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ABSTRACT 
Seismic source modeling allows researchers both to simulate how a source that induces seismic 
waves interacts with the Earth to produce observed seismograms and, inversely, to infer what 
the time histories, sizes, and force distributions were for a seismic source given observed 
seismograms.  In this report, we discuss improvements made in FY21 to our software as 
applies to both the forward and inverse seismic source modeling problems.  For the forward 
portion of  the problem, we have added the ability to use full 3-D nonlinear simulations by 
implementing 3-D time varying boundary conditions within Sandia’s linear seismic code 
Parelasti.  Secondly, on the inverse source modeling side, we have developed software that 
allows us to invert seismic gradiometer-derived observations in conjunction with standard 
translational motion seismic data to infer properties of  the source that may improve 
characterization in certain circumstances.  First, we describe the basic theory behind each 
software enhancement and then demonstrate the software in action with some simple 
examples. 
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ACRONYMS AND DEFINITIONS 

Abbreviation Definition

2-D two dimensional

2D-C two dimensional cylindrical

3-C three component

3-D three dimensional

cc cubic centimeter 

CPML convolutional perfectly matched layer

E-W east-west

FY21 fiscal year 2021

FY22 fiscal year 2022

g gram

GF Green’s function

Hz Hertz

kg kilogram

m meter

N-S north-south

P-wave primary (compressional) wave

RMS root mean square

s second

S-wave shear wave

TVBC time varying boundary condition

Vp P-wave velocity

Vs S-wave velocity
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1. INTRODUCTION 
Modeling of  seismic sources can involve simulating a source of  energy or distributions of  forces 
within the Earth that induces seismic waves, which propagate through the Earth and are recorded at 
seismic recorders.  This aspect of  seismic source modeling, the forward problem, can allow 
researchers to discern what the ground motion from some scenario source would look like and study 
how parameters of  the source affect those observed ground motions.  Seismic source 
representations can range from simple combinations of  force couples acting at a point, which is a 
linear far-field approximation, to full nonlinear simulations of  the energy source including material 
phase changes and shock wave propagation.  It is well known that buried explosions nonlinearly 
deform the surrounding earth, causing fracturing and plastic deformation of  the material.  Thus, in 
order to study the effects of  the source parameters and near-source environmental properties, it is 
proper to use a nonlinear algorithm to initially propagate the shock waves produced by an explosion.    
However, because of  the complex physical equations that need to be solved in order to simulate 
explosions, nonlinear algorithms are much more computationally expensive compared to linear 
seismic algorithms (e.g. Preston et al., 2021).  Therefore, it is computationally advantageous to 
switch to a linear seismic wave propagation algorithm once the propagating wavefield can be well 
approximated by linear elastic theory.  In order to take advantage of  the strengths of  both nonlinear 
and linear algorithms, a coupling between the two types of  algorithms is required.  This report 
documents the implementation of  3-D time-varying boundary conditions (TVBC) in Sandia’s linear 
elastic code Parelasti (Poppeliers and Preston, 2020).  This TVBC allows a nonlinear algorithm such 
as CTH (Schmitt et al., 2017) to be used to initiate the source and propagate shock waves to the 
elastic radius, where by definition the waves can be well approximated as linear seismic waves, and 
recorded.  These recordings can then be “played,” in a sense, to drive linear wave motion within 
Parelasti to much farther distances than would be computationally feasible for nonlinear algorithms. 

What we described above is the simulation of  energy source to seismograms, or the forward 
modeling of  the seismic source.  The flip side, the inverse problem, involves using observed 
seismograms and inferring what distributions of  forces, how big, and how those forces varied with 
time would optimally produce those observed seismograms.  Often, in the inverse case, linear 
assumptions are made and the source is simplified by assuming that forces or force couples acting at 
a single point (or set of  points) within the Earth can adequately predict observed ground motions.  
Additionally, it is often assumed that the observed seismograms can be written as a sum of  
convolutions of  impulse responses (Green’s functions; GF) with seismic source time functions (time 
evolution of  source components) (e.g. Aki and Richards, 2002).  Thus, for the inverse problem, 
nonlinear algorithms are not typically used primarily for simplicity, but these linear approximations 
are also generally quite good at replicating observations in practice (e.g. Poppeliers et al., 2020; 
Poppeliers and Preston, 2020; Preston et al., 2021).  Although seismic source inversion theory is well 
developed for traditional translational motion seismic data, it is not as well understood for seismic 
gradiometer data, which is becoming more prevalent.  This report also describes our new ability to 
utilize a combination of  both traditional translational motion seismograms and gradiometer data to 
solve for the optimal seismic source model that matches the data. 

First, we briefly describe the theory behind the 3-D TVBC implementation.  Also, because the CTH 
simulations that we have done to date have assumed 2-D cylindrical symmetry (2D-C), we will 
describe how we translated 2D-C output from CTH to full 3-D TVBC information in order to test 
the 3-D TVBC implementation.  Chapter 3 shows the operation of  the 3-D TVBC within a simple 
3-D Earth model, where the 2D-C assumption from the CTH simulations is still valid, and a second 
where a full 3-D model with topography demonstrates the full 3-D TVBC in action and also how 
the breaking of  the 2D-C assumption from the CTH simulations induces some noise in the 3-D 
results that will be overcome once full 3-D CTH simulations are completed as part of  FY22’s work.  
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In Chapter 4 we describe the theory and implementation for incorporating gradiometer observations 
into full waveform seismic moment tensor solutions.  Chapter 5 will then demonstrate full waveform 
moment tensor inversion using simulated gradiometer data within a 3-D Earth model first when 
using only translational and rotational motion data separately, and finally together in a joint inversion 
using both data types simultaneously.   
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2. 3-D TIME-VARYING BOUNDARY CONDITIONS 
We first briefly describe the 3-D linear elastic full waveform simulation code, Parelasti, then we 
describe how the 3-D time-varying boundary conditions (TVBC) were implemented within Parelasti, 
and, finally, the conversion from 2-D cylindrical symmetry CTH tracer data to the 3-D information 
needed by the 3-D TVBC. 

2.1. Parelasti 
Parelasti solves the 3-D elasto-dynamic velocity-stress first-order set of  partial differential equations: 

 (2-1a) 

 (2-1b) 

where  is the th component of  particle velocity (x, y, or z) at 3-D spatial location  and time , 
 is material density,  is the (i,j) component of  the 3x3 symmetric stress tensor,  is the 

time-varying body force source term in cartesian direction ,  and  are the Lamé and shear 
moduli for an isotropic elastic medium, and  is a time-varying moment tensor source term 
(e.g. Aki and Richards, 2002). 

