
Rendezvous algorithms for large-scale particle
simulations

Steve Plimpton (SNL) and Chris Knight (ANL)

CoPA All-Hands Meeting

October 2020 - virtual Santa Fe

(1) Summary of charge Qs

(2) What is a rendezvous algorithm and why useful?

(3) FY21 plans for short-range MD

•••• CCR
Center for Computing Research

0 Sandia Sandia National Laboratories is a multi-mission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of 111A I V

National Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security IV
Laboratories Administration under contract DE-NA0003525. Presentation: SAND2019-10268 0

SAND2020-10956PE



Charge questions for short-range MD

Details on all 4 Qs were addressed in Stan's talk

(1) Summarize progress towards KPP-3 objectives

o EXAALT is chief customer for this portion of CoPA

o benchmark Stan discussed is its FOM
o 350x means life is stress-free for EXAALT
o EXAALT can focus on topics like on-the-fly ML potentials

o LAMMPS is a secondary customer

• performance improvements generally
• everything we do via CoPA is released publicly in LAMMPS

o fftMPl customers: LAMMPS, WarpX, heFFTe

o LAMMPS - long-range Coulombics, now polarized force fields
o WarpX - now a dormant collaboration
o heFFTe - used fFtMPl comm algorithms as starting point



Charge questions for short-range MD

(2) Describe performance on Summit

a FOM at end of FY19 = 93x, end of FY20 = 330x

a FY19: 16x Summit vs Mira, 5.8x GPU optimizations

a FY20: further 3.7x GPU optimizations



Charge questions for short-range MD

(2) Describe performance on Summit

o FOM at end of FY19 = 93x, end of FY20 = 330x

o FY19: 16x Summit vs Mira, 5.8x GPU optimizations

o FY20: further 3.7x GPU optimizations

(3) Describe progess on lris and/or Tulip

o Stan is the POC

o Tulip: many compiler bugs, now running

o Iris: have account, Stan not yet running (others are)

o run-time and roofline analysis for all 3 GPUs (N Mehta, LBL)

o permission granted to include in accepted conf paper !



Charge questions for short-range MD

(2) Describe performance on Summit

✓ FOM at end of FY19 = 93x, end of FY20 = 330x

o FY19: 16x Summit vs Mira, 5.8x GPU optimizations

o FY20: further 3.7x GPU optimizations

(3) Describe progess on lris and/or Tulip

O Stan is the POC

o Tulip: many compiler bugs, now running

o Iris: have account, Stan not yet running (others are)

o run-time and roofline analysis for all 3 GPUs (N Mehta, LBL)

o permission granted to include in accepted conf paper !

(4) Critical dependencies and risks

o Success = EXAALT reaches or exceeds its 50x FOM

o Dependencies: just Kokkos

o Risk mitigation: GPU package work by Mike Brown (Intel)



Why work on rendezvous algorithms

• Benchmarking LAMMPS on full Mira (-1M MPI tasks)

for billion-atom problems

• Certain setup operations were very slow

co Took much longer to setup the benchmark than to run it!

co Chris identified the bottlenecks

• Realized rendezvous algorithms could be a solution



What is a rendezvous algorithm

3 kinds of communciation patterns in parallel scientific apps

(1) Regular pattern

o Each proc knows who to send to and who to receive from

a Examples: ghost comm of grid cells or particles,

FFT transpose

o Use: MPI_Send(), MPI_Recv() or MPI_Irecv(), or
MPI_Sendrecv()



What is a rendezvous algorithm

3 kinds of communciation patterns in parallel scientific apps

(1) Regular pattern

ia Each proc knows who to send to and who to receive from

co Examples: ghost comm of grid cells or particles,
FFT transpose

a Use: MPI_Send(), MPI_Recv() or MPI_Irecv(), or

MPI_Sendrecv()

(2) Irregular pattern

o Each proc knows who to send to, but not who to receive from

a Examples: load-balancing, sparse matrix multiply

o Use: MPI_Reduce_scatter() for count of procs sending to me

o One irregular comm can setup many regular comms

ia Trilinos uses this a lot



Less common pattern = rendezvous

(3) Rendezvous pattern

9 Each proc knows neither who to send to,

nor who to receive from

o Example: next slide

✓ Key idea:

o define an intermediate rendezvous decomp (RD) of data
o each proc knows who to send its data to in RD
a perform the parallel computation in RD
o RD procs know who to send results to

o Use: MPI_All2allv0 twice,

sandwiched around a callback to RD function



Less common pattern = rendezvous

(3) Rendezvous pattern

9 Each proc knows neither who to send to,

nor who to receive from

o Example: next slide

o Key idea:

o define an intermediate rendezvous decomp (RD) of data
o each proc knows who to send its data to in RD
a perform the parallel computation in RD
o RD procs know who to send results to

o Use: MPI_All2allv() twice,

sandwiched around a callback to RD function

o Regular/irregular are more common patterns

o Pattern (3) is less common, but can be a bottleneck

o A rendezvous alg can dramatically reduce the bottleneck



Rigid-body setup for MD

o Each atom stores an ID for the body it belongs to

co Collection of bodies can be polydisperse:
different sizes, shapes, and #s of particles



Rigid-body setup for MD

o Setup for ridid bodies requires knowing:
• which atom is closest to the geometric center of body (owner)
• its distance to furthest particle in the body (comm cutoff)
• every atom knows owning atom ID for its body
• owning atom: stores xcom, vcom, orientation, L
• sum forces and torques, integrate body eqs of motion,

update all atom positions and velocities

• But how to figure this out?
• all a proc knows is the body IDs and positions of its atoms
• has no idea how many other atoms in any body,

or which atoms they are, or what procs own them



Previous setup algorithm was slow at scale

Nodes
M PI
Bodies

Atoms

1

16
5.2K

184K

8
128
42K

1.5M

64
1K

336K
12M

256

4K

1.3M
47M

1K

16K
5.4M

188M

4K

64K
22M

752M

16K

256K
86M

3B

48K

768K
258M

9B

Ring 0.121 1.00 7.56 31.0 127 497 *2000 *6000

e Timing in seconds, asterisk times are estimated

• Brute-force ring algorithm scales as 0(N), independent of P

a 30 s setup time acceptable for a long run, but 6000 s is not!



