Rendezvous algorithms for large-scale particle
simulations

SAND2020- 10956PE

Steve Plimpton (SNL) and Chris Knight (ANL)

CoPA All-Hands Meeting
October 2020 - virtual Santa Fe

(1) Summary of charge Qs
(2) What is a rendezvous algorithm and why useful?
(3) FY21 plans for short-range MD

#CCR

Center for Computing Research

@ Sandia Sandia National Laboratories is a multi-mission laboratory managed and operated by

Nafional Ntionsl Technology and Engineering Solutionsof Sani, LLC.,a wholly owned subsidary of /A I ;W >4

v
La . Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security lr” v A m‘
bOratories agministration under contract DE-NAO003525. Presentation: SAND2019-10268 O S Gy ey

Charge questions for short-range MD

Details on all 4 Qs were addressed in Stan's talk

(1) Summarize progress towards KPP-3 objectives

o EXAALT is chief customer for this portion of CoPA

e benchmark Stan discussed is its FOM
e 350x means life is stress-free for EXAALT
o EXAALT can focus on topics like on-the-fly ML potentials

o LAMMPS is a secondary customer

e performance improvements generally
e everything we do via CoPA is released publicly in LAMMPS

o fftMPI customers: LAMMPS, WarpX, heFFTe
o LAMMPS - long-range Coulombics, now polarized force fields

e WarpX - now a dormant collaboration
o heFFTe - used fftMPIl comm algorithms as starting point

Charge questions for short-range MD

(2) Describe performance on Summit
@ FOM at end of FY19 = 93x, end of FY20 = 330x

e FY19: 16x Summit vs Mira, 5.8x GPU optimizations
o FY20: further 3.7x GPU optimizations

Charge questions for short-range MD

(2) Describe performance on Summit

@ FOM at end of FY19 = 93x, end of FY20 = 330x
e FY19: 16x Summit vs Mira, 5.8x GPU optimizations
e FY20: further 3.7x GPU optimizations

(3) Describe progess on Iris and/or Tulip

Stan is the POC

Tulip: many compiler bugs, now running

Iris: have account, Stan not yet running (others are)

run-time and roofline analysis for all 3 GPUs (N Mehta, LBL)
permission granted to include in accepted conf paper !

Charge questions for short-range MD

(2) Describe performance on Summit

@ FOM at end of FY19 = 93x, end of FY20 = 330x

e FY19: 16x Summit vs Mira, 5.8x GPU optimizations

o FY20: further 3.7x GPU optimizations
(3) Describe progess on Iris and/or Tulip
Stan is the POC
Tulip: many compiler bugs, now running
Iris: have account, Stan not yet running (others are)
run-time and roofline analysis for all 3 GPUs (N Mehta, LBL)
permission granted to include in accepted conf paper !

(4) Critical dependencies and risks
@ Success = EXAALT reaches or exceeds its 50x FOM
@ Dependencies: just Kokkos
e Risk mitigation: GPU package work by Mike Brown (Intel)

Why work on rendezvous algorithms

Benchmarking LAMMPS on full Mira (~1M MPI tasks)
for billion-atom problems

Certain setup operations were very slow
Took much longer to setup the benchmark than to run it!
Chris identified the bottlenecks

Realized rendezvous algorithms could be a solution

What is a rendezvous algorithm

3 kinds of communciation patterns in parallel scientific apps

(1) Regular pattern
@ Each proc knows who to send to and who to receive from

e Examples: ghost comm of grid cells or particles,
FFT transpose

@ Use: MPI_Send(), MPI_Recv() or MPI_lrecv(), or
MPI|_Sendrecv()

What is a rendezvous algorithm

3 kinds of communciation patterns in parallel scientific apps

(1) Regular pattern
@ Each proc knows who to send to and who to receive from

e Examples: ghost comm of grid cells or particles,
FFT transpose

e Use: MPI_Send(), MPI_Recv() or MPI_lrecv(), or

MPI_Sendrecv()
(

lrregular pattern

Each proc knows who to send to, but not who to receive from

Use: MPI_Reduce_scatter() for count of procs sending to me

2)
]
@ Examples: load-balancing, sparse matrix multiply
]
@ One irregular comm can setup many regular comms
"]

Trilinos uses this a lot

Less common pattern = rendezvous

(3) Rendezvous pattern

e Each proc knows neither who to send to,
nor who to receive from
@ Example: next slide
o Key idea:
o define an intermediate rendezvous decomp (RD) of data
each proc knows who to send its data to in RD

perform the parallel computation in RD
RD procs know who to send results to

e Use: MPI_All2allv() twice,
sandwiched around a callback to RD function

Less common pattern = rendezvous

(3) Rendezvous pattern

e Each proc knows neither who to send to,
nor who to receive from

Example: next slide

Key idea:

define an intermediate rendezvous decomp (RD) of data
each proc knows who to send its data to in RD

perform the parallel computation in RD

RD procs know who to send results to

e Use: MPI_All2allv() twice,

sandwiched around a callback to RD function

Regular/irregular are more common patterns

Pattern (3) is less common, but can be a bottleneck

A rendezvous alg can dramatically reduce the bottleneck

Rigid-body setup for MD

1 2 3

e Each atom stores an ID for the body it belongs to

@ Collection of bodies can be polydisperse:
different sizes, shapes, and #s of particles

Rigid-body setup for MD

1 2 3

@ Setup for ridid bodies requires knowing:
o which atom is closest to the geometric center of body (owner)

its distance to furthest particle in the body (comm cutoff)

every atom knows owning atom ID for its body

owning atom: stores xcom, Vcom, orientation, L

sum forces and torques, integrate body egs of motion,
update all atom positions and velocities

e But how to figure this out?

all a proc knows is the body IDs and positions of its atoms
has no idea how many other atoms in any body,
or which atoms they are, or what procs own them

Previous setup algorithm was slow at scale

Nodes 1 8 64 256 1K 4K 16K 48K
MPI 16 128 1K 4K 16K | 64K | 256K | 768K
Bodies || 5.2K | 42K | 336K | 1.3M | 5.4M | 22M | 86M | 258M
Atoms || 184K | 1.56M | 12M | 47M | 188M | 752M 3B 9B

| Ring [0.121] 1.00 | 756 | 31.0 [127 [497 [*2000 | *6000 |

@ Timing in seconds, asterisk times are estimated

e Brute-force ring algorithm scales as O(N), independent of P
@ 30 s setup time acceptable for a long run, but 6000 s is not!