These partial differential equations are solved with a time-domain standard-staggered-grid finite-
difference scheme using operators that are second-order accurate in time and fourth-order accurate 
in space.  Specifically, compressive stress components are located at the corners of  a unit cell, shear 
stresses are in the center of  each face of  the unit cell, and velocities are located at the mid-point of  
each edge of  the unit cell (Figure 2-1, top).  Velocity and stress component updates are also 
staggered in time, with stresses being updated on integer time steps and velocities at half-integer 
time steps (Figure 2-1, bottom).  Medium parameters are stored coincident with compressive stress 
components (unit cell corners).  Thus, densities and shear moduli must be interpolated to velocity 
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Figure 2-1:  One face of a 3-D unit cell (top) and time updating (bottom) for 
the staggered finite-difference scheme.



and shear stress locations, respectively.  Densities use simple linear interpolation onto velocity 
locations, but shear moduli use harmonic averaging of  the surrounding four shear moduli to 
interpolate these onto the face-centered shear stress location (Moczo et al., 2002). 

Seismic sources from a linear seismic source perspective can be introduced by specifying body force 
and/or moment tensor source terms as shown in Equations 2-1a,b above.  These source terms can 
be any time variable function that has a frequency content supported by the grid discretization in 
order to minimize numerical dispersion in the simulations.  One exception to this rule is impulse 
sources.  An impulse source time function (first time sample non-zero, remaining time samples zero) 
can be used to produce Green’s function (GF) or impulse response seismograms.  Using GFs allows 
a wide variety of  source time functions to be utilized with a single run of  Parelasti and also allows 
full waveform moment tensor source inversions since these directly use GFs.  A simple convolution 
of  the GFs with a properly band-limited source time function produces identical results as if  one 
had used that source time function to initialize Parelasti. 

2.2. 3-D Time Varying Boundary Condition 
The 3-D TVBC that is necessary for Parelasti is very similar to that described in Preston (2017) for 
the 2D-C code axiElasti given their similarities in storage locations and finite-difference stencils.  
The obvious difference is the addition of  an extra dimension.  Because Parelasti uses fourth order 
spatial finite-difference operators, at least three “layers” of  information, one unit cell in width (dh) 
are required in all three spatial dimensions from the nonlinear output at all time steps in order to 
drive the wavefield within Parelasti (Figure 2-2).  In order to update the compressive stress at point 
D in Parelasti (Figure 2-2) information from CTH (or any other algorithm) must be provided within 
the TVBC at velocity points A and C, along with information already available directly from Parelasti 
at velocity point E and the next velocity node off  the image to the right.  Similarly, to update the 
velocity at point E in Parelasti, compressive stress information from CTH at point B is required 
along with information already available from within Parelasti itself  for compressive stresses at point 
D and two other points off  the image to the right.  Similar arguments go for velocities at point D 
and shear stresses at point E within Parelasti.  Of  course, updating at point D in Parelasti also 
requires information upward and downward in the image as well as in and out of  the page for 3-D.  
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Figure 2-2:  Required spatial distribution of velocities (triangles, right-
pointing: horizontal velocities; upward-pointing: vertical velocities), 

compressive stresses (circles), and shear stresses (diamonds) needed by 
Parelasti from the CTH domain for time varying boundary conditions.  

Distance between A and C is dh.
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Thus, velocity and stress information one and a half  grid nodes away from the currently updating 
point must be available to Parelasti all three directions either from within Parelasti itself  or provided 
to it from the TVBC.  Instead of  being a single layer boundary condition, it is better thought of  as a 
rind surrounding the nonlinear source. 

2.3. 2-D CTH output to 3-D TVBC 
As mentioned in the introduction, we currently only have simulated nonlinear sources with the 2D-
C version of  CTH, primarily to save computational expense.  Besides this, it allows us to test how 
well a 2D-C nonlinear simulation, which is much less expensive computationally than a 3-D 
nonlinear simulation, can do in a true 3-D environment.  However, moving forward we will be 
utilizing CTH’s full 3-D capability.  Thus, development of  a 3-D TVBC in  Parelasti was a necessary 
prerequisite before we could do seismic simulations in full 3-D.  Because of  all this, we need to be 
able to translate CTH 2D-C output into the proper locations and thickness of  TVBC for 3-D 
Parelasti.  This is primarily a simple coordinate rotation, but the simple rind of  thickness dh shown 
in Figure 2-2 is not adequate information from 2D-C CTH to provide all that is needed when a 
cylinder is swept in 3-D by rotating the 2D-C TVBC about the z-axis.  This is due to the fact that 
Parelasti needs all three layers (1 dh thickness) of  information shown in Figure 2-2 at all 3-D 
discretized points surrounding the TVBC.  To meet this condition at all 3-D discrete points actually 
requires a rind of  thickness 3 dh in the radial direction in the captured data from 2D-C CTH.  
However, 1 dh thickness in the vertical dimension is still sufficient.  For completeness, translations 
from 2D-C CTH velocities and stresses to 3-D ones are shown below: 

 (2-2a) 

 (2-2b) 

 (2-2c) 

 (2-2d) 

 (2-2e) 

 (2-2f) 

 (2-2g) 

 (2-2h) 

 (2-2i) 

where  is a 3-D point,  is a 2-D cylindrical point, and  is the angle in the horizontal plane of  the 
3-D point relative to the positive x-axis direction about the z-axis through the centroid of  the 
source.  Also, since  is not directly provided by CTH, it must be computed from quantities that 
are provided, namely , , and pressure, , via: 

 (2-3) 

It should be noted that in a true 3-D environment, there will be a mismatch between what the 
TVBC derived from a 2D-C simulation of  CTH and the 3-D wavefield computed from Parelasti due 
to 3-D effects.  Because the TVBC is a hard boundary, meaning that Parelasti’s current calculations 
have no effect on the TVBC values, artifacts in the form of  reflections off  the TVBC boundaries 

vx(x, t) = vr(r, t)cos(ϕ)

vy(x, t) = vr(r, t)sin(ϕ)

vz(x, t) = vz(r, t)

σxx(x, t) = σrr(r, t)cos2(ϕ) + σθθ(r, t)sin2(ϕ)

