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ABSTRACT

Seismic source modeling allows researchers both to simulate how a source that induces seismic
waves interacts with the Farth to produce observed seismograms and, inversely, to infer what
the time histories, sizes, and force distributions were for a seismic source given observed
seismograms. In this report, we discuss improvements made in FY21 to our software as
applies to both the forward and inverse seismic source modeling problems. For the forward
portion of the problem, we have added the ability to use full 3-D nonlinear simulations by
implementing 3-D time varying boundary conditions within Sandia’s linear seismic code
Parelasti. Secondly, on the inverse source modeling side, we have developed software that
allows us to invert seismic gradiometer-derived observations in conjunction with standard
translational motion seismic data to infer properties of the source that may improve
characterization in certain circumstances. First, we describe the basic theory behind each
software enhancement and then demonstrate the software in action with some simple
examples.



ACKNOWLEDGEMENTS

The authors would like to acknowledge LLance Prothro for constructing the Geologic Framework
Model that forms the basis of the 3-D model used in this report. Also, we thank Jennifer Harding
for converting the Geologic Framework Model into the format needed for the linear seismic
simulations shown herein. This research was funded by the National Nuclear Security
Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN
R&D). The authors acknowledge important interdisciplinary collaboration with scientists and
engineers from LANL, LLNL, MSTS, PNNL, and SNL. This paper describes objective technical
results and analysis. Any subjective views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy or the United States Government.



CONTENTS

1. TOEOAUCHON ottt bbbttt 9
2. 3-D Time-Varying Boundary CONAILONS ......cccueuiereuriiierriirenriciereieiesseeieneeesesseseeeseeseseseessens 11
2.1. PALCIASH .ottt 11
2.2. 3-D Time Varying Boundary Condition .........cccceviiiiiiiiniiininiciccenes 12
2.3. 2-D CTH output to 3-D TVBC......cccoiiiiiiiiiiiniiiiniiciic s 13
3. 3-D TVBC DemMONSTIATION cuuvvvviiainiirirerieieiereieittseststseesesesesesesesesesessssesesesesesesesesssssseseseseseseneaes 15
3.1. Cylindrically Symmetric 3-D Parelasti Model........coviieicciinininiicccieinncccenes 15
3.2. 3-D Parelasti MOEL....c.ccviiiiiieieiiiiiit ettt eseaesenen 17
4. GradiomEter TREOTY ...ttt 25
4.1. SeiSMIC GIAdIOMELLY...uuriiiriiicicicieieteiir ettt sene 25
4.2. INVErse MEthOd . ..ottt 27
5. Gradiometer DemONStIation ......ccvieiuiiiiiiiiiieiiciiciicees s ssssseseassaes 31
5.1. Synthetic DAata ... 31
5.2. GILEen’S FUNCHONS covvtiieiiiiireeectcc ettt bbbt 33
5.3. TOVEILSION 11ttt ettt et 34
5.4. Numerical Tests and EXamples ... 37
5.5. Concluding Remarks .......ccocviiiiiiiiiiiiiiii s 39
6. SUMMATY oottt 41

LIST OF FIGURES

Figure 2-1: Face of 3-D unit cell and time updating SCheme.......covcueuvicreiricierriecirieeeeeeeeeeenene 11
Figure 2-2: Required spatial distribution of velocities and stresses for the TVBC. ........cccccceieuninncee. 12
Figure 3-1: TVBC points captured in 2D-C CTH simulation example.........cccovvvvviiiiiniirinccnininnn. 15
Figure 3-2a: Vertical particle velocity at time 0.0809 s in 3-D cylindrical symmetric model................. 16
Figure 3-2b: Vertical particle velocity at time 0.2222 s in 3-D cylindrical symmetric model................ 17
Figure 3-2c: Vertical particle velocity at time 0.5099 s in 3-D cylindrical symmetric model ................ 18
Figure 3-3: Vertical particle velocity at time 0.5099 s in 3-D cylindrical symmetric model with linear
source equivalent MOAEL.....cccciiiiiiiiiiiiii s 18
Figure 3-4: Topography used in full 3-D model ..o, 19
Figure 3-5a: Vertical particle velocity at time 0.0809 s in full 3-D model.......ccccocovvviiiviiiiiiiiinnn. 20
Figure 3-5b: Vertical particle velocity at time 0.2222 s in full 3-D model.......cccccoevviiiiviniiiiniciinicnnnn. 20
Figure 3-5c: Vertical particle velocity at time 0.5099 s in full 3-D model.......ccooeeuvinicivnicivniciriicnne. 21
Figure 3-6a: Vertical particle velocity at time 0.2222 s in full 3-D model with linear source equivalent
MOAEL .o 22
Figure 3-6b: Vertical particle velocity at time 0.2222 s in full 3-D model with linear source equivalent
MIOAEL ettt 22
Figure 3-7: Log of peak vertical particle velocity at the earth’s surface in the full 3-D model............. 23
Figure 5-1: Geologic model and array stations used to test gradiometry inversion method ................ 31
Figure 5-2: The input source time functions used to simulate the data .......ccceveevveniervnecirnicrenienn. 32
Figure 5-3: Unfiltered, synthetic, translation velocity seismograms used in the inversion................... 34
Figure 5-4: Unfiltered, synthetic, rotational motion seismograms used in the INVersion .............c.e... 35
Figure 5-5: Results of inverting the translational data Only.......c.cccocciviiiniiniiiiiicc, 36
Figure 5-6: Results of inverting the rotational data Only ........cccceviiiriviiiiniiiiiiiicens 37
Figure 5-7: Results of jointly inverting translational and rotational data ..........ccccevevevvenicivinicrvinecnnn. 38



This page left blank



ACRONYMS AND DEFINITIONS

Abbreviation Definition
2-D two dimensional
2D-C two dimensional cylindrical
3-C three component
3-D three dimensional
cc cubic centimeter
CPML convolutional perfectly matched layer
E-W east-west
FY21 fiscal year 2021
FY22 fiscal year 2022
g gram
GF Green’s function
Hz Hertz
kg kilogram
m meter
N-S north-south
P-wave primary (compressional) wave
RMS root mean square
S second
S-wave shear wave
TVBC time varying boundary condition
Vp P-wave velocity
Vs S-wave velocity
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1. INTRODUCTION

Modeling of seismic sources can involve simulating a source of energy or distributions of forces
within the Earth that induces seismic waves, which propagate through the Earth and are recorded at
seismic recorders. This aspect of seismic source modeling, the forward problem, can allow
researchers to discern what the ground motion from some scenario source would look like and study
how parameters of the source affect those observed ground motions. Seismic source
representations can range from simple combinations of force couples acting at a point, which is a
linear far-field approximation, to full nonlinear simulations of the energy source including material
phase changes and shock wave propagation. It is well known that buried explosions nonlinearly
deform the surrounding earth, causing fracturing and plastic deformation of the material. Thus, in
order to study the effects of the source parameters and near-source environmental properties, it is
proper to use a nonlinear algorithm to initially propagate the shock waves produced by an explosion.
However, because of the complex physical equations that need to be solved in order to simulate
explosions, nonlinear algorithms are much more computationally expensive compared to linear
seismic algorithms (e.g. Preston et al., 2021). Therefore, it is computationally advantageous to
switch to a linear seismic wave propagation algorithm once the propagating wavefield can be well
approximated by linear elastic theory. In order to take advantage of the strengths of both nonlinear
and linear algorithms, a coupling between the two types of algorithms is required. This report
documents the implementation of 3-D time-varying boundary conditions (TVBC) in Sandia’s linear
elastic code Parelasti (Poppeliers and Preston, 2020). This TVBC allows a nonlinear algorithm such
as CTH (Schmitt et al., 2017) to be used to initiate the source and propagate shock waves to the
elastic radius, where by definition the waves can be well approximated as linear seismic waves, and
recorded. These recordings can then be “played,” in a sense, to drive linear wave motion within
Parelasti to much farther distances than would be computationally feasible for nonlinear algorithms.