New rendezvous algorithm

RD = rendezvous decomposition
e random M/P subset of bodies assigned to each proc in RD
@ owning proc = hash(bodylD) modulo P

New rendezvous algorithm

RD = rendezvous decomposition
e random M/P subset of bodies assigned to each proc in RD
@ owning proc = hash(bodylD) modulo P

Rendezvous algorithm:
@ Send tuple for each atom to RD: (bodylD,atomID,xyz,proclD)

@ RD computation via loops over my RD tuples:

o identify owning atom ID for each body
e compute distance to furthest atom in each body

© Send tuple for each atom back to owning proclD:
(atomID,ownerID)

New rendezvous algorithm

RD = rendezvous decomposition
e random M/P subset of bodies assigned to each proc in RD
@ owning proc = hash(bodylD) modulo P

Rendezvous algorithm:

@ Send tuple for each atom to RD: (bodylD,atomID,xyz,proclD)
@ RD computation via loops over my RD tuples:

o identify owning atom ID for each body
e compute distance to furthest atom in each body

© Send tuple for each atom back to owning proclD:
(atomID,ownerID)

@ Steps (1) and (3) are MPI_Alltoallv() operations
@ Step (2) computation is nicely load-balanced

Rvous algorithm is faster for all problem sizes

Nodes 1 8 64 256 1K 4K 16K 48K
MPI 16 128 1K 4K 16K 64K | 256K | 768K
Bodies || 5.2K | 42K | 336K | 1.3M | 54M | 22M | 86M | 258M

Atoms || 184K | 1.5M | 12M | 47M | 188M | 752M | 3B 9B

Ring 0.121 | 1.00 | 7.56 | 31.0 127 497 | *2000 | *6000
Rvous || 0.027 | 0.026 | 0.028 | 0.033 | 0.066 | 0.266 | 1.17 3.49

@ Rendezvous alg is 4.5x faster on 1 node (16 cores or MPI tasks)

@ 940x faster on 64 nodes, 1720x on 48K nodes (3/4 M MPI tasks)
@ Rendezvous algorithm scales as O(N/P),

one datum/atom sent randomly elsewhere twice

Rendezvous conclusions

Now used 3 or 4 places in each of two ECP particle codes:
LAMMPS, SPARTA (DSMC, also uses a grid)

Not all one-time setup ops, also occasional analysis ops
Can be coded as a blackbox method:

e once the method is available, easy to try out

e performance is often suprisingly good

o leverages large bisection comm bandwidth of big machines
Conceptually similar to a MapReduce for big-data analysis

e Google and open-source Hadoop
e non-MPI, but Hadoop shuffle = MPI_All2allv()

Rendezvous conclusions

Now used 3 or 4 places in each of two ECP particle codes:
LAMMPS, SPARTA (DSMC, also uses a grid)

Not all one-time setup ops, also occasional analysis ops

Can be coded as a blackbox method:

e once the method is available, easy to try out

e performance is often suprisingly good

o leverages large bisection comm bandwidth of big machines
Conceptually similar to a MapReduce for big-data analysis

e Google and open-source Hadoop
e non-MPI, but Hadoop shuffle = MPI_All2allv()

e Details: Plimpton and Knight, JPDC, 147, 184-195 (2020).

Possible tasks for FY21

@ SNAP for AMD and Intel GPUs
e within Kokkos package, possibly also GPU package
e benchmark not just SNAP, but also LJ, EAM, etc

Possible tasks for FY21

@ SNAP for AMD and Intel GPUs
e within Kokkos package, possibly also GPU package
e benchmark not just SNAP, but also LJ, EAM, etc
@ Compare two ghost comm algs on GPUs (Cabana)
e 6 neighbors in 3d versus 26, 12 kernel launches versus 2
e 26 alg: more messages but fewer kernel launches
o could be faster for small models with cheap potentials
® NN potentials into LAMMPS, fftMPI into Cabana?

e if Sam and Stuart and Cabana are interested

Possible tasks for FY21

@ SNAP for AMD and Intel GPUs
e within Kokkos package, possibly also GPU package
e benchmark not just SNAP, but also LJ, EAM, etc
@ Compare two ghost comm algs on GPUs (Cabana)
e 6 neighbors in 3d versus 26, 12 kernel launches versus 2
e 26 alg: more messages but fewer kernel launches
o could be faster for small models with cheap potentials
® NN potentials into LAMMPS, fftMPI into Cabana?
e if Sam and Stuart and Cabana are interested
@ Single or multi-precision option in LAMMPS Kokkos
o probably not useful for SNAP, but maybe other models
e other GPU MD codes exploit this more than we do
© AMOEBA/HIPPO polarized force fields into LAMMPS
o use of fftMPI for charge, dipoles, multipoles in new ways
o leveraging Josh Rackers, funded separately by Sandia fellowship
@ Setup an automated performance testing harness
o for GPUs and Kokkos and CPUs
e guard against performance degradation (easy on GPUs)