σyy(x, t) = σrr(r, t)sin2(ϕ) + σθθ(r, t)cos2(ϕ)

σzz(x, t) = σzz(r, t)

σxy(x, t) =
1
2

sin(2ϕ)(σrr(r, t) − σθθ(r, t))
σxz(x, t) = σrz(r, t)cos(ϕ)

σyz(x, t) = σrz(r, t)sin(ϕ)

x r ϕ

σθθ
σrr σzz p

σθθ(r, t) = − 3p(r, t) − σrr(r, t) − σzz(r, t)
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will occur.  The closer the match between the CTH-derived TVBC values and those computed 
within Parelasti from the structure within the Parelasti model, the fewer artifacts and artificial 
reflections will occur off  the TVBC interface.  A perfect match between the values of  the TVBC 
and that within Parelasti would make the TVBC appear like it does not even exist, meaning no 
artifacts would be produced from interactions with the TVBC interface. 
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3. 3-D TVBC DEMONSTRATION 
In this chapter we demonstrate the 3-D TVBC in action in two scenarios.  The first is within a 3-D 
model that has 2-D cylindrical symmetry so that the 2D-C CTH output is valid.  This provides a 
verification of  the 3-D TVBC with a nonlinear code driving the 3-D full waveform simulation 
within Parelasti.  The second demonstration is using the 2D-C CTH output within a 3-D model with 
topography so that the 2D-C simulations results mismatch the conditions in the model.  This will 
evaluate what level of  error is introduced by using a much less computationally expensive 2-D 
nonlinear simulation within a 3-D model. 

3.1. Cylindrically Symmetric 3-D Parelasti Model 
In this section we will evaluate the 3-D TVBC described in Chapter 2 by using a 3-D model that 
adheres to the 2D-C assumption used in CTH to produce the TVBC values.  In this simulation, 18 
tons of  COMPC-4 (1.6 g/cc density) is buried 250 m below the Earth’s surface within 
homogeneous wet tuff  with air above the surface.  The CTH output is captured at a box placed at 
roughly 170 m distance from the source, both radially and in the plus and minus z-directions (Figure 
3-1).  For Parelasti, a 5 m grid node spacing was used to construct the 3-D Earth model with model 
domain extents of  approximately 1000 m in all three coordinate directions, x, y, and z.  The Parelasti 
Earth model was homogeneous with Vp=3278 m/s, Vs=1892 m/s and a density of  1950 kg/m3.  
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Figure 3-1:  TVBC points captured in 2D-C CTH simulation.  The black line at 0 m is the Earth’s 
surface, asterisk denotes the centroid of the CTH source, and blue circles are TVBC locations. 



We used a time step of  3e-5 s in Parelasti and simulated for 0.51 s.  A low pass filter with corner of  
17 Hz was applied to the CTH output before being used as a TVBC within Parelasti.  Free-surface 
(zero normal stresses) boundary conditions (e.g. Aki and Richards, 2002) were applied at the top of  
the model to approximate the air-earth interface within Parelasti, and convolutional perfectly 
matched layer (CPML; Komatitsch and Martin, 2007) boundaries were applied on the other five 
sides of  the model domain in order to mitigate artificial numerical reflections from the model 
boundaries.  The CPML boundary damps the velocities near the edges of  the domain, which causes 
the small velocity amplitudes seen near the sides of  the following displayed wavefield snapshot 
images and is especially noticeable in the late time (0.5099 s) snapshots. 

Figure 3-2a-c shows snapshots in time of  the vertical particle velocity through the centroid of  the 
source at three different times: 0.0809 s, 0.2222 s, and 0.5099 s post initiation of  the detonation.  At 
0.0809 s, as expected, the P-wave front is just reaching the surface at z=0 m, and in 3-D forms two 
hemispheres: the up-going wavefront has upward particle velocity; the down-going wavefront has 
downward particle velocity with a nodal plane through the centroid of  the source at z=250 m.  
Although in this cross-section, the TVBC appears as a rectangle, there are no obvious edge effects 
due to the TVBC.  Because the TVBC points are hard conditions (i.e. Parelasti computations have 
no effect on their values) and completely surround the source region with no gaps, whatever 
happens inside the TVBC box stays inside the TVBC box and has no effect on results outside the 
box; hence, it is shown as a partially translucent box.  Actually, some computational effort could be 
avoided by not computing anything inside the the TVBC volume because of  this, and this savings 
will be implemented in the future. 
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t = 0.0809 s

Figure 3-2a:  Snapshot of vertical particle velocity at time 0.0809 s through the centroid of 
the source.  Blue is upward particle motion; yellow is downward, and teal is near-zero 
vertical particle motion.  Color saturates at about +/- 1% of peak particle velocity.  The 

TVBC box is indicated as grey box.  Values inside the TVBC box do not affect the 
wavefield external to the box.



By 0.2222 s there is a clear reflection of  the P-wave off  the Earth’s surface with the beginnings of  
other free-surface interaction effects such as converted S-waves and surface waves.  There are 
perhaps some small artifacts of  the TVBC between the top of  the TVBC and the surface, but it is 
quite small given that the color saturates at approximately +/- 1% of  peak particle velocity in these 
images.  At 0.5099 s, the P-wave reflection has almost left the model domain with the P-to-S surface 
reflection being the dominant wavefront in the snapshot.  Some small amplitude surface waves are 
also about to propagate off  the left and right sides of  the model domain.  For comparison, in Figure 
3-3 we show the same snapshot but using a point isotropic moment tensor source (i.e. no TVBC) 
with the source time function determined via linear source equivalent modeling (Preston et al., 2021) 
using only Parelasti for the entire simulation.  In comparing the two snapshots, we see that near the 
TVBC box there are some artifacts that are quite small in amplitude, showing that there are some 
slight mismatches between the nonlinear and linear algorithms.  However, given the completely 
different sets of  equations solved, potential nonlinear effects that would be predicted by CTH but 
not Parelasti, and the different numerical implementations, the two codes are in remarkable 
agreement as shown by the very small amplitudes of  these artifacts. 