What we described above is the simulation of energy source to seismograms, or the forward
modeling of the seismic source. The flip side, the inverse problem, involves using observed
seismograms and inferring what distributions of forces, how big, and how those forces varied with
time would optimally produce those observed seismograms. Often, in the inverse case, linear
assumptions are made and the source is simplified by assuming that forces or force couples acting at
a single point (or set of points) within the Earth can adequately predict observed ground motions.
Additionally, it is often assumed that the observed seismograms can be written as a sum of
convolutions of impulse responses (Green’s functions; GF) with seismic source time functions (time
evolution of source components) (e.g. Aki and Richards, 2002). Thus, for the inverse problem,
nonlinear algorithms are not typically used primarily for simplicity, but these linear approximations
are also generally quite good at replicating observations in practlce (e g Poppehers et al., 2020;
Poppeliers and Preston, 2020; Preston et al. 2021) Although seismic source inversion theory is well
developed for traditional translational motion seismic data, it is not as well understood for seismic
gradiometer data, which is becoming more prevalent. This report also describes our new ability to
utilize a combination of both traditional translational motion seismograms and gradiometer data to
solve for the optimal seismic source model that matches the data.

First, we briefly describe the theory behind the 3-D TVBC implementation. Also, because the CTH
simulations that we have done to date have assumed 2-D cylindrical symmetry (2D-C), we will
describe how we translated 2D-C output from CTH to full 3-D TVBC information in order to test
the 3-D TVBC implementation. Chapter 3 shows the operation of the 3-D TVBC within a simple
3-D Earth model, where the 2D-C assumption from the CTH simulations is still valid, and a second
where a full 3-D model with topography demonstrates the full 3-D TVBC in action and also how
the breaking of the 2D-C assumption from the CTH simulations induces some noise in the 3-D
results that will be overcome once full 3-D CTH simulations are completed as part of FY22’s work.



In Chapter 4 we describe the theory and implementation for incorporating gradiometer observations
into full waveform seismic moment tensor solutions. Chapter 5 will then demonstrate full waveform
moment tensor inversion using simulated gradiometer data within a 3-D Earth model first when
using only translational and rotational motion data separately, and finally together in a joint inversion
using both data types simultaneously.
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2. 3-D TIME-VARYING BOUNDARY CONDITIONS

We first briefly describe the 3-D linear elastic full waveform simulation code, Parelasti, then we
describe how the 3-D time-varying boundary conditions (TVBC) were implemented within Parelasti,
and, finally, the conversion from 2-D cylindrical symmetry CTH tracer data to the 3-D information
needed by the 3-D TVBC.

21. Parelasti

Parelasti solves the 3-D elasto-dynamic velocity-stress first-order set of partial differential equations:

Ovi(X, 1 1 [ 9o;(x,1)

Vl(X ) _ 7 +fl:(x’ t) (2—13)

ot p(x) ox;

d0;;(X, 1) ovi(x, t ov(x,1)  0V(X.1) om;;(X, 1)

i A(x)Méij N kS +—2 (2-1b)
ot 0x;, 0x; 0x; ot

where v,(x, t) is the ith component of particle velocity (x, y, or z) at 3-D spatial location x and time ¢,
p(x) is material density, 6;;(x, ) is the (i,j) component of the 3x3 symmetric stress tensor, fi(X,?) is the
time-varying body force source term in cartesian direction 7, A(x) and p(x) are the Lamé and shear
moduli for an isotropic elastic medium, and m;;(x, 1) is a time-varying moment tensor source term
(e.g. Aki and Richards, 2002).

These partial differential equations are solved with a time-domain standard-staggered-grid finite-
difference scheme using operators that are second-order accurate in time and fourth-order accurate
in space. Specifically, compressive stress components are located at the corners of a unit cell, shear
stresses are in the center of each face of the unit cell, and velocities are located at the mid-point of
each edge of the unit cell (Figure 2-1, top). Velocity and stress component updates are also
staggered in time, with stresses being updated on integer time steps and velocities at half-integer
time steps (Figure 2-1, bottom). Medium parameters are stored coincident with compressive stress
components (unit cell corners). Thus, densities and shear moduli must be interpolated to velocity

(0] > 0] @ Medium Parameters

® Compressive Stresses

A O A 4@ Shear Stress

A\ Vertical Velocity

o > o P> X or Y Velocity

o—h —o B —

to t1/2 t t3/2

Figure 2-1: One face of a 3-D unit cell (top) and time updating (bottom) for
the staggered finite-difference scheme.
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and shear stress locations, respectively. Densities use simple linear interpolation onto velocity
locations, but shear moduli use harmonic averaging of the surrounding four shear moduli to
interpolate these onto the face-centered shear stress location (Moczo et al., 2002).

Seismic sources from a linear seismic source perspective can be introduced by specifying body force
and/or moment tensor source terms as shown in Equations 2-1a,b above. These source terms can
be any time variable function that has a frequency content supported by the grid discretization in
order to minimize numerical dispersion in the simulations. One exception to this rule is impulse
sources. An impulse source time function (first time sample non-zero, remaining time samples zero)
can be used to produce Green’s function (GF) or impulse response seismograms. Using GFs allows
a wide variety of source time functions to be utilized with a single run of Parelasti and also allows
full waveform moment tensor source inversions since these directly use GFs. A simple convolution
of the GFs with a properly band-limited source time function produces identical results as if one
had used that source time function to initialize Parelasti.

2.2. 3-D Time Varying Boundary Condition

The 3-D TVBC that is necessary for Parelasti is very similar to that described in Preston (2017) for
the 2D-C code axiElasti given their similarities in storage locations and finite-difference stencils.

The obvious difference is the addition of an extra dimension. Because Parelasti uses fourth order
spatial finite-difference operators, at least three “layers” of information, one unit cell in width (ah)
are required in all three spatial dimensions from the nonlinear output at all time steps in order to
drive the wavefield within Parelasti (Figure 2-2). In order to update the compressive stress at point
D in Parelasti (Figure 2-2) information from CTH (or any other algorithm) must be provided within
the TVBC at velocity points A and C, along with information already available directly from Parelasti
at velocity point E and the next velocity node off the image to the right. Similarly, to update the
velocity at point E in Parelasti, compressive stress information from CTH at point B is required
along with information already available from within Parelasti itself for compressive stresses at point
D and two other points off the image to the right. Similar arguments go for velocities at point D
and shear stresses at point E within Parelasti. Of course, updating at point D in Parelasti also
requires information upward and downward in the image as well as in and out of the page for 3-D.

