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Main contributions and results

* We present the first distributed memory multi-GPU graph coloring
implementation, to our knowledge

e Our distributed distance-1 coloring implementation sees up to a 28x
speedup on 128 GPUs over a single GPU, and only a 7.5% increase in colors
on average

e Our distributed distance-2 coloring implementation also sees up to a 28x
SEeedup on 128 GPUs over a single GPU, and a 4.9% increase in colors in
the worst case

e Our approach is able to color a 12.8 Billion vertex mesh with 76.7 Billion
edges in under half a second

* We also present an approach that reduces the number of collective
communications by increasing the cost of each communication.



Graph Coloring is Useful for Finding
Concurrency

 Computations with specific data access patterns can be parallelized
with colorings

* Compiler parallelization, register allocation
* Preprocessing Jacobian and Hessian matrix computations
 Also useful for finding short-circuits in circuit designs



Distance-1 Graph Coloring
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Related Work

* Coloring heuristics use few enough colors to be useful to applications

* Two main parallelization approaches
e Jones & Plassmann (1993) uses independent sets to color vertices in parallel

» “Speculate & Iterate” approaches use heuristics in parallel and fix conflicts
* Gebremedhin and Manne (2000)
* More popular approach recently

e Shared Memory & GPU Implementations

e Catalyurek et al. (2012) and Rokos et al. (2015) present shared-memory implementations
* Deveci et al. (2016) and Grosset et al. (2011) present coloring implementations on the GPU

e Distributed approaches

* Bozdag et al. (2008) adapt the “Speculate & Iterate” approach in distributed memory,
subsequent works (2010) include a distance-2 implementation.

» Sariylce et al. (2012) presents a hybrid MPI+OpenMP implementation.



We Leverage KokkosKernels to Run on GPUs

» KokkosKernels is a package that implements various linear algebra
and graph operations, using the Kokkos shared-memory parallel
programming model

* https://github.com/kokkos/kokkos-kernels

* The distance-1 graph coloring algorithms we use are described by
Deveci et al. (2016)

* The distance-2 graph coloring algorithm in KokkosKernels uses the
same Net-Based approach described by Tac et al. (2017)

* We vary the distance-1 algorithms based on how skewed the inputs
are.



Distributed “Speculate and Iterate” Coloring

* Based on Gebremedhin and Manne (2000)

procedure PARALLEL-COLOR(Graph G = (V. FE))
Color all local vertices
Communicate colors of boundary vertices
do
Detect conflicts
Recolor conflicting vertices
Communicate updated boundary colors
while Conflicts exist



Distributed Distance-1 Coloring
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Distributed Distance-2 Coloring
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Distance-1 with Two Ghost Layers (D1-2GL)
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D1-2GL Aims To Reduce the Total Number of
Collective Communications

* Second ghost layer vertices can get recolored, in general
* Local colorings need to make the same choices independently

* Each communication costs more
e Ghosts can be on more than one process
* Each ghost copy also copies its neighbors
* Very expensive for dense inputs



Our Results Include Real and Synthetic Inputs

e Qur real inputs come from a variety of domains
* Including: PDEs, social networks, road networks
* Range in size from 0.9 M vtx, 21 M edges to 30 M vtx, 3.3 B edges

 Max degrees vary from 13to 2.9 M
* Use XtraPulLP graph partitioner developed by Slota et al. (2017)

e Our synthetic inputs are uniform hexahedral meshes

* Vary only one dimension to keep communication costs constant
 Partitioned in slabs

* Range in size from 12.5 M vtx, 75 M edges to 12.8 B vtx, 76.7 B edges




Experimental Setup

* We performed tests on AiMOS, housed at RPI.

e 268 nodes with 2 IBM Power9 3.15GHz processors
* 4 NVIDIA Tesla V100 GPUs with 16GB of memory connected with NVLink
* Infiniband interconnect
 Compiled with xIC 16.1.1, and Spectrum MPI with GPU-Direct disabled

 We run all experiments with 4 ranks per node
* On GPU runs each rank gets an exclusive GPU

* For performance profiles we use 128 ranks, or the largest run for which all
approaches completed a run

e Zoltan is a package of the Trilinos Library containing distributed
combinatorial algorithms, has MPI-only distance-1 and distance-2
implementations

* http://cs.sandia.gov/zoltan
* Run with 4 ranks per node, no shared-memory parallelism



Distance-1 Runtime Performance Profile
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Distance-1 Color Usage Performance Profile
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Distance-1 Weak Scaling
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Distance-2 Runtime Performance Profile
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Distance-2 Color Usage Performance Profile
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Future Work

* Optimizing distance-2 communication
* Extending our approach to solve different coloring problems
* Exploring optimizations to D1-2GL communication



Main contributions and results

* We present the first distributed memory multi-GPU graph coloring
implementation, to our knowledge

e Our distributed distance-1 coloring implementation sees up to a 28x
speedup on 128 GPUs over a single GPU, and only a 7.5% increase in colors
on average

e Our distributed distance-2 coloring implementation also sees up to a 28x
SEeedup on 128 GPUs over a single GPU, and a 4.9% increase in colors in
the worst case

e Our approach is able to color a 12.8 Billion vertex mesh with 76.7 Billion
edges in under half a second

* We also present an approach that reduces the number of collective
communications by increasing the cost of each communication.