3.2. 3-D Parelasti Model 
The prior section demonstrated excellent agreement between the CTH-produced TVBC values and 
the wavefield predicted by Parelasti when the 3-D Earth model is consistent with the 2D-C 
assumption made by the CTH simulation.  This raises the question of  how well and what level of  
artifacts are produced when the 3-D Earth model used in Parelasti does not conform to that 
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t = 0.2222 s

Figure 3-2b:  Snapshot of vertical particle velocity at time 0.2222 s through the centroid 
of the source.  Blue is upward particle motion; yellow is downward, and teal is near-
zero vertical particle motion. Color saturates at about +/- 1% of peak particle velocity.  
The TVBC box is indicated as grey box.  Values inside the TVBC box do not affect the 

wavefield external to the box.  Main arrivals indicated by arrows and oval.

Direct P

Reflections 
from surface
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t = 0.5099 s

Figure 3-3:  Snapshot of vertical particle velocity at time 0.5099 s through the source 
using point isotropic moment tensor source (no TVBC).  Blue is upward particle motion; 
yellow is downward, and teal is near-zero vertical particle motion.  Same relative color 

scale as in Figure 3-2c.

t = 0.5099 s

Figure 3-2c:  Snapshot of vertical particle velocity at time 0.5099 s through the centroid of 
the source.  Blue is upward particle motion; yellow is downward, and teal is near-zero 
vertical particle motion.  Color saturates at about +/- 1% of peak particle velocity.  The 

TVBC box is indicated as grey box.  Values inside the TVBC box do not affect the 
wavefield external to the box.  Main arrivals indicated by arrows.

P reflection

P-to-S reflectionSurface waves



assumption.  For this test, we do not stray extremely far from the 2D-C assumption in that we still 
use the same homogeneous medium parameters within the solid Earth portion of  the model as we 
did in the previous section.  However, we do add topography to the model.  Above the topography, 
we use uniform air properties of  Vp=330 m/s and density of  1 kg/m3.  The topographic surface is 
shown in Figure 3-4, which has roughly 380 m of  variation between the highest and lowest points of  
the model.  The elevation of  the topography directly above the source (x = 0 m, y = 0 m) is 
arbitrarily set to zero.  Note that some topography lies below the source position in z.  The TVBC 
cylinder is identical to that used in the previous section (Figure 3-1) and does not intersect the 
topographic surface at any point.  Directly above the TVBC, the topography is relatively muted with 
about 10 m of  variation (dashed circle in Figure 3-4).  However, there are strong topographic 
variations by ~500 m from the source point. 

Because of  these topographic variations, 2-D cylindrical symmetry is no longer valid and artifacts 
are expected in the simulations that use the 2D-C CTH-derived TVBC.  In Figures 3-5a-c we show 
snap shots of  the vertical particle velocity wavefield at the same times as in the no-topography case.  
At 0.0809 s (Figure 3-5a), the P-wave front appears circular and is just reaching the topographic 
surface above the TVBC.  Up to this point in time, the model has conformed to the 2D-C symmetry 
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Figure 3-4: Topography of the 3-D Earth model with colorbar being height relative to 
elevation directly above the source at x = 0 m, y = 0 m.  Dashed circle is the projection of the 

TVBC onto the surface.
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Figure 3-5b:  Snapshot of vertical particle velocity at time 0.2222 s in a N-S cross-section 
through the centroid of the source.  Blue is upward particle motion; yellow is downward, and 

teal is near-zero vertical particle motion.  Color saturates at about +/- 1% of peak particle 
velocity.  Topographic surface is indicated by black line  The TVBC box is indicated as grey 

box.  Values inside the TVBC box do not affect the wavefield external to the box.  Main 
arrivals indicated by arrows and oval.

Direct P

Primary 
reflections 
from surface

Nascent acoustic wave

Figure 3-5a:  Snapshot of vertical particle velocity at time 0.0809 s in a N-S cross-section through 
the centroid of the source.  Blue is upward particle motion; yellow is downward, and teal is near-

zero vertical particle motion.  Color saturates at about +/- 1% of peak particle velocity.  
Topographic surface is indicated by black line.  The TVBC box is indicated as grey box.  Values 

inside the TVBC box do not affect the wavefield external to the box.



conditions.  By 0.2222 s (Figure 3-5b) the wavefield has interacted with the topography and 
reflections from the surface are propagating downward in the earth and a nascent acoustic wave is 
propagating upward from the surface.  Because of  genuine 3-D effects, it is difficult to tell how 
much of  the complexity above the TVBC box is artifact; however, below the TVBC there are some 
obvious artifacts between the direct P and surface reflected waves as some higher frequency waves 
can be seen that are clearly associated with the TVBC box, particularly with its corners.  The 0.5099 
s snap shot (Figure 3-5c) is obviously more complex than Figure 3-2c due to true 3-D topographic 
effects.  However, there are artifacts clearly present especially, again, directly below the TVBC box. 

To better distinguish TVBC artifacts from genuine 3-D structure, in Figures 3-6ab we show snap 
shots for t=0.2222 s and 0.5099 s for the case where we use a point source isotropic moment tensor 
with the same source time function we used in Section 3.1 (i.e. no TVBC).  Since there is no TVBC 
box and the source time function is a linear equivalent source based upon the 2D-C CTH results, the  
wavefield from genuine 3-D effects should be very similar and the portions of  Figures 3-5bc due to 
TVBC artifacts are readily apparent. 

For 0.2222 s (Figure 3-5b compared to 3-6a), there are the obvious artifacts we discussed previously, 
but we can also see some differences in the wave fields directly above the TVBC box.  The 
remainder of  the wavefield is relatively unaffected by the TVBC box at this time.  At 0.5099 s 
(Figure 3-5c compared with 3-6b), there are several artifacts present, primarily at a higher frequency 
than the genuine 3-D wavefield.  However, major seismic phases are very similar between the two. 
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Figure 3-5c:  Snapshot of vertical particle velocity at time 0.5099 s in a N-S cross-section through 
the centroid of the source.  Blue is upward particle motion; yellow is downward, and teal is near-

zero vertical particle motion.  Color saturates at about +/- 1% of peak particle velocity.  
Topographic surface is indicated by black line.  The TVBC box is indicated as grey box.  Values 

inside the TVBC box do not affect the wavefield external to the box.
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Figure 3-6b:  Snapshot of vertical particle velocity at time 0.5099 s in a N-S cross-section through 
the source using a point isotropic moment tensor.  Blue is upward particle motion; yellow is 

downward, and teal is near-zero vertical particle motion.  Color saturates at about +/- 1% of peak 
particle velocity.  Topographic surface is indicated by black line.