CTH Parelasti

>

()

A4

A—O
Figure 2-2: Required spatial distribution of velocities (triangles, right-

pointing: horizontal velocities; upward-pointing: vertical velocities),
compressive stresses (circles), and shear stresses (diamonds) needed by
Parelasti from the CTH domain for time varying boundary conditions.
Distance between A and C is dh.

pr = O

O
A

O =V
O oV
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Thus, velocity and stress information one and a half grid nodes away from the currently updating
point must be available to Parelasti all three directions either from within Parelasti itself or provided
to it from the TVBC. Instead of being a single layer boundary condition, it is better thought of as a
rind surrounding the nonlinear source.

2.3. 2-D CTH output to 3-D TVBC

As mentioned in the introduction, we currently only have simulated nonlinear sources with the 2D-
C version of CTH, primarily to save computational expense. Besides this, it allows us to test how
well a 2D-C nonlinear simulation, which is much less expensive computationally than a 3-D
nonlinear simulation, can do in a true 3-D environment. However, moving forward we will be
utilizing CTH’s full 3-D capability. Thus, development of a 3-D TVBC in Parelasti was a necessary
prerequisite before we could do seismic simulations in full 3-D. Because of all this, we need to be
able to translate CTH 2D-C output into the proper locations and thickness of TVBC for 3-D
Parelasti. This is primarily a simple coordinate rotation, but the simple rind of thickness 4/ shown
in Figure 2-2 is not adequate information from 2D-C CTH to provide all that is needed when a
cylinder is swept in 3-D by rotating the 2D-C TVBC about the z-axis. This is due to the fact that
Parelasti needs all three layers (1 4h thickness) of information shown in Figure 2-2 at all 3-D
discretized points surrounding the TVBC. To meet this condition at all 3-D discrete points actually
requires a rind of thickness 3 d) in the radial direction in the captured data from 2D-C CTH.
However, 1 dh thickness in the vertical dimension is still sufficient. For completeness, translations
from 2D-C CTH velocities and stresses to 3-D ones are shown below:

V,(X, 1) = v,(r, 1)cos(¢) (2-22)
v(X,1) = v(r, )sin(¢) (2-2b)
v, (X, 1) = v,(r,1) (2-2¢)
0.(X, 1) = 6,,(r, 1)cos*(¢) + oyp(r, 1)sin’*(¢) (2-2d)
0,,(X, 1) = 6,,(x, 1)sin*(¢h) + 0yy(x, 1)cos*(¢h) (2-2¢)
0, (X,1) = 0, (r,1) (2-21)
0, (X, 1) = % $in(2¢)(o,,(r, 1) — cpy(r, 1)) (2-2g)
o (X, 1) = 0,(r,1)cos(¢p) (2-2h)
0,,(X, 1) = 0,,(r, )sin(¢) (2-21)

where x is a 3-D point, r is a 2-D cylindrical point, and ¢ is the angle in the horizontal plane of the
3-D point relative to the positive x-axis direction about the z-axis through the centroid of the
source. Also, since oyy is not directly provided by CTH, it must be computed from quantities that
are provided, namely o,,, 0., and pressure, p, via:

oyo(r,1) = = 3p(r,t) — 0,,(r,1) — 0,.(r,1) (2-3)

It should be noted that in a true 3-D environment, there will be a mismatch between what the
TVBC derived from a 2D-C simulation of CTH and the 3-D wavefield computed from Parelasti due
to 3-D effects. Because the TVBC is a hard boundary, meaning that Parelasti’s current calculations
have no effect on the TVBC values, artifacts in the form of reflections off the TVBC boundaries

13



will occur. The closer the match between the CTH-derived TVBC values and those computed
within Parelasti from the structure within the Parelasti model, the fewer artifacts and artificial
reflections will occur off the TVBC interface. A perfect match between the values of the TVBC
and that within Parelasti would make the TVBC appear like it does not even exist, meaning no
artifacts would be produced from interactions with the TVBC interface.

14



3. 3-D TVBC DEMONSTRATION

In this chapter we demonstrate the 3-D TVBC in action in two scenarios. The first is within a 3-D
model that has 2-D cylindrical symmetry so that the 2D-C CTH output is valid. This provides a
verification of the 3-D TVBC with a nonlinear code driving the 3-D full waveform simulation
within Parelasti. The second demonstration is using the 2D-C CTH output within a 3-D model with
topography so that the 2D-C simulations results mismatch the conditions in the model. This will
evaluate what level of error is introduced by using a much less computationally expensive 2-D
nonlinear simulation within a 3-D model.

3.1. Cylindrically Symmetric 3-D Parelasti Model

In this section we will evaluate the 3-D TVBC described in Chapter 2 by using a 3-D model that
adheres to the 2D-C assumption used in CTH to produce the TVBC values. In this simulation, 18
tons of COMPC-4 (1.6 g/cc density) is buried 250 m below the Earth’s surface within
homogeneous wet tuff with air above the surface. The CTH output is captured at a box placed at
roughly 170 m distance from the source, both radially and in the plus and minus z-directions (Figure
3-1). For Parelasti, a 5 m grid node spacing was used to construct the 3-D Earth model with model
domain extents of approximately 1000 m in all three coordinate directions, x, y, and z. The Parelasti
Earth model was homogeneous with Vp=3278 m/s, Vs=1892 m/s and a density of 1950 kg/m3.

$8CLLLELLLREEEL0CERELEEEARRRRECEESRERR
-100} i

—~-200

-300

-400} 1l
$6660680880000000808808800080080800888888

0 50 100 150
r(m)

Figure 3-1: TVBC points captured in 2D-C CTH simulation. The black line at 0 m is the Earth’s
surface, asterisk denotes the centroid of the CTH source, and blue circles are TVBC locations.
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We used a time step of 3e-5 s in Parelasti and simulated for 0.51 s. A low pass filter with corner of
17 Hz was applied to the CTH output before being used as a TVBC within Parelasti. Free-surface
(zero normal stresses) boundary conditions (e.g. Aki and Richards, 2002) were applied at the top of
the model to approximate the air-earth interface within Parelasti, and convolutional perfectly
matched layer (CPML; Komatitsch and Martin, 2007) boundaries were applied on the other five
sides of the model domain in order to mitigate artificial numerical reflections from the model
boundaries. The CPML boundary damps the velocities near the edges of the domain, which causes
the small velocity amplitudes seen near the sides of the following displayed wavefield snapshot
images and is especially noticeable in the late time (0.5099 s) snapshots.