New rendezvous algorithm

RD = rendezvous decomposition

a random MIP subset of bodies assigned to each proc in RD

fa owning proc = hash(bodylD) modulo P



New rendezvous algorithm

RD = rendezvous decomposition

a random MIP subset of bodies assigned to each proc in RD

a owning proc = hash(bodylD) modulo P

Rendezvous algorithm:

O Send tuple for each atom to RD: (bodylD,atomlD,xyz,proclD)

@ RD computation via loops over my RD tuples:
a identify owning atom ID for each body
• compute distance to furthest atom in each body

(i) Send tuple for each atom back to owning proclD:

(atomlD,ownerlD)



New rendezvous algorithm

RD = rendezvous decomposition

a random MIP subset of bodies assigned to each proc in RD

a owning proc = hash(bodylD) modulo P

Rendezvous algorithm:

O Send tuple for each atom to RD: (bodylD,atomlD,xyz,proclD)

@ RD computation via loops over my RD tuples:
a identify owning atom ID for each body
• compute distance to furthest atom in each body

(i) Send tuple for each atom back to owning proclD:

(atomlD,ownerlD)

a Steps (1) and (3) are MPI_Alltoallv() operations

• Step (2) computation is nicely load-balanced



Rvous algorithm is faster for all problem sizes

Nodes
MPI
Bodies
Atoms

1
16

5.2K
184K

8
128
42K
1.5M

64
1K
336K
12M

256
4K
1.3M
47M

1K
16K
5.4M
188M

4K
64K
22M
752M

16K
256K
86M
3B

48K
768K
258M
9B

Ring 0.121 1.00 7.56 31.0 127 497 *2000 *6000
Rvous 0.027 0.026 0.028 0.033 0.066 0.266 1.17 3.49

o Rendezvous alg is 4.5x faster on 1 node (16 cores or MPI tasks)
• 940x faster on 64 nodes, 1720x on 48K nodes (3/4 M MPI tasks)
o Rendezvous algorithm scales as 0(N/P),

one datum/atom sent randomly elsewhere twice



Rendezvous conclusions

o Now used 3 or 4 places in each of two ECP particle codes:
LAMMPS, SPARTA (DSMC, also uses a grid)

co Not all one-time setup ops, also occasional analysis ops

O Can be coded as a blackbox method:

o once the method is available, easy to try out
o performance is often suprisingly good
o leverages large bisection comm bandwidth of big machines

O Conceptually similar to a MapReduce for big-data analysis

o Google and open-source Hadoop
o non-MPI, but Hadoop shuffle = MPI_All2allv()



Rendezvous conclusions

o Now used 3 or 4 places in each of two ECP particle codes:
LAMMPS, SPARTA (DSMC, also uses a grid)

co Not all one-time setup ops, also occasional analysis ops

o Can be coded as a blackbox method:

o once the method is available, easy to try out
o performance is often suprisingly good
o leverages large bisection comm bandwidth of big machines

co Conceptually similar to a MapReduce for big-data analysis

o Google and open-source Hadoop
o non-MPI, but Hadoop shuffle = MPI_All2allv()

• Details: Plimpton and Knight, JPDC, 147, 184-195 (2020).



Possible tasks for FY21

O SNAP for AMD and Intel GPUs
o within Kokkos package, possibly also GPU package
o benchmark not just SNAP, but also LJ, EAM, etc



Possible tasks for FY21

• SNAP for AMD and Intel GPUs
o within Kokkos package, possibly also GPU package
a benchmark not just SNAP, but also LJ, EAM, etc

(1) Compare two ghost comm algs on GPUs (Cabana)
o 6 neighbors in 3d versus 26, 12 kernel launches versus 2
O 26 alg: more messages but fewer kernel launches
o could be faster for small models with cheap potentials

• NN potentials into LAMMPS, fftMPl into Cabana?
a if Sam and Stuart and Cabana are interested



Possible tasks for FY21

€) SNAP for AMD and Intel GPUs
o within Kokkos package, possibly also GPU package
a benchmark not just SNAP, but also LJ, EAM, etc

• Compare two ghost comm algs on GPUs (Cabana)
✓ 6 neighbors in 3d versus 26, 12 kernel launches versus 2
O 26 alg: more messages but fewer kernel launches
o could be faster for small models with cheap potentials

(i) NN potentials into LAMMPS, fftMPl into Cabana?
a if Sam and Stuart and Cabana are interested

CI Single or multi-precision option in LAMMPS Kokkos
o probably not useful for SNAP, but maybe other models
o other GPU MD codes exploit this more than we do

Q) AMOEBA/HIPPO polarized force fields into LAMMPS
o use of fitMPl for charge, dipoles, multipoles in new ways
o leveraging Josh Rackers, funded separately by Sandia fellowship

O Setup an automated performance testing harness
o for GPUs and Kokkos and CPUs
o guard against performance degradation (easy on GPUs)