Figure 3-6a:  Snapshot of vertical particle velocity at time 0.2222 s in a N-S cross-section 
through the source using point isotropic moment tensor.  Blue is upward particle motion; yellow 

is downward, and teal is near-zero vertical particle motion.  Color saturates at about +/- 1% of 
peak particle velocity.  Topographic surface is indicated by black line.



As a final example of  the 3-D TVBC, the log of  peak vertical particle velocity at the earth’s surface 
corrected for 1/r geometric spreading is shown in Figure 3-7.  Correcting for geometric spreading 
more clearly demonstrates the effects of  topography on the wavefield, where warmer colors indicate 
areas that have larger relative amplitudes compared to 1/r spreading and blues are areas with lower 
than average amplitudes.  Comparing with the topography shown in Figure 3-4 (note that Figure 3-7 
covers a slightly smaller region than shown in Figure 3-4), we observe a clear correlation between 
topographic features and the peaks.  The highest corrected particle velocities occur directly over the 
source region perhaps due somewhat to focusing effects from the local topography but also due to 
near- and intermediate-field terms given the proximity of  the source and the predominate 
wavelengths in the simulation.  Other than directly over the source, most other relative highs in the 
corrected particle velocities show strong correlation with local topographic effects such as small hills 
(e.g. at ~-800 m E-W, -200 m N-S) and ridges on the sides of  the mesa.  Relative lows tend to occur 
in the valleys and drainages. 
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Figure 3-7: Log of peak vertical particle velocity at the earth’s surface corrected for 1/r 
geometric spreading.  Warm colors are higher peak velocities, while blues are lower 

velocities. (0,0) is the source location.
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4. GRADIOMETER THEORY 
This chapter describes our developments and advances in seismic data inversion using a new type of  
seismic observation known as seismic gradiometry.  Specifically, we describe a method to invert the 
entire seismic wavefield (consisting of  the conventional translational ground motions as well as 
rotational motions) for a linear-equivalent seismic source model.  Prior to this development, only the 
translational ground motions (e.g. one vertical and two horizontal components) were used.   

The translational motion data that is typically used for this type of  source estimation contains three 
degrees of  freedom.  However, this is only half  the information in the seismic wavefield: by 
including the rotational motions of  the wavefield, we are doubling the observable information.  
Indeed, there is evidence in the literature that including rotational motions in certain types of  
source-estimation inversions may increase the precision and resolution of  the estimated seismic 
source parameters (Bernauer, et al., 2009; Bernauer and Fichtner, 2014; Reinwald et al., 2016; 
Donner et al., 2016; Ichinose et al., 2020); however, this previous work was only estimating a time-
invariant seismic source model.  For our work here, we describe a method to estimate the time 
variable seismic source, as may be more appropriate for explosion discrimination. 

We begin by giving a brief  overview of  seismic gradiometry, how it is implemented, and the 
additional wavefield parameters that can be observed with it.  We then review the forward model of  
far-field linear seismic waves and finally describe our inversion scheme using the full six-degrees-of-
freedom wavefield (i.e. both translational and rotational motions). 

4.1. Seismic Gradiometry 
Seismic gradiometry refers to the process of  estimating the time-varying spatial gradients of  the 
seismic wavefield using a small scale seismic array.  The theory was initially discussed in the context 
of  linear and two dimensional seismic arrays by Langston (2007a,b,c) and extended to three 
dimensions by Poppeliers et al. (2013) and Poppeliers and Punosevac (2013), with applications and 
improvements described by Liang and Langton (2009) and Poppeliers (2010, 2011).   

The method is founded on the model of  a propagating seismic wave, that may contain geometrical 
spreading  and wave slowness , that might change with distance: 

 

where  is the position vector and  is the reference position.  The derivative with respect to the 
spatial variable (i.e. the spatial gradient) is  

 (4-1) 

where the coefficient  relates to the geometrical spreading 

 (4-2) 

and  relates to the wave slowness 

 (4-3) 

There are several methods of  solving Equations 4-2 and 4-3 for the attributes  and , but that is 
not our primary interest here.  Rather, we note that any method of  estimating  and  requires two 
quantities: the time and space derivatives of  the wavefield.  The temporal derivative of  the seismic 
motion (i.e. the particle velocity) is directly measured by conventional seismic instrumentation.  
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However, estimating the spatial derivative essentially involves measuring small wavefield differences 
as a function of  space. 

A seismic gradiometer is type of  seismic array that is designed specifically to estimate the spatial 
gradient of  the wavefield.  The primary requirements are that the instruments are well-calibrated and 
that the nominal aperture is small enough to measure the local slope of  the wavefield, but large 
enough to not be unduly affected by instrument errors.  Poppeliers and Evans (2015) developed a 
rule to optimize the aperture  of  a surface-deployed gradiometer: 

 (4-4) 

where  is the magnitude of  the horizontal wave slowness,  is wave frequency, and  should be in 
the range of  0.03 to 0.08.  A physical interpretation of   is that it represents the range of  fractional 
wavelengths for which a gradiometer can accurately estimate the spatial gradients.  Ideally, a 
gradiometer should consist of  at least five seismometers (typically 3-C instruments) deployed in a 
circular array, where the ground material is relatively similar over the aperture of  the array. 

Seismic gradiometric analysis requires measurements of  the displacement wavefield.  As stated 
earlier, the temporal derivative of  the wavefield (Equation 4-1) is simply the velocity seismogram, 
which is directly observed by most modern seismometers.  To estimate the spatial gradient of  the 
displacement wavefield, we employ a Taylor series, which gives the spatial gradient of  the 
displacement wavefield  at a specific point in time at location  relative to a reference 
station, located at  as 

 (4-5) 

where  and  is a term accounting for the truncation error of  the 
infinite Taylor series.  So long as the conditions of  Equation 4-4 are met, then we can ignore the 
error .  For a collection of   surface-mounted seismometers, all on a common time base, we 
can rewrite Equation 4-5 as a set of  linear equations: 

 (4-6) 

where the coordinates of  the reference station are ,  are the coordinates of  the  
supporting stations, and  is the difference in the displacement seismogram between the 
supporting and reference stations, respectively, and the spatial gradients of  the wavefield are  and 

.  Equation 4-6 can be written as: 

 (4-7) 

where  is a  column vector of  wavefield differences,  is the gradiometer geometry, and  is a 
 vector containing the spatial gradients and solved using generalized least squares.  The 

gradients are estimated for every time point along the seismogram and Equation 4-7 can be solved 
using any component of  data: i.e. for 3-C data, Equation 4-7 is constructed three times, once for 
each component of  data, for every time point along the seismogram.  Thus, the spatial gradients,  

and , are time series.  Finally, we emphasize that the data type for gradiometric analysis are 
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displacement seismograms.  Thus, the raw velocity seismograms as estimated by conventional 
seismometers must be converted to displacement using a numerical integration method prior to 
computing the seismic spatial gradients. 