Figure 3-2a-c shows snapshots in time of the vertical particle velocity through the centroid of the
source at three different times: 0.0809 s, 0.2222 s, and 0.5099 s post initiation of the detonation. At
0.0809 s, as expected, the P-wave front is just reaching the surface at z=0 m, and in 3-D forms two
hemispheres: the up-going wavefront has upward particle velocity; the down-going wavefront has
downward particle velocity with a nodal plane through the centroid of the source at z=250 m.
Although in this cross-section, the TVBC appears as a rectangle, there are no obvious edge effects
due to the TVBC. Because the TVBC points are hard conditions (i.e. Parelasti computations have
no effect on their values) and completely surround the source region with no gaps, whatever
happens inside the TVBC box stays inside the TVBC box and has no effect on results outside the
box; hence, it is shown as a partially translucent box. Actually, some computational effort could be
avoided by not computing anything inside the the TVBC volume because of this, and this savings
will be implemented in the future.

t=0.0809 s

200

400
E
= 600
™~
800
1000

-500 0 500

X (m)

Figure 3-2a: Snapshot of vertical particle velocity at time 0.0809 s through the centroid of
the source. Blue is upward particle motion; yellow is downward, and teal is near-zero
vertical particle motion. Color saturates at about +/- 1% of peak particle velocity. The

TVBC box is indicated as grey box. Values inside the TVBC box do not affect the
wavefield external to the box.
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t=0.2222s
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-500 0 500
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Figure 3-2b: Snapshot of vertical particle velocity at time 0.2222 s through the centroid
of the source. Blue is upward particle motion; yellow is downward, and teal is near-
zero vertical particle motion. Color saturates at about +/- 1% of peak particle velocity.
The TVBC box is indicated as grey box. Values inside the TVBC box do not affect the
wavefield external to the box. Main arrivals indicated by arrows and oval.

By 0.2222 s there is a clear reflection of the P-wave off the Earth’s surface with the beginnings of
other free-surface interaction effects such as converted S-waves and surface waves. There are
perhaps some small artifacts of the TVBC between the top of the TVBC and the surface, but it is
quite small given that the color saturates at approximately +/- 1% of peak particle velocity in these
images. At 0.5099 s, the P-wave reflection has almost left the model domain with the P-to-S surface
reflection being the dominant wavefront in the snapshot. Some small amplitude surface waves are
also about to propagate off the left and right sides of the model domain. For comparison, in Figure
3-3 we show the same snapshot but using a point isotropic moment tensor source (i.e. no TVBC)
with the source time function determined via linear source equivalent modeling (Preston et al., 2021)
using only Parelasti for the entire simulation. In comparing the two snapshots, we see that near the
TVBC box there are some artifacts that are quite small in amplitude, showing that there are some
slight mismatches between the nonlinear and linear algorithms. However, given the completely
different sets of equations solved, potential nonlinear effects that would be predicted by CTH but
not Parelasti, and the different numerical implementations, the two codes are in remarkable
agreement as shown by the very small amplitudes of these artifacts.

3.2. 3-D Parelasti Model

The prior section demonstrated excellent agreement between the CTH-produced TVBC values and
the wavefield predicted by Parelasti when the 3-D Earth model is consistent with the 2D-C
assumption made by the CTH simulation. This raises the question of how well and what level of
artifacts are produced when the 3-D Earth model used in Parelasti does not conform to that

17



t=0.5099 s
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Figure 3-2c: Snapshot of vertical particle velocity at time 0.5099 s through the centroid of
the source. Blue is upward particle motion; yellow is downward, and teal is near-zero
vertical particle motion. Color saturates at about +/- 1% of peak particle velocity. The

TVBC box is indicated as grey box. Values inside the TVBC box do not affect the
wavefield external to the box. Main arrivals indicated by arrows.

t=0.5099 s
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Figure 3-3: Snapshot of vertical particle velocity at time 0.5099 s through the source
using point isotropic moment tensor source (no TVBC). Blue is upward particle motion;
yellow is downward, and teal is near-zero vertical particle motion. Same relative color
scale as in Figure 3-2c.
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Figure 3-4: Topography of the 3-D Earth model with colorbar being height relative to
elevation directly above the source at x =0 m, y = 0 m. Dashed circle is the projection of the
TVBC onto the surface.

assumption. For this test, we do not stray extremely far from the 2D-C assumption in that we still
use the same homogeneous medium parameters within the solid Earth portion of the model as we
did in the previous section. However, we do add topography to the model. Above the topography,
we use uniform air properties of Vp=330 m/s and density of 1 kg/m3. The topographic surface is
shown in Figure 3-4, which has roughly 380 m of variation between the highest and lowest points of
the model. The elevation of the topography directly above the source (x = 0 m, y = 0 m) is
arbitrarily set to zero. Note that some topography lies below the source position in z. The TVBC
cylinder is identical to that used in the previous section (Figure 3-1) and does not intersect the
topographic surface at any point. Directly above the TVBC, the topography is relatively muted with
about 10 m of variation (dashed circle in Figure 3-4). However, there are strong topographic
variations by ~500 m from the source point.

Because of these topographic variations, 2-D cylindrical symmetry is no longer valid and artifacts
are expected in the simulations that use the 2D-C CTH-derived TVBC. In Figures 3-5a-c we show
snap shots of the vertical particle velocity wavefield at the same times as in the no-topography case.
At 0.0809 s (Figure 3-5a), the P-wave front appears circular and is just reaching the topographic
surface above the TVBC. Up to this point in time, the model has conformed to the 2D-C symmetry
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Figure 3-5a: Snapshot of vertical particle velocity at time 0.0809 s in a N-S cross-section through
the centroid of the source. Blue is upward particle motion; yellow is downward, and teal is near-
zero vertical particle motion. Color saturates at about +/- 1% of peak particle velocity.
Topographic surface is indicated by black line. The TVBC box is indicated as grey box. Values
inside the TVBC box do not affect the wavefield external to the box.
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Figure 3-5b: Snapshot of vertical particle velocity at time 0.2222 s in a N-S cross-section
through the centroid of the source. Blue is upward particle motion; yellow is downward, and
teal is near-zero vertical particle motion. Color saturates at about +/- 1% of peak particle
velocity. Topographic surface is indicated by black line The TVBC box is indicated as grey
box. Values inside the TVBC box do not affect the wavefield external to the box. Main
arrivals indicated by arrows and oval.
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Figure 3-5¢c: Snapshot of vertical particle velocity at time 0.5099 s in a N-S cross-section through
the centroid of the source. Blue is upward particle motion; yellow is downward, and teal is near-
zero vertical particle motion. Color saturates at about +/- 1% of peak particle velocity.
Topographic surface is indicated by black line. The TVBC box is indicated as grey box. Values
inside the TVBC box do not affect the wavefield external to the box.

conditions. By 0.2222 s (Figure 3-5b) the wavefield has interacted with the topography and
reflections from the surface are propagating downward in the earth and a nascent acoustic wave is
propagating upward from the surface. Because of genuine 3-D effects, it is difficult to tell how
much of the complexity above the TVBC box is artifact; however, below the TVBC there are some
obvious artifacts between the direct P and surface reflected waves as some higher frequency waves
can be seen that are clearly associated with the TVBC box, particularly with its corners. The 0.5099
s snap shot (Figure 3-5¢) is obviously more complex than Figure 3-2¢ due to true 3-D topographic
effects. However, there are artifacts clearly present especially, again, directly below the TVBC box.

To better distinguish TVBC artifacts from genuine 3-D structure, in Figures 3-6ab we show snap
shots for t=0.2222 s and 0.5099 s for the case where we use a point source isotropic moment tensor
with the same source time function we used in Section 3.1 (i.e. no TVBC). Since there is no TVBC
box and the source time function is a linear equivalent source based upon the 2D-C CTH results, the
wavefield from genuine 3-D effects should be very similar and the portions of Figures 3-5bc due to
TVBC artifacts are readily apparent.

