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Main contributions and results

• We present the first distributed memory multi-GPU graph coloring
implementation, to our knowledge

• Our distributed distance-1 coloring implementation sees up to a 28x
speedup on 128 GPUs over a single GPU, and only a 7.5% increase in colors
on average

• Our distributed distance-2 coloring implementation also sees up to a 28x
speedup on 128 GPUs over a single GPU, and a 4.9% increase in colors in
the worst case

• Our approach is able to color a 12.8 Billion vertex mesh with 76.7 Billion
edges in under half a second

• We also present an approach that reduces the number of collective
communications by increasing the cost of each communication.



Graph Coloring is Useful for Finding
Concurrency

• Computations with specific data access patterns can be parallelized
with colorings

• Compiler parallelization, register allocation

• Preprocessing Jacobian and Hessian matrix computations

• Also useful for finding short-circuits in circuit designs



Each vertex ends
up with a different
color from its
neighbors.

Distance-1 Graph Coloring

Minimizing the
number of colors
used in the
coloring is known
to be NP-Hard.



A valid distance-2
coloring assigns
each vertex a color
not used by any
vertex at most two
edges away

Distance-2 Graph Coloring

Minimizing the
number of colors
used in the
coloring is known
to be NP-Hard.



Related Work

• Coloring heuristics use few enough colors to be useful to applications

• Two main parallelization approaches
• Jones & Plassmann (1993) uses independent sets to color vertices in parallel

• "Speculate & Iterate" approaches use heuristics in parallel and fix conflicts
• Gebremedhin and Manne (2000)

• More popular approach recently

• Shared Memory & GPU Implementations
• Catalyurek et al. (2012) and Rokos et al. (2015) present shared-memory implementations

• Deveci et al. (2016) and Grosset et al. (2011) present coloring implementations on the GPU

• Distributed approaches
• Bozdåg et al. (2008) adapt the "Speculate & Iterate" approach in distributed memory,

subsequent works (2010) include a distance-2 implementation.

• Sariyike et al. (2012) presents a hybrid MPI+OpenMP implementation.



We Leverage KokkosKernels to Run on GPUs

• KokkosKernels is a package that implements various linear algebra
and graph operations, using the Kokkos shared-memory parallel
programming model
• https://github.com/kokkos/kokkos-kernels

• The distance-1 graph coloring algorithms we use are described by
Deveci et al. (2016)

• The distance-2 graph coloring algorithm in KokkosKernels uses the
same Net-Based approach described by Tag et al. (2017)

• We vary the distance-1 algorithms based on how skewed the inputs
are.



Distributed "Speculate and Iterate" Coloring

• Based on Gebremedhin and Manne (2000)

procedure PARALLEL-CoLOR(Graph G = (V, E”
Color all local vertices
Comrnunicate colors of boundary vertices
do

Detect conflicts
Rccolor conflicting vertices
Communicate updated boundary colors

while Conflicts exist
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Distance-1 with Two Ghost Layers (D1-2GL)
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D1-2GL Aims To Reduce the Total Number of
Collective Communications

• Second ghost layer vertices can get recolored, in general

• Local colorings need to make the same choices independently

• Each communication costs more
• Ghosts can be on more than one process

• Each ghost copy also copies its neighbors

• Very expensive for dense inputs



Our Results Include Real and Synthetic Inputs

• Our real inputs come from a variety of domains
• Including: PDEs, social networks, road networks

• Range in size from 0.9 M vtx, 21 M edges to 30 M vtx, 3.3 B edges

• Max degrees vary from 13 to 2.9 M

• Use XtraPuLP graph partitioner developed by Slota et al. (2017)

• Our synthetic inputs are uniform hexahedral meshes
• Vary only one dimension to keep communication costs constant

• Partitioned in slabs

• Range in size from 12.5 M vtx, 75 M edges to 12.8 B vtx, 76.7 B edges
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Experimental Setup

• We performed tests on AiMOS, housed at RPI.
• 268 nodes with 2 IBM Power9 3.15GHz processors

• 4 NVIDIA Tesla V100 GPUs with 16GB of memory connected with NVLink

• lnfiniband interconnect
• Compiled with xIC 16.1.1, and Spectrum MPI with GPU-Direct disabled

• We run all experiments with 4 ranks per node
• On GPU runs each rank gets an exclusive GPU
• For performance profiles we use 128 ranks, or the largest run for which all
approaches completed a run

• Zoltan is a package of the Trilinos Library containing distributed
combinatorial algorithms, has MPI-only distance-1 and distance-2
implementations
• http://cs.sandia.gov/zoltan
• Run with 4 ranks per node, no shared-memory parallelism



Distance-1 Runtime Performance Profile
Performance ratio
can be thought of

as how many times
slower one

approach is than
the other
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Distance-1 Color Usage Performance Profile
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Distance-1 Weak Scaling
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Distance-2 Runtime Performance Profile

We are competitive
with Zoltan for all but
two inputs, which are
highly skewed inputs.
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Our approach sees at most
a 4.5x speedup relative to
Zoltan



Distance-2 Color Usage Performance Profile

We are competitive
with Zoltan on all
but one input,
where we use 46%
more colors than
Zoltan.
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than Zoltan in all but one
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Two Ghost Layers Reduce the Number of
Collective Communications
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Future Work

• Optimizing distance-2 communication

• Extending our approach to solve different coloring problems

• Exploring optimizations to D1-2GL communication



Main contributions and results

• We present the first distributed memory multi-GPU graph coloring
implementation, to our knowledge

• Our distributed distance-1 coloring implementation sees up to a 28x
speedup on 128 GPUs over a single GPU, and only a 7.5% increase in colors
on average

• Our distributed distance-2 coloring implementation also sees up to a 28x
speedup on 128 GPUs over a single GPU, and a 4.9% increase in colors in
the worst case

• Our approach is able to color a 12.8 Billion vertex mesh with 76.7 Billion
edges in under half a second

• We also present an approach that reduces the number of collective
communications by increasing the cost of each communication.