The rotational motions of  the seismic wavefield are given by the curl of  the displacement: 

 (4-8) 

which gives 

 (4-9) 

The terms on the right hand side of  Equation 4-9 are the spatial gradients of  the wavefield, which 
are estimated using a gradiometer and solving Equation 4-7. 

4.2. Inverse Method 
The inversion is founded on a linear model for seismograms 

 (4-10) 

where  is the seismogram for channel , located at observation point ,  is a series of  force 
couples acting at point , and  are a series of  seismic Green’s functions (GFs) describing the 
impulse response from source n located at point  to the receiver located at  (e.g. Stump and 
Johnson, 1977).  Note that this linear model of  seismograms is completely general, in that the GFs 
can describe any elastic wave type, be they P, S, or surface waves, as well as any type of  seismic 
motion, translational or rotational.  The only requirement is that the GFs explicitly predict the type 
of  wave motion observed for channel . 

The goal of  the work presented in this chapter and the next is to use the model in Equation 4-10 to 
estimate the parameters of  the seismic source .  For analyzing a seismic wavefield produced 
by a buried explosion, we typically make a simplifying assumption that the seismic motion observed 
in the far field (i.e. at least several tens of  wavelengths between the source and receiver) is a result of  
a series of  forces and/or force couples acting at a point.  For this model,  is a 3x3 tensor that 
quantifies the nine possible force couples acting at point , which because of  symmetry, contains only 
six independent terms, (  in Equation 4-10).  The force couples contained in the tensor  
are time variable, and thus 

 (4-11) 

where .  Each term in  is a source time function that corresponds to a given 
component of  the moment tensor (Aki and Richards, 2002). 

By Fourier transforming Equation 4-1 into the frequency domain, the convolution becomes a 
multiplication, 
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 (4-12) 

which in matrix form can be written as 

 (4-13) 

For  frequencies, six independent source terms, and  receiver channels, Equation 4-13 is explicitly  

 (4-14) 

where  is a  column vector containing the frequency domain data for channel ,  
 is the th frequency domain  column vector describing the source time 

function corresponding to the th component of  the moment tensor, and   

 

is the GF for the th receiver channel and the th moment tensor component.  

Because the inversion is strictly linear, we can invert for each frequency individually, and concatenate 
the final results.  Specifically, for frequency , 

 (4-15) 

Equation 4-15 is solved using generalized least squares 

 (4-16) 

where no damping or regularization is typically required.  Note that the matrix in Equation 4-16 is 
solved for each frequency  individually.  The results for all frequencies are therefore concatenated 
and converted to the time domain via the inverse Fourier transform.  In previous work, the results 
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are nearly identical whether we solve for all frequencies simultaneously, (Equation 4-14) or for each 
frequency separately (Equation 4-15) (see Figure 8 of  Poppeliers et al., 2020). 

The ordering of  the data in Equation 4-15 and 4-16 is completely arbitrary, just so long as the 
appropriate GF is “matched” to the appropriate channel of  data.  Furthermore, the quantity  in 
Equation 4-10 (and Equations 4-14 through 4-16) can be any type of  seismic motion.  For example, 
a conventional seismometer records the ground velocity in three orthogonal directions 

 (4-17) 

where the subscript indicates the component direction in a Cartesian coordinate system.  Thus, the 
GFs used in Equation 4-10 to predict ground velocity will be velocity GFs and for typical three 
component data recorded by a traditional seismic array, the number of  data channels (the variable  
in Equations 4-14 and 4-15) will be three times the number of  seismic stations (i.e. each seismic 
station will record three channels of  data: , , and ).  Likewise, the rotational motions (computed 
according to Equation 4-9), 

 (4-18) 

will have rotational GFs.  To combine the translational velocity seismograms as well as the rotational 
motions, both data types are simply inserted into Equation 4-15 to form an augmented system of  
equations.  For example we can arrange the two data types as,  

 (4-19) 

where  and  are column vectors that contain the velocity and rotational 
seismograms, respectively,  and  are the corresponding velocity and 
rotational motion GFs, respectively, and  is a column vector that contains the seismic source 
parameters that we wish to estimate.  Explicitly, Equation 4-19 could take the form 
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 (4-20) 

for  channels of  (velocity) translational data,  channels of  rotational motion data, and frequency .  
As written, Equation 4-20 shows the translational and rotational component data as distinct ‘blocks’.  
However, there is no need for this structure: the data can be arranged in blocks as shown here, or 
interleaved (e.g. one translational channel followed by one rotational channel, etc.). As mentioned 
previously, the ordering of  the data in the matrix Equation 4-20 isn’t important, so long as the GFs 
correspond to the correct channel of  data.  This is due to the linearity of  the problem, and 
numerical tests (some of  which are presented in the next chapter) confirm this assertion. 
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5. GRADIOMETER DEMONSTRATION 
In Chapter 4, we described the mathematical details of  gradiometry, estimating rotational seismic 
motions using gradiometric analysis, and finally a linear inversion that’s designed to estimate the 
time-varying moment tensor given both translational and rotational seismograms.  In this chapter we 
discuss some of  the implementation details as well as show some examples of  inverting seismic data.  
The tests are synthetic throughout, and are designed only to demonstrate the validity of  the 
mathematical model, as well as our implementation of  the inversion scheme. 

5.1. Synthetic Data 
The data that we use to test our inversion here is synthetic throughout.  Figure 5-1 shows the Earth 
model, as well as the array that we used to create the data.  To create the data, we constructed a 
geologically reasonable model, defined a seismic source, and used a Sandia-developed, three-
dimensional finite difference wavefield simulator to compute the seismograms (see Poppeliers and 
Preston, 2020 for details).  The geologic model has a discrete spatial node spacing of  5 m, and the 
time step ( ) that we used for the simulation was 0.00065 s.  These finite difference parameters, 
along with the range of  seismic wavespeeds in our model, allowed us to simulate wavefields up to 
approximately 20 Hz without significant numerical dispersion. 

