
Rensselaer 1(1
EXRSCRLE COMPUTING PROJECT

Sandia
Nati na
Laborat

Distributed Graph Coloring
on Multiple GPUs
lan Bogle - RPI/Sandia National Laboratories

Erik Boman, Karen Devine, Siva Rajamanickam — Sandia National Laboratories

George Slota - RPI

We thank the Center of Computational Innovations at RPI for maintaining the equipment used in this research, including the AiMOS

supercomputer supported by the National Science Foundation under Grant No. 1828083. This research was also supported by the

Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National

Nuclear Security Administration. Sandia National Laboratories is a multimission laboratory managed and operated by National

Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

SAND2020-10981C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Main contributions and results

• We present the first distributed memory multi-GPU graph coloring
implementation, to our knowledge

• Our distributed distance-1 coloring implementation sees up to a 28x
speedup on 128 GPUs over a single GPU, and only a 7.5% increase in colors
on average

• Our distributed distance-2 coloring implementation also sees up to a 28x
speedup on 128 GPUs over a single GPU, and a 4.9% increase in colors in
the worst case

• Our approach is able to color a 12.8 Billion vertex mesh with 76.7 Billion
edges in under half a second

• We also present an approach that reduces the number of collective
communications by increasing the cost of each communication.

Graph Coloring is Useful for Finding
Concurrency

• Computations with specific data access patterns can be parallelized
with colorings

• Compiler parallelization, register allocation

• Preprocessing Jacobian and Hessian matrix computations

• Also useful for finding short-circuits in circuit designs

Each vertex ends
up with a different
color from its
neighbors.

Distance-1 Graph Coloring

Minimizing the
number of colors
used in the
coloring is known
to be NP-Hard.

A valid distance-2
coloring assigns
each vertex a color
not used by any
vertex at most two
edges away

Distance-2 Graph Coloring

Minimizing the
number of colors
used in the
coloring is known
to be NP-Hard.

Related Work

• Coloring heuristics use few enough colors to be useful to applications

• Two main parallelization approaches
• Jones & Plassmann (1993) uses independent sets to color vertices in parallel

• "Speculate & Iterate" approaches use heuristics in parallel and fix conflicts
• Gebremedhin and Manne (2000)

• More popular approach recently

• Shared Memory & GPU Implementations
• Catalyurek et al. (2012) and Rokos et al. (2015) present shared-memory implementations

• Deveci et al. (2016) and Grosset et al. (2011) present coloring implementations on the GPU

• Distributed approaches
• Bozdåg et al. (2008) adapt the "Speculate & Iterate" approach in distributed memory,

subsequent works (2010) include a distance-2 implementation.

• Sariyike et al. (2012) presents a hybrid MPI+OpenMP implementation.

We Leverage KokkosKernels to Run on GPUs

• KokkosKernels is a package that implements various linear algebra
and graph operations, using the Kokkos shared-memory parallel
programming model
• https://github.com/kokkos/kokkos-kernels

• The distance-1 graph coloring algorithms we use are described by
Deveci et al. (2016)

• The distance-2 graph coloring algorithm in KokkosKernels uses the
same Net-Based approach described by Tag et al. (2017)

• We vary the distance-1 algorithms based on how skewed the inputs
are.

Distributed "Speculate and Iterate" Coloring

• Based on Gebremedhin and Manne (2000)

procedure PARALLEL-CoLOR(Graph G = (V, E”
Color all local vertices
Comrnunicate colors of boundary vertices
do

Detect conflicts
Rccolor conflicting vertices
Communicate updated boundary colors

while Conflicts exist

Distr
i
buted Distance-1 Coloring

TUftegetriottsealicebbsmitliatavfranrtices,
reso igirn ghosts

host ertices are co es of the
&Pah rgg'N§s. Theyexis

edges to local boundary vertices

Distr
i
buted Distance-2 Coloring

Tlxis rio k I: , , arittatir4teito'd;womaiskt$
they aceafiliotorbtworedges away from a ghost vertex

O 0

O 0

O 0

• •
 ¡ A r A

• •

We add another layer of ghost vertices by copying
e first ghost layer's neighbors. Second layer

ghosts on . - - • !es to the first ghost layer

%
¡ A
0-0• •

O 0

O 0

Distance-1 with Two Ghost Layers (D1-2GL)
These gbattewilinntditctrantiztafter
Withrtitiolgtursimunication

o
a
o

Process A Process B

Wei-el ptect 6oriflirctesolrovistentIliyts
inategepcizattlypwithout
communicating (in this example)