For 0.2222 s (Figure 3-5b compared to 3-6a), there are the obvious artifacts we discussed previously,
but we can also see some differences in the wave fields directly above the TVBC box. The
remainder of the wavefield is relatively unaffected by the TVBC box at this time. At 0.5099 s
(Figure 3-5¢ compared with 3-6b), there are several artifacts present, primarily at a higher frequency
than the genuine 3-D wavefield. However, major seismic phases are very similar between the two.
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Figure 3-6a: Snapshot of vertical particle velocity at time 0.2222 s in a N-S cross-section
through the source using point isotropic moment tensor. Blue is upward particle motion; yellow

is downward, and teal is near-zero vertical particle motion. Color saturates at about +/- 1% of
peak particle velocity. Topographic surface is indicated by black line.
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Figure 3-6b: Snapshot of vertical particle velocity at time 0.5099 s in a N-S cross-section through
the source using a point isotropic moment tensor. Blue is upward particle motion; yellow is
downward, and teal is near-zero vertical particle motion. Color saturates at about +/- 1% of peak
particle velocity. Topographic surface is indicated by black line.
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Figure 3-7: Log of peak vertical particle velocity at the earth’s surface corrected for 1/r
geometric spreading. Warm colors are higher peak velocities, while blues are lower
velocities. (0,0) is the source location.

As a final example of the 3-D TVBC, the log of peak vertical particle velocity at the earth’s surface
corrected for 1/t geometric spreading is shown in Figure 3-7. Correcting for geometric spreading
more clearly demonstrates the effects of topography on the wavefield, where warmer colors indicate
areas that have larger relative amplitudes compared to 1/r spreading and blues are areas with lower
than average amplitudes. Comparing with the topography shown in Figure 3-4 (note that Figure 3-7
covers a slightly smaller region than shown in Figure 3-4), we observe a clear correlation between
topographic features and the peaks. The highest corrected particle velocities occur directly over the
source region perhaps due somewhat to focusing effects from the local topography but also due to
near- and intermediate-field terms given the proximity of the source and the predominate
wavelengths in the simulation. Other than directly over the source, most other relative highs in the
corrected particle velocities show strong correlation with local topographic effects such as small hills
(e.g. at ~-800 m E-W] -200 m N-S) and ridges on the sides of the mesa. Relative lows tend to occur
in the valleys and drainages.
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4, GRADIOMETER THEORY

This chapter describes our developments and advances in seismic data inversion using a new type of
seismic observation known as seismic gradiometry. Specifically, we describe a method to invert the
entire seismic wavefield (consisting of the conventional translational ground motions as well as
rotational motions) for a linear-equivalent seismic source model. Prior to this development, only the
translational ground motions (e.g. one vertical and two horizontal components) were used.

The translational motion data that is typically used for this type of source estimation contains three
degrees of freedom. However, this is only half the information in the seismic wavefield: by
including the rotational motions of the wavefield, we are doubling the observable information.
Indeed, there is evidence in the literature that including rotational motions in certain types of
source-estimation inversions may increase the precision and resolution of the estimated seismic
source parameters (Bernauer, et al., 2009; Bernauer and Fichtner, 2014; Reinwald et al., 2016;
Donner et al., 2016; Ichinose et al., 2020); however, this previous work was only estimating a time-
invariant seismic source model. For our work here, we describe a method to estimate the time
variable seismic source, as may be more appropriate for explosion discrimination.

We begin by giving a brief overview of seismic gradiometry, how it is implemented, and the
additional wavefield parameters that can be observed with it. We then review the forward model of
far-field linear seismic waves and finally describe our inversion scheme using the full six-degrees-of-
freedom wavefield (i.e. both translational and rotational motions).

4.1. Seismic Gradiometry

Seismic gradiometry refers to the process of estimating the time-varying spatial gradients of the
seismic wavefield using a small scale seismic array. The theory was initially discussed in the context
of linear and two dimensional seismic arrays by Langston (2007a,b,c) and extended to three
dimensions by Poppeliers et al. (2013) and Poppeliers and Punosevac (2013), with applications and
improvements described by Liang and Langton (2009) and Poppeliers (2010, 2011).

The method is founded on the model of a propagating seismic wave, that may contain geometrical
spreading G (r) and wave slowness p, that might change with distance:

u(r,1) = G@Of (1 — pr —ry))

where r is the position vector and ry is the reference position. The derivative with respect to the
spatial variable (i.e. the spatial gradient) is

0 0
2~ Aau+BZ 4-1)
or ot
where the coefficient A relates to the geometrical spreading
1 oG
_ (r) (4-2)
G(r) or

and B relates to the wave slowness
op

B=-p——(r-—-ry (4-3)
or

There are several methods of solving Equations 4-2 and 4-3 for the attributes A and B, but that is
not our primary interest here. Rather, we note that any method of estimating A and B requires two
quantities: the time and space derivatives of the wavefield. The temporal derivative of the seismic
motion (i.e. the particle velocity) is directly measured by conventional seismic instrumentation.
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However, estimating the spatial derivative essentially involves measuring small wavefield differences
as a function of space.

A seismic gradiometer is type of seismic array that is designed specifically to estimate the spatial
gradient of the wavefield. The primary requirements are that the instruments are well-calibrated and
that the nominal aperture is small enough to measure the local slope of the wavefield, but large
enough to not be unduly affected by instrument errors. Poppeliers and Evans (2015) developed a
rule to optimize the aperture a of a surface-deployed gradiometer:

a= £ 44
pf

where p is the magnitude of the horizontal wave slowness, fis wave frequency, and ¢ should be in

the range of 0.03 to 0.08. A physical interpretation of £ is that it represents the range of fractional

wavelengths for which a gradiometer can accurately estimate the spatial gradients. Ideally, a

gradiometer should consist of at least five seismometers (typically 3-C instruments) deployed in a

circular array, where the ground material is relatively similar over the aperture of the array.

Seismic gradiometric analysis requires measurements of the displacement wavefield. As stated
catlier, the temporal derivative of the wavefield (Equation 4-1) is simply the velocity seismogram,
which is directly observed by most modern seismometers. To estimate the spatial gradient of the
displacement wavefield, we employ a Taylor series, which gives the spatial gradient of the
displacement wavefield du; at a specific point in time at location r; = (x;, y;) relative to a reference
station, located at ry = (xq, yy) as

ou
dy

0
du; =u; —uy = 5xl~a—u

+ duf (4-5)
X

I l‘0

+0y;
0
where dx; = x; — x(, 0y; = y; — yo and du"" is a term accounting for the truncation error of the
infinite Taylor series. So long as the conditions of Equation 4-4 are met, then we can ignore the
error duf’". For a collection of N surface-mounted seismometers, all on a common time base, we
can rewrite Equation 4-5 as a set of linear equations:

Uy — Uy (x;—=x9) (1 =) o
Uy — g (xy = x9)  (¥2— o) ox
) ~ 2 ) 0 2 0 ﬂ (4—6)
Uy —u ' . 9y
N 0 oy —x0) (v — o)

where the coordinates of the reference station are (x(, y), (x;,¥;) are the coordinates of the N
supporting stations, and u; — u is the difference in the displacement seismogram between the

d
supporting and reference stations, respectively, and the spatial gradients of the wavefield are a_u and
X
0 . .
e Equation 4-6 can be written as:
u=Rg (4-7)

where uis a 1 X N column vector of wavefield differences, R is the gradiometer geometry, and g is a
2 X 1 vector containing the spatial gradients and solved using generalized least squares. The
gradients are estimated for every time point along the seismogram and Equation 4-7 can be solved
using any component of data: i.e. for 3-C data, Equation 4-7 is constructed three times, once for

. . . , . ou
each component of data, for every time point along the seismogram. Thus, the spatial gradients, =

ou . . . . . . .
and oy re time series. Finally, we emphasize that the data type for gradiometric analysis are
Y
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displacement seismograms. Thus, the raw velocity seismograms as estimated by conventional
seismometers must be converted to displacement using a numerical integration method prior to
computing the seismic spatial gradients.