For the data, we define the source to simulate a buried explosion followed by a smaller release of  
tectonic strain.  We simulate the source time functions for the buried explosion using the well-
known Mueller-Murphy explosion source model (Haskel, 1967; Murphy, 1977; Mueller and Murphy, 
1971).  Specifically, 

Δt
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Figure 5-1: The geologic model and array stations used to test our inversion method.  Panels (a) 
and (b) are orthogonal cross sections though the three-dimensional Earth model that we 

constructed, where the black circle at m is the source location. Panel (c) shows the surface 
location of the array stations used for our tests.  At each numbered station, we collect three 3-C 

translational velocity seismograms, as well as three 3-C rotational motion seismogram. 



 (5-1) 

where 

 (5-2) 

And  is the reduced time,  controls the bandwidth of  the source, and  controls the 
degree of  overshoot.  We defined the earthquake source tensor as 

 (5-3) 

which simulates a fault with a strike of  45°, a dip of  19°, and a rake of  32°.  The source time 
function for the earthquake source is given by 

 (5-4) 
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Figure 5-2: The source time functions corresponding the moment 
tensor used to simulate the data.



 (5-5) 

where  is the maximum amplitude,  is the total time of  , and  controls the shape of  the 
function (Tanioka and Ruff, 1997).  Thus, the source model used to create the synthetic data is a 
linear combination of  two sources defined above: 

 (5-6) 

which is shown in Figure 5-2.   

Using the source defined in Equation 5-6, we simulated the full wavefield through the model and 
recorded it on the sixteen stations shown in Figure 5-1.  At each station, three components of  
translational surface velocity, 

 (5-7) 

and three components of  rotational rate motion, 

 (5-8) 

are recorded.  For the translational seismograms, the subscript indicates the direction of  motion, and 
for the rotational rate motions seismograms, the subscript indicates the axis about which the 
rotation occurs.  Note that in a field setting, the rotational motions would most likely be estimated 
using the gradiometric method described in the previous chapter; however, there are dedicated 
rotational sensors (e.g. Lee et al., 2009).  For our simulations, however, our finite difference wave 
simulator can compute (and output) the gradient or rotation rate of  the wavefield directly, of  which 
we use the latter for simulations shown in this report. 

5.2. Green’s Functions 
Recall that seismic Green’s functions (GFs) are the impulse response of  the Earth.  As such, we can 
estimate the required GFs by using the same geologic model, array configuration, and finite 
difference wave simulator as for the synthetic data.  The primary difference is the input source: for 
GFs the source is an impulse, which we implement numerically with a delta function.  Note that we 
must compute the GFs for each term in the moment tensor.  Specifically, for the  component 
GF, we define the source as 

 (5-9) 

where  is a discrete Dirac delta function with amplitude  at  and zero amplitude 
elsewhere.  Likewise for the  component GF, the source is defined as 
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and so on.  Note that for the GFs that correspond to off-diagonal components of  the moment 
tensor, symmetry is preserved.  We compute six sets of  GFs, one for each component of  the 
moment tensor, and each set of  GFs (corresponding to a single moment tensor component) 
contains six total components of  motion: three directions of  translational velocity and three 
directions of  rotation rate.  Thus, for each station of  the (synthetic) array there are 36 total 
‘channels’ of  GFs:  (three components of  translational velocity) plus (three components of  
rotational motion) by (six terms in the moment tensor). 

5.3. Inversion 
The simulated data contains three components of  translation and rotational seismograms for each 
station (Figures 5-3 and 5-4).  However, we note that the amplitude (with units of  m/s) of  the 
translational velocity seismograms are approximately two orders of  magnitude higher than that of  
the rotational rate motions seismograms (with units of  radians/second).  If  we were to use the raw 

34

Figure 5-3: Unfiltered, synthetic, translation velocity seismograms.  The three panels correspond 
to , , and .  All of the seismograms are normalized to the maximum amplitude of the 
entire suite of translational seismograms, and are thus shown in their correct relative amplitude.

vx(t) vy(t) vz(t)



translational and rotational data (and their corresponding GFs) in an inversion directly, the solution 
would be dominated by the translational motion data.  Thus, we “non-dimensionalize” both the data 
and GFs prior to inverting by dividing by scalars with the appropriate units.  Specifically, we 
normalize the data and GFs by dividing by the root-mean-square (RMS) amplitude of  the 
appropriate data type: 

35

Figure 5-4: Same as Figure 5-3, but for the rotational rate motion seismograms.



 

where  is the mean RMS amplitude of  all of  the translational component data and  is the mean 
RMS amplitude of  all the rotational component data.  Because we apply these scalars to both sides 
of  the equation, the amplitude of   is unaffected. 
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Figure 5-5: Results of inverting the translational data only.  The top panel shows the true 
seismic source functions in green and the estimated seismic source functions in red.  

The bottom panel shows the fit-to-data: the green are the observed (synthetic) data and 
the red are the data predicted by the inversion.  Note that for clarity, we only show the 

data for the first three stations of the array.



5.4. Numerical Tests and Examples 
In this section we show the results of  inverting the synthetic data.  We developed computer codes to 
implement our inversion using the Matlab programming language.  The codes are constructed such 
that we can easily define which stations and channels of  data we use in the inversions: we can easily 
include or omit any channel or component of  translational or rotational data.  This capability was 
implemented with the future goal of  testing the benefits and/or limitations of  including rotational 
motion data when inverting for time-domain moment tensors.  However, the results presented here 
are only to demonstrate the validity of  our mathematical model and the efficacy of  our inversion 
method.  We do not perform a detailed study of  the resolution, the effects of  model and/or data 
uncertainty, or the benefits (or issues) associated with the inclusion of  rotational motion 
seismograms to this type of  inversion.  These types of  experiments and analysis are outside the 
scope of  this report, but do serve as the topic of  ongoing and future study.   