• / 0
,.. ,...t , t , ,....,
I "` I "•

t A t 1 ,

,, ,

_0..
, , 0t , t A

• . •—

o

D1-2GL Aims To Reduce the Total Number of
Collective Communications

• Second ghost layer vertices can get recolored, in general

• Local colorings need to make the same choices independently

• Each communication costs more
• Ghosts can be on more than one process

• Each ghost copy also copies its neighbors

• Very expensive for dense inputs

Our Results Include Real and Synthetic Inputs

• Our real inputs come from a variety of domains
• Including: PDEs, social networks, road networks

• Range in size from 0.9 M vtx, 21 M edges to 30 M vtx, 3.3 B edges

• Max degrees vary from 13 to 2.9 M

• Use XtraPuLP graph partitioner developed by Slota et al. (2017)

• Our synthetic inputs are uniform hexahedral meshes
• Vary only one dimension to keep communication costs constant

• Partitioned in slabs

• Range in size from 12.5 M vtx, 75 M edges to 12.8 B vtx, 76.7 B edges

1
1
1
1
1
1
1

Experimental Setup

• We performed tests on AiMOS, housed at RPI.
• 268 nodes with 2 IBM Power9 3.15GHz processors

• 4 NVIDIA Tesla V100 GPUs with 16GB of memory connected with NVLink

• lnfiniband interconnect
• Compiled with xIC 16.1.1, and Spectrum MPI with GPU-Direct disabled

• We run all experiments with 4 ranks per node
• On GPU runs each rank gets an exclusive GPU
• For performance profiles we use 128 ranks, or the largest run for which all
approaches completed a run

• Zoltan is a package of the Trilinos Library containing distributed
combinatorial algorithms, has MPI-only distance-1 and distance-2
implementations
• http://cs.sandia.gov/zoltan
• Run with 4 ranks per node, no shared-memory parallelism

Distance-1 Runtime Performance Profile
Performance ratio
can be thought of

as how many times
slower one

approach is than
the other

Fr
ac

ti
on

 o
f
Te
st
s

Our approach is only 8%

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

slower for a single input.

2 4 8

7erfon7riance Ratio

1C

Our approach is around 12x
faster than Zoltan in the best

case

Distance-1 Color Usage Performance Profile
1 0

Zoltan uses fewer
colors in 60% of the

inputs
0.8

Fr
ac
ti
on
 o
f
Te
st
s

0.4 -

0.2 -

0.0 -

In the worst case, Zoltan uses 46% fewer
colors than our approach

1 1
1.0 1.1 1.2 1.3

Performance Ratio

1.4

On average we use
6.8% more colors than
Zoltan

Distance-1 Weak Scaling

0 I

0.1

- *

•

4)"

The largest input we ran has 12.8 Billion

_az
vertices and 76.7 Billion edges, which
was colored in under half a second.

For each workload there is an overall
time increase of about 10% from the 2
rank runs.

MOM vertices/MPI rank

—0— 50M vertices/MPI rank
—46— 25M vertices/MPI rank

—qt— 12.5M vertices/MPI rank

ia • ;1 ji 80 100 120 140

M 1)1 Raiiks

Distance-2 Runtime Performance Profile

We are competitive
with Zoltan for all but
two inputs, which are
highly skewed inputs.

C..2 -

- D2

- Zoltar.

1 2
1 1 1 1
3 4 5 6

Performance Ratio

We use a smaller set of
inputs for these profiles

Our approach sees at most
a 4.5x speedup relative to
Zoltan

Distance-2 Color Usage Performance Profile

We are competitive
with Zoltan on all
but one input,
where we use 46%
more colors than
Zoltan.

1.0 -

0.2

0.0 -

- D2

- Zoltan

Ll L2 1.3

Performance Ratio

L4

Our approach uses at
most 10% more colors
than Zoltan in all but one
case

Two Ghost Layers Reduce the Number of
Collective Communications

2 4 8 16 32 64 128

MPI Ranks

Unfortunately, this

does not translate

into speedup over
D1

D1

d o D1-2GL

Future Work

• Optimizing distance-2 communication

• Extending our approach to solve different coloring problems

• Exploring optimizations to D1-2GL communication

Main contributions and results

• We present the first distributed memory multi-GPU graph coloring
implementation, to our knowledge

• Our distributed distance-1 coloring implementation sees up to a 28x
speedup on 128 GPUs over a single GPU, and only a 7.5% increase in colors
on average

• Our distributed distance-2 coloring implementation also sees up to a 28x
speedup on 128 GPUs over a single GPU, and a 4.9% increase in colors in
the worst case

• Our approach is able to color a 12.8 Billion vertex mesh with 76.7 Billion
edges in under half a second

• We also present an approach that reduces the number of collective
communications by increasing the cost of each communication.

