory,
subsequent works (2010) include a distance-2 implementation.

» Sariylce et al. (2012) presents a hybrid MPI+OpenMP implementation.

We Leverage KokkosKernels to Run on GPUs

» KokkosKernels is a package that implements various linear algebra
and graph operations, using the Kokkos shared-memory parallel
programming model

* https://github.com/kokkos/kokkos-kernels

* The distance-1 graph coloring algorithms we use are described by
Deveci et al. (2016)

* The distance-2 graph coloring algorithm in KokkosKernels uses the
same Net-Based approach described by Tac et al. (2017)

* We vary the distance-1 algorithms based on how skewed the inputs
are.

Distributed “Speculate and Iterate” Coloring

* Based on Gebremedhin and Manne (2000)

procedure PARALLEL-COLOR(Graph G = (V. FE))
Color all local vertices
Communicate colors of boundary vertices
do
Detect conflicts
Recolor conflicting vertices
Communicate updated boundary colors
while Conflicts exist

Distributed Distance-1 Coloring

— wiﬁé@fﬁ@%@?@@% =
oo <10l o

OO < (_‘% O O
O 1O v 1O O

Distributed Distance-2 Coloring

T w— - We add another layer of ghost vertices by copying

they atrera‘llln’ussenmmredges away from a ghost vertex ¢ first ghost layer’s neighbors. Second layer
ghosts on es to the first ghost layer

,‘

\
Ly,
\Jj
7 A\
\(l

/"\
Ly,
\{
7 A\
\(’

i
)
L
(J:‘
L
T
)
)

Distance-1 with Two Ghost Layers (D1-2GL)

These gbdste swilmodtctamigietafter Péellptecessnflicte solve stentligts
thieh b etasisunication Process A l Process B Bulepepdmresyesvithout
| communicating (in this example)
S S I S S
| I | \ i [| Y |
_V _/ _/ N _/
S oS I S S
| M | \ | | | W |
_/ \ _/ _/
S S I S 7~
| I | \ | [| I |
_V/ _V _/ _V
|
|

D1-2GL Aims To Reduce the Total Number of
Collective Communications

* Second ghost layer vertices can get recolored, in general
* Local colorings need to make the same choices independently

* Each communication costs more
e Ghosts can be on more than one process
* Each ghost copy also copies its neighbors
* Very expensive for dense inputs

Our Results Include Real and Synthetic Inputs

e Qur real inputs come from a variety of domains
* Including: PDEs, social networks, road networks
* Range in size from 0.9 M vtx, 21 M edges to 30 M vtx, 3.3 B edges

 Max degrees vary from 13to 2.9 M
* Use XtraPulLP graph partitioner developed by Slota et al. (2017)

e Our synthetic inputs are uniform hexahedral meshes

* Vary only one dimension to keep communication costs constant
 Partitioned in slabs

* Range in size from 12.5 M vtx, 75 M edges to 12.8 B vtx, 76.7 B edges

Experimental Setup

* We performed tests on AiMOS, housed at RPI.

e 268 nodes with 2 IBM Power9 3.15GHz processors
* 4 NVIDIA Tesla V100 GPUs with 16GB of memory connected with NVLink
* Infiniband interconnect
 Compiled with xIC 16.1.1, and Spectrum MPI with GPU-Direct disabled

 We run all experiments with 4 ranks per node
* On GPU runs each rank gets an exclusive GPU

* For performance profiles we use 128 ranks, or the largest run for which all
approaches completed a run

e Zoltan is a package of the Trilinos Library containing distributed
combinatorial algorithms, has MPI-only distance-1 and distance-2
implementations

* http://cs.sandia.gov/zoltan
* Run with 4 ranks per node, no shared-memory parallelism

Distance-1 Runtime Performance Profile

Performance ratio
can be thought of
as how many times
slower one
approach is than
the other

Fraction of Tests

~ Our approach is only 8%

0.6 -

0.4 1

0.2 1

0.0 1

/ slower for a single input.

r

— D1

— Zoltan

2 4 6 8
Performance Ratio

10

12

Our approach is around 12x
faster than Zoltan in the best
case

Distance-1 Color Usage Performance Profile

Zoltan uses fewer

colors in 60% of the

inputs \

sts

Fraction of Te

1.0 A

0.8 1

0.6 THA In the worst case, Zoltan uses 46% fewer

|J colors than our approach
0.4 -
0.2 -

— D1

0.0 - —— Zoltan

I I I I I

1.0 1.1 1.2 1.3 1.4

Performance Ratio

On average we use
6.8% more colors than
Zoltan

Distance-1 Weak Scaling

0.4

0.2

Time(seconds)

0.1

0

The largest input we ran has 12.8 Billion

/ vertices and 76.7 Billion edges, which
was colored in under half a second.

"H ——
For each workload there is an overall

® — - time increase of about 10% from the 2
F-.-.__-l—__— rank runs.

||

*,-4. e * |- 100M vertices/MPI rank

.y N % = 50M vertices/MPI rank

f*” —e— 25M vertices/MPI rank

—+— 12.5M vertices/MPI rank

0 20 40 60 80 100 120 140

MPI Ranks

Distance-2 Runtime Performance Profile

We are competitive

with Zoltan for all but
two inputs, which are
highly skewed inputs.

Fraction of Tests

1.0 1

‘
- _\
0.6 1
0.4
0.2 1
— D2
0.0 - —— Zoltan

T T T T T T
1 2 3 4 5 B

Performance Ratio

We use a smaller set of
inputs for these profiles

Our approach sees at most
a 4.5x speedup relative to
Zoltan

Distance-2 Color Usage Performance Profile

We are competitive
with Zoltan on all
but one input,
where we use 46%
more colors than
Zoltan.

Fraction of Tests

1.0 |

I
0.8
0.6
0.4
0.2

— D2

0.0 4 —— Zoltan

1.0

1.1

I I
1.2 1.3
Performance Ratio

1.4

Our approach uses at
most 10% more colors
than Zoltan in all but one
case

Two Ghost Layers Reduce the Number of

Co

oo

Collective Communications (avg)

lective Communications

Unfortunately, this
does not translate
into speedup over
D1

g D1
U0 D1-2GL

2 4 8 16 32 64 128
MPI Ranks

Future Work

* Optimizing distance-2 communication
* Extending our approach to solve different coloring problems
* Exploring optimizations to D1-2GL communication

Main contributions and results

* We present the first distributed memory multi-GPU graph coloring
implementation, to our knowledge

e Our distributed distance-1 coloring implementation sees up to a 28x
speedup on 128 GPUs over a single GPU, and only a 7.5% increase in colors
on average

e Our distributed distance-2 coloring implementation also sees up to a 28x
SEeedup on 128 GPUs over a single GPU, and a 4.9% increase in colors in
the worst case

e Our approach is able to color a 12.8 Billion vertex mesh with 76.7 Billion
edges in under half a second

* We also present an approach that reduces the number of collective
communications by increasing the cost of each communication.