The rotational motions of the seismic wavefield are given by the curl of the displacement:
Q(r',1) = Vxu(r,t) (4-8)
which gives

[ ou.r', 1) _duy(en i

Cl)x(r/, t) dy 0z
, Ouy(r',f)  Ouy(r',1)
Q' t)= |o,x, )| = = - +9
( ) y , 0z ox ( )
w,(r',t) Quy(r', 1) Juy(r', 1)
ox - dy

The terms on the right hand side of Equation 4-9 are the spatial gradients of the wavefield, which
are estimated using a gradiometer and solving Equation 4-7.

4.2. Inverse Method

The inversion is founded on a linear model for seismograms
Ny oo

MCNSEDY J QX' 150, D)m,y(r, 1) dt (4-10)
n=1"“—

where u, is the seismogram for channel k, located at observation point r’, m,, is a series of force
couples acting at point r, and g, are a series of seismic Green’s functions (GFs) describing the
impulse response from source # located at point r to the receiver located at r’ (e.g. Stump and
Johnson, 1977). Note that this linear model of seismograms is completely general, in that the GFs
can describe any elastic wave type, be they P, S, or surface waves, as well as any type of seismic
motion, translational or rotational. The only requirement is that the GFs explicitly predict the type
of wave motion observed for channel .

The goal of the work presented in this chapter and the next is to use the model in Equation 4-10 to
estimate the parameters of the seismic source m,(r,t). For analyzing a seismic wavefield produced
by a buried explosion, we typically make a simplifying assumption that the seismic motion observed
in the far field (i.e. at least several tens of wavelengths between the source and receiver) is a result of
a seties of forces and/or force couples acting at a point. For this model, m,(r, 1) is a 3x3 tensor that
quantifies the nine possible force couples acting at point , which because of symmetry, contains only
six independent terms, (N; = 6 in Equation 4-10). The force couples contained in the tensor m,,(r, t)
are time variable, and thus

My (t) Mo () M, ()

m,(r,1) = my(r,t) = | My, (t) M, (1) M, (1) 4-11)
M, (t) M,(t) M,(t)

where M;; = Mj;. Bach term in m;;(r,) is a source time function that corresponds to a given

component of the moment tensor (Aki and Richards, 2002).

By Fourier transforming Equation 4-1 into the frequency domain, the convolution becomes a
multiplication,
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Ny
Ut £) =) G (t, £51, £ IM(x, ) (4-12)

n=1

which in matrix form can be written as
u=Gm (4-13)

For Q frequencies, six independent source terms, and K receiver channels, Equation 4-13 is explicitly

_ | _ _ | _
U,(f) M (f)
| 3 3 |
| Gl(l) GI(Z) G1(6) |
Uy(f) G GP e G My(f)
| = G:gl) G3(2) G3(6) | (4-14)
: G g ... G© :
| | Ok K K] ko0 |
Uk(f) Mq(f)
| |
B 4 Kox1 L 4 60x1

where [— U.(f) —] T is a Q X 1 column vector containing the frequency domain data for channel k,

T. . y .
[— M, (f) —] is the nth frequency domain Q X 1 column vector describing the source time
function corresponding to the nth component of the moment tensor, and

GO(f) -~ 0
: \ :

Gli)= : :
0 G(i)(f )
ke oxQ

is the GF for the kth receiver channel and the nth moment tensor component.

Because the inversion is strictly linear, we can invert for each frequency individually, and concatenate
the final results. Specifically, for frequency ¢,

U, Gy GRG0 My(f,)
U fZ> G(f) GP(f) -~ GO Mz(fZ)
: GV(f) GP(f) - GO(f) : (4-15)
Ux(f) 5 5 - 5 Mq(f,)
Kx1 _Gl((l)(fq) Gl((Z)(fq) GI(((S)(fq)_ e 6x1

Equation 4-15 is solved using generalized least squares
m = (G'G)”' G'U (4-16)

where no damping or regularization is typically required. Note that the matrix in Equation 4-16 is
solved for each frequency ¢ individually. The results for all frequencies are therefore concatenated
and converted to the time domain via the inverse Fourier transform. In previous work, the results
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are nearly identical whether we solve for all frequencies simultaneously, (Equation 4-14) or for each
frequency separately (Equation 4-15) (see Figure 8 of Poppeliers et al., 2020).

The ordering of the data in Equation 4-15 and 4-16 is completely arbitrary, just so long as the
appropriate GF is “matched” to the appropriate channel of data. Furthermore, the quantity u;, in
Equation 4-10 (and Equations 4-14 through 4-16) can be any type of seismic motion. For example,
a conventional seismometer records the ground velocity in three orthogonal directions

v (r',t)
v(r', 1) = [n('1) (4-17)
v,(r',1)

where the subscript indicates the component direction in a Cartesian coordinate system. Thus, the
GFs used in Equation 4-10 to predict ground velocity will be velocity GFs and for typical three
component data recorded by a traditional seismic array, the number of data channels (the variable K
in Equations 4-14 and 4-15) will be three times the number of seismic stations (i.e. each seismic
station will record three channels of data: v,, v, and v,). Likewise, the rotational motions (computed
according to Equation 4-9),

w,(r', 1)
Q' 1) = |oyx',1) (4-18)
w,(r',1)

will have rotational GFs. To combine the translational velocity seismograms as well as the rotational
motions, both data types are simply inserted into Equation 4-15 to form an augmented system of
equations. For example we can arrange the two data types as,

| |
v G{V}
| |

N (4-19)

Q Gl
| |

where [ v —]Tand [= @ =]" are column vectors that contain the velocity and rotational

. . T T . .
seismograms, respectively, [~ G0 —] and [- G{® ]| are the corresponding velocity and
rotational motion GFs, respectively, and m is a column vector that contains the seismic source
parameters that we wish to estimate. Explicitly, Equation 4-19 could take the form
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[ Gl{v}(l)(fq) Gl{v}(Z)(fq) Gl{v}(6)(fq) ]

_ v1(fq) - Gz{v}(l)(fq) GQ{V}(Z)(fq) Gz{v}(@(fq)

vz(fq) G3{V}(1)(JZ) G3{v}(2)(fq) G3{v}(6)(fq)

5 | U Mi(f,)
VK(fq) GI{(V}(I)(fq) GI{(V}(Z)(fq) GI{(V}(6)(fq) Mz(fq)
B . (4-20)
M,

QZqu) GZ{Q}(D(fq) GZ{Q}(Z)(fq) GZ{Q}(6)(fq) 6(]2) o

QL&fq) GIRI(f) GOy .. GIO)(f)
- 1 (k+0)x1 : : . :