For the first example, we show the results of  inverting only the translational velocity data (Figure 
5-5).  This test serves as benchmark test: previous analysis by us (and others) typically use only 
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Figure 5-6: The results of our inversion where only the rotational motion data are 
inverted.  Note that the seismic source functions are nearly perfectly recovered (top 

panel), and the fit-to-data is nearly perfect (bottom panel).  For clarity, only the 
rotational motion seismograms for the first three stations in the array are shown.



translation velocity seismograms for analysis.  Note that the inversion perfectly recovers the source 
model and the fit to data is almost perfect.  This is to be expected for perfect, noise free, synthetic 
data.  The fit-to-data is computed by using the estimated seismic source functions, shown in red in 
the top panel of  Figure 5-5, and convolving them with the GFs according to Equation 4-10.  The 
misfit  is defined as the difference between the observed data and the predicted data: 

 (5-11) 

where  is the observed data that we invert (which is in case synthetic),  are the GFs, and  is 
seismic source functions estimated from our inversion.  Note that for the results shown in Figure 
5-5, the misfit is zero.   

For the next test, we invert only the rotational motion seismograms, and obtain results that are 
similar to those shown in Figure 5-5: perfectly recovered seismic source functions and a nearly 
perfect fit to data (Figure 5-6). 

As a final test, we inverted both translational velocity and rotational motion seismograms 
simultaneously (Figure 5-7).  However, we only selected the seismograms from three of  the array 
stations.  In this case, the estimated seismic source functions were nearly identical to the actual 
seismic source functions, (i.e. they look identical to those shown in Figures, 5-5 and 5-6), and thus 
we don’t show them here.  However, the misfit  is 0.08, which indicates that the fit isn’t perfect.  
However, this is likely because we are using only three stations of  data (albeit six channels for each 
station, for a total of  eighteen total channels of  data), and, thus, we are not densely enough sampling 

ϵ =
(d − Gm)T (d − Gm)

dT d
d G m
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Figure 5-7: The fit-to-data for the case where we simultaneously invert both translational and 
rotational seismograms.  However, we only selected the data from three stations in the array.  

For this test, the translational and rotational motion seismograms are collected from array 
stations that are co-located.



the focal sphere of  the source.  Regardless, we conducted this test to verify that our inversion code 
is correctly estimating the seismic source parameters and that we can easily select arbitrary channels 
of  data, whether they be translational or rotational. 

5.5. Concluding Remarks 
In Chapter 4 we presented a method to invert translational and rotational motion seismograms for 
the seismic source functions that correspond to the seismic moment tensor.  Our code correctly 
recovers the seismic source model in synthetic tests, indicating that our mathematical model and 
implementation are correct.  Additionally, we’ve designed our code so that it’s easy to select which 
stations and data components to invert.   

We were motivated to include rotational motion seismograms in an inversion for seismic source 
functions for two reasons.  First, there is evidence in the literature that including rotational motions 
can increase the accuracy and precision of  seismic source estimates.  However, much of  this 
previous work made different model assumptions than we do.  For example, the work of  Bernauer 
and Fichtner (2014) and Reinwald et al. (2016) showed that including rotational seismic motions 
increases the resolution of  finite source models.  In the case of  point source models, Donner et al. 
(2016) and Ichinose et al. (2020) also showed an increase in source resolution, but they inverted only 
for centroid moment tensor components, where source depth was a free parameter: i.e. they assume 
that the source time function for all of  the force couples is identical, and thus they only invert for 
the six scalar values of  the tensor (in addition to the source depth).  Our inversion differs from these 
previous efforts in two important ways.  First, we assume a point source where we have perfect 
knowledge of  the source location.  Secondly, and perhaps most importantly, we do not impose the 
condition that all of  the source time functions for all the tensor components are similar.  Rather, we 
allow each seismic source function for each tensor component to have independent time histories.  
This model may be more appropriate for explosion monitoring tasks, as it’s feasible that two distinct 
seismic mechanisms can be present when buried explosions are detonated: the nearly-isotropic 
explosion source which can then be followed by a double-couple type of  source that represents the 
release of  pre-existing tectonic stress.  Thus the inversion scheme we describe here may improve 
monitoring efforts by allowing a time-variable decomposition of  the seismic source, which is 
something that almost no current source inversion schemes allow.   

39



This page left blank 

40



6. SUMMARY 
We have discussed two new software enhancements in this report: the 3-D TVBC and the addition 
of  seismic gradiometer data to full waveform moment tensor inversions.  We derive the theory and 
discuss some numerical implementation aspects of  both enhancements.  Additionally, we 
demonstrate both additions in action with examples and comparisons to expected behavior, which 
validate the methods and software implementations. 

For the 3-D TVBC simulations, we showed that in a 3-D model that adheres to the 2D-C 
assumptions the TVBC is nearly transparent to the propagating wavefield, with very good agreement 
with expectations.  We also tested the new TVBC implementation in a 3-D model that does not 
adhere to the 2D-C assumptions that were used in making the TVBC with CTH.  In this case, the 
artifacts were noticeable, as expected, but still relatively small in amplitude compared to the true 3-D 
wavefield.  None of  the main seismic phases were greatly impacted by the artifacts.  Thus, in certain 
cases, faster 2D-C simulations can be used for the nonlinear portion of  the modeling while full 3-D 
modeling is used in the linear regime to get reasonable estimates of  the 3-D wavefield produced 
from a nonlinear source.  Obviously, this approach only will be feasible if  the near-source region can 
be approximated as 2D-C.  An even computationally faster approach exists if  a linear source 
equivalent model is available for the source in question.  In this case, the 3-D TVBC is not required, 
and a simple point seismic moment tensor source that utilizes the linear source equivalent source 
time functions can be used without need for a nonlinear simulation.  We showed that the wave fields 
produced when using a 3-D TVBC are visually identical to those produced when the linear source 
equivalent source was used without the 3-D TVBC artifacts. 

We also derived and implemented full waveform moment tensor source inversions that allows 
gradiometer-derived observations to be combined with traditional linear translational seismic 
recordings.  This permits exploration of  the potential advantages of  using the six degrees of  
freedom of  the wavefield available in a full 2-D (surface) gradiometer deployment instead of  the 
three degrees of  freedom available in typical 3-C translational component seismic data.  We 
demonstrated that the implementation of  the inversion scheme produces expected and virtually 
perfect results when the focal sphere is sufficiently sampled.  Even in the case with incomplete 
sampling of  the focal sphere, we are able to recover the known source time functions nearly 
perfectly with very small misfit.  The tests we show here are designed only to show the efficacy of  
our method.  On-going and future research efforts are aimed at 1) determining whether including 
rotational motions increase the accuracy and/or precision of  the time-varying seismic source 
functions when the model and/or data contain uncertainties, 2) error propagation, and 3) how to 
best incorporate rotational motions in a field setting. 
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