- d k+p)x6

for K channels of (velocity) translational data, L channels of rotational motion data, and frequency q.
As written, Equation 4-20 shows the translational and rotational component data as distinct ‘blocks’.
However, there is no need for this structure: the data can be arranged in blocks as shown here, or
interleaved (e.g. one translational channel followed by one rotational channel, etc.). As mentioned
previously, the ordering of the data in the matrix Equation 4-20 isn’t important, so long as the GFs
correspond to the correct channel of data. This is due to the linearity of the problem, and
numerical tests (some of which are presented in the next chapter) confirm this assertion.
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5. GRADIOMETER DEMONSTRATION

In Chapter 4, we described the mathematical details of gradiometry, estimating rotational seismic
motions using gradiometric analysis, and finally a linear inversion that’s designed to estimate the
time-varying moment tensor given both translational and rotational seismograms. In this chapter we
discuss some of the implementation details as well as show some examples of inverting seismic data.
The tests are synthetic throughout, and are designed only to demonstrate the validity of the
mathematical model, as well as our implementation of the inversion scheme.

5.1. Synthetic Data

The data that we use to test our inversion here is synthetic throughout. Figure 5-1 shows the Earth
model, as well as the array that we used to create the data. To create the data, we constructed a
geologically reasonable model, defined a seismic source, and used a Sandia-developed, three-
dimensional finite difference wavefield simulator to compute the seismograms (see Poppeliers and
Preston, 2020 for details). The geologic model has a discrete spatial node spacing of 5 m, and the
time step (Af) that we used for the simulation was 0.00065 s. These finite difference parameters,
along with the range of seismic wavespeeds in our model, allowed us to simulate wavefields up to
approximately 20 Hz without significant numerical dispersion.

For the data, we define the source to simulate a buried explosion followed by a smaller release of
tectonic strain. We simulate the source time functions for the buried explosion using the well-
known Mueller-Murphy explosion source model (Haskel, 1967; Murphy, 1977; Mueller and Murphy,
1971). Specifically,
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Figure 5-1: The geologic model and array stations used to test our inversion method. Panels (a)
and (b) are orthogonal cross sections though the three-dimensional Earth model that we
constructed, where the black circle at m is the source location. Panel (c) shows the surface
location of the array stations used for our tests. At each nhumbered station, we collect three 3-C
translational velocity seismograms, as well as three 3-C rotational motion seismogram.
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100
m;xPl(l‘,T)=lP(T) 010 (5-1)
001

where

2 3
Y(r) = ‘P(oo)[l —e K [1 +kt + (k;) + (kg) - B(kr)“] ] (5-2)

And 7 =t — r/a is the reduced time, k controls the bandwidth of the source, and B controls the
degree of overshoot. We defined the earthquake source tensor as

—0.3584  0.1631 —0.8623
mlr,0) =f(@)| 01631 0.1130 -02717 (5-3)
—0.8623 —02717  0.2454

which simulates a fault with a strike of 45° a dip of 19°, and a rake of 32°. The source time
function for the earthquake source is given by

I+y
f@®)=m (%t) for0 <t < g (5_4)

and

0 0.5 1 15 0 0.5 1 1.5
time (s)

0 - .
0 05 1 1.5
time (s)

Figure 5-2: The source time functions corresponding the moment
tensor used to simulate the data.
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f([) = MO <2 — Et) for E <t< d (5—5)

where M is the maximum amplitude, d is the total time of f(¢), and y controls the shape of the
function (Tanioka and Ruff, 1997). Thus, the source model used to create the synthetic data is a
linear combination of two sources defined above:

My(r,1) = mgQ(r, 1)+ m;xpl(r, 1) (5-6)
which is shown in Figure 5-2.

Using the source defined in Equation 5-6, we simulated the full wavefield through the model and
recorded it on the sixteen stations shown in Figure 5-1. At each station, three components of
translational surface velocity,

v (X', 1)
v(r', 1) = [n{'1) (5-7)
V(1)

and three components of rotational rate motion,
w,(r', 1)

Q1) = |w,x',1) (5-8)
w,(r',1)

are recorded. For the translational seismograms, the subscript indicates the direction of motion, and
for the rotational rate motions seismograms, the subscript indicates the axis about which the
rotation occurs. Note that in a field setting, the rotational motions would most likely be estimated
using the gradiometric method described in the previous chapter; however, there are dedicated
rotational sensors (e.g. Lee et al., 2009). For our simulations, however, our finite difference wave
simulator can compute (and output) the gradient or rotation rate of the wavefield directly, of which
we use the latter for simulations shown in this report.

5.2. Green’s Functions

Recall that seismic Green’s functions (GFs) are the impulse response of the Earth. As such, we can
estimate the required GFs by using the same geologic model, array configuration, and finite
difference wave simulator as for the synthetic data. The primary difference is the input source: for
GPFs the source is an impulse, which we implement numerically with a delta function. Note that we
must compute the GFs for each term in the moment tensor. Specifically, for the M, , component
GE, we define the source as

100
GF (', t;r,0)=86t) [0 0 0 (>-9)
000

1
where 6(¢) is a discrete Dirac delta function with amplitude N att = 0 and zero amplitude

elsewhere. Likewise for the M,, component GF, the source is defined as

010
GF,,(x',t;r,0)=58(t)[1 0 0 (5-10)
000
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and so on. Note that for the GFs that correspond to off-diagonal components of the moment
tensor, symmetry is preserved. We compute six sets of GFs, one for each component of the
moment tensot, and each set of GFs (corresponding to a single moment tensor component)
contains six total components of motion: three directions of translational velocity and three
directions of rotation rate. Thus, for each station of the (synthetic) array there are 36 total
‘channels’ of GFs: (three components of translational velocity) plus (three components of
rotational motion) by (six terms in the moment tensor).

5.3.

The simulated data contains three components of translation and rotational seismograms for each
station (Figures 5-3 and 5-4). However, we note that the amplitude (with units of m/s) of the
translational velocity seismograms are approximately two orders of magnitude higher than that of
the rotational rate motions seismograms (with units of radians/second). If we wete to use the raw
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Figure 5-3: Unfiltered, synthetic, translation velocity seismograms. The three panels correspond
to v.(1), vy(t), and v,(7). All of the seismograms are normalized to the maximum amplitude of the
entire suite of translational seismograms, and are thus shown in their correct relative amplitude.
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Figure 5-4: Same as Figure 5-3, but for the rotational rate motion seismograms.

translational and rotational data (and their corresponding GFs) in an inversion directly, the solution
would be dominated by the translational motion data. Thus, we “non-dimensionalize” both the data
and GFs prior to inverting by dividing by scalars with the appropriate units. Specifically, we
normalize the data and GFs by dividing by the root-mean-square (RMS) amplitude of the
appropriate data type:
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where a is the mean RMS amplitude of all of the translational component data and f is the mean
RMS amplitude of all the rotational component data. Because we apply these scalars to both sides
of the equation, the amplitude of m is unaffected.
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Figure 5-5: Results of inverting the translational data only. The top panel shows the true
seismic source functions in green and the estimated seismic source functions in red.
The bottom panel shows the fit-to-data: the green are the observed (synthetic) data and
the red are the data predicted by the inversion. Note that for clarity, we only show the
data for the first three stations of the array.
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5.4. Numerical Tests and Examples

In this section we show the results of inverting the synthetic data. We developed computer codes to
implement our inversion using the Matlab programming language. The codes are constructed such
that we can easily define which stations and channels of data we use in the inversions: we can easily
include or omit any channel or component of translational or rotational data. This capability was
implemented with the future goal of testing the benefits and/or limitations of including rotational
motion data when inverting for time-domain moment tensors. However, the results presented here
are only to demonstrate the validity of our mathematical model and the efficacy of our inversion
method. We do not perform a detailed study of the resolution, the effects of model and/or data
uncertainty, or the benefits (or issues) associated with the inclusion of rotational motion
seismograms to this type of inversion. These types of experiments and analysis are outside the
scope of this report, but do serve as the topic of ongoing and future study.

For the first example, we show the results of inverting only the translational velocity data (Figure
5-5). This test serves as benchmark test: previous analysis by us (and others) typically use only
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Figure 5-6: The results of our inversion where only the rotational motion data are
inverted. Note that the seismic source functions are nearly perfectly recovered (top
panel), and the fit-to-data is nearly perfect (bottom panel). For clarity, only the
rotational motion seismograms for the first three stations in the array are shown.
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translation velocity seismograms for analysis. Note that the inversion perfectly recovers the source
model and the fit to data is almost perfect. This is to be expected for perfect, noise free, synthetic
data. The fit-to-data is computed by using the estimated seismic source functions, shown in red in
the top panel of Figure 5-5, and convolving them with the GFs according to Equation 4-10. The
misfit is defined as the difference between the observed data and the predicted data:

(d—-Gm)’(d - Gm)
€ =
d’d
where d is the observed data that we invert (which is in case synthetic), G are the GFs, and m is

seismic source functions estimated from our inversion. Note that for the results shown in Figure
5-5, the misfit is zero.

(5-11)

For the next test, we invert only the rotational motion seismograms, and obtain results that are
similar to those shown in Figure 5-5: perfectly recovered seismic source functions and a nearly
perfect fit to data (Figure 5-0).

As a final test, we inverted both translational velocity and rotational motion seismograms
simultaneously (Figure 5-7). However, we only selected the seismograms from three of the array
stations. In this case, the estimated seismic source functions were nearly identical to the actual
seismic source functions, (i.e. they look identical to those shown in Figures, 5-5 and 5-6), and thus
we don’t show them here. However, the misfit is 0.08, which indicates that the fit isn’t perfect.
However, this is likely because we are using only three stations of data (albeit six channels for each
station, for a total of eighteen total channels of data), and, thus, we are not densely enough sampling
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Figure 5-7: The fit-to-data for the case where we simultaneously invert both translational and
rotational seismograms. However, we only selected the data from three stations in the array.
For this test, the translational and rotational motion seismograms are collected from array
stations that are co-located.
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the focal sphere of the source. Regardless, we conducted this test to verify that our inversion code
is correctly estimating the seismic source parameters and that we can easily select arbitrary channels
of data, whether they be translational or rotational.

5.5. Concluding Remarks

In Chapter 4 we presented a method to invert translational and rotational motion seismograms for
the seismic source functions that correspond to the seismic moment tensor. Our code correctly
recovers the seismic source model in synthetic tests, indicating that our mathematical model and
implementation are correct. Additionally, we’ve designed our code so that it’s easy to select which
stations and data components to invert.

We were motivated to include rotational motion seismograms in an inversion for seismic source
functions for two reasons. First, there is evidence in the literature that including rotational motions
can increase the accuracy and precision of seismic source estimates. However, much of this
previous work made different model assumptions than we do. For example, the work of Bernauer
and Fichtner (2014) and Reinwald et al. (2016) showed that including rotational seismic motions
increases the resolution of finite source models. In the case of point source models, Donner et al.
(2016) and Ichinose et al. (2020) also showed an increase in source resolution, but they inverted only
for centroid moment tensor components, where source depth was a free parameter: i.e. they assume
that the source time function for all of the force couples is identical, and thus they only invert for
the six scalar values of the tensor (in addition to the source depth). Our inversion differs from these
previous efforts in two important ways. First, we assume a point source where we have perfect
knowledge of the source location. Secondly, and perhaps most importantly, we do not impose the
condition that all of the source time functions for all the tensor components are similar. Rather, we
allow each seismic source function for each tensor component to have independent time histories.
This model may be more appropriate for explosion monitoring tasks, as it’s feasible that two distinct
seismic mechanisms can be present when buried explosions are detonated: the nearly-isotropic
explosion source which can then be followed by a double-couple type of source that represents the
release of pre-existing tectonic stress. Thus the inversion scheme we describe here may improve
monitoring efforts by allowing a time-variable decomposition of the seismic source, which is
something that almost no current source inversion schemes allow.
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6. SUMMARY

We have discussed two new software enhancements in this report: the 3-D TVBC and the addition
of seismic gradiometer data to full waveform moment tensor inversions. We derive the theory and
discuss some numerical implementation aspects of both enhancements. Additionally, we
demonstrate both additions in action with examples and comparisons to expected behavior, which
validate the methods and software implementations.

For the 3-D TVBC simulations, we showed that in a 3-D model that adheres to the 2D-C
assumptions the TVBC is nearly transparent to the propagating wavefield, with very good agreement
with expectations. We also tested the new TVBC implementation in a 3-D model that does not
adhere to the 2D-C assumptions that were used in making the TVBC with CTH. In this case, the
artifacts were noticeable, as expected, but still relatively small in amplitude compared to the true 3-D
wavefield. None of the main seismic phases were greatly impacted by the artifacts. Thus, in certain
cases, faster 2D-C simulations can be used for the nonlinear portion of the modeling while full 3-D
modeling is used in the linear regime to get reasonable estimates of the 3-D wavefield produced
from a nonlinear source. Obviously, this approach only will be feasible if the near-source region can
be approximated as 2D-C. An even computationally faster approach exists if a linear source
equivalent model is available for the source in question. In this case, the 3-D TVBC is not required,
and a simple point seismic moment tensor source that utilizes the linear source equivalent source
time functions can be used without need for a nonlinear simulation. We showed that the wave fields
produced when using a 3-D TVBC are visually identical to those produced when the linear source
equivalent source was used without the 3-D TVBC artifacts.

We also derived and implemented full waveform moment tensor source inversions that allows
gradiometer-derived observations to be combined with traditional linear translational seismic
recordings. This permits exploration of the potential advantages of using the six degrees of
freedom of the wavefield available in a full 2-D (surface) gradiometer deployment instead of the
three degrees of freedom available in typical 3-C translational component seismic data. We
demonstrated that the implementation of the inversion scheme produces expected and virtually
perfect results when the focal sphere is sufficiently sampled. Even in the case with incomplete
sampling of the focal sphere, we are able to recover the known source time functions nearly
perfectly with very small misfit. The tests we show here are designed only to show the efficacy of
our method. On-going and future research efforts are aimed at 1) determining whether including
rotational motions increase the accuracy and/or precision of the time-varying seismic soutce
functions when the model and/or data contain uncertainties, 2) error propagation, and 3) how to
best incorporate rotational motions in a field setting,
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