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4 DARPA's Three Waves of Artificial Intelligence

Handcrafted Knowledge
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5 DARPA's Three Waves of Artificial Intelligence
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6 DARPA's Three Waves of Artificial Intelligence
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7 Autonomous Systems
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8 Will Al tech plug-n-play for defense?

- Andrew Ng
Harvard Business Review

The Al community is remarkably open, with most top researchers
publishing and sharing ideas and even open-source code. ln this

world of open source, the scarce resources are therefore:

Data. Talent.

Among leading AI teams, many can likely

replicate others' software in, at most, 1-2
years. But it is exceedingly difficult to get
access to someone else's data. Thus data,
rather than software, is the defensible
barrier for many businesses.

Simply downloading and "applying' open-

source software to your data won't work.
Al needs to be customized to your
business context and data. This is why
there is currently a war for the scarce AI
talent that can do this work.
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Commercial
Structured environments
Large tolerance for error
Large labeled training datasets for
accuracy
Can deal with object classes (car,
pedestrian, etc.)
Short-range imaging modalities (e.g.
RGB iPhone)
Can typically rely on GPS and
network connectivity, which allows
off-board processing and simplifies C2

vs
De ense

Unstructured, adversarial environment,
Low tolerance for error
Lack of training data

Requires precise object identification

Remote EO/IR/SAR imaging modalities

Operation in potentially GPS-denied
environment with minimal to no
network connectivity

Defense applications require different performance characteristics than their commerc
counterparts, while managing SWaP and bandwidth limitations.
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Autonomy for Hypersonics
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14 Sandia's Hypersonics of the Future Roadmap
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POSITIONALLY
AWARE

COORDINATE SEEKING CAPABILITY THAT IS

ROBUST TO THE GPS CONTESTED ENVIRONMENT

Senses vehicle position throughout flight

Delivers warhead to coordinates that are specified

prelaunch

Requires GPS for a substantial portion of flight

GPS robust against spoofing and modest jamming

environments

Leverages simple sensors to enhance accuracy
"kur.
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POSITION
ADAPTING

'mosami,..4.110,

COORDINATE SEEKING CAPABILITY THAT IS

ROBUST IN THE NON-GPS ENVIRONMENT

Senses vehicle position throughout flight

Initial target coordinates are specified prelaunch

Leverages GPS when available

Employs alternate navigation scheme(s) to

determine vehicle position

Accepts updated target coordinates during flight

RESEP D r"141kALLENG ES

'on (sensors and algorithms)

ensor constraints
,

-ration (RTTG)
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TARGET
HUNTING

•

►

ROBUST CAPABILITY TO ADDRESS RELOCATABLE

AND MOBILE TARGETS

Approximate target coordinates and target signature
are specified prelaunch

Employs GPS and/or alternate navigation to localize

Accepts updated target information during flight

• Employs a terminal sensor(s) to identify target

RESEARC .:HALLENGES
"ire.

• Left-of-ilk mission planning and analysis

Pik d window materials

age processing /Automatic Target
rithms

e and control
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SITUATIONALLY
AWARE

AUTONOMOUS ADAPTATION TO MAXIMIZE STRIKE •

EFFECTIVENESS

Senses many elements of its environment

Fuses data from off-board sensors

Learns from the experiences of other strike vehicles

Develops holistic view of mission challenges

Adapts flight plan for optimal engagement

RESEARCH CHALLENGES

• Al-enablAkssion analysis

'on planning (left of launch)

g

n and exploitation
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1 9 Third Wave Concepts for Hypersonics

Lifelong learning by
letting the system

"dream" and constantly
scrimmage

0
Encoding physics

constraints directly into the
machine learning

Human-Al
symbiosis

CD
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20 Adversarial Reinforcement Learning: Google's AlphaStar

In December 20 I 8,AlphaStar was used to beat a professional StarCraft 11 player
StarCraft II is one of the most challenging"Real-Time Strategy" games and demonstrates a
huge advancement in reinforcement learning development

MP

GAME
THEORY:

•

There isn't a single
best strategy in
StarCraft.
As such, an Al training
process needs to
continually explore
and expand the
frontiers of strategic
knowledge.

IMPERFECT
INFORMATION:

Unlike chess where
players see
everything, crucial
information is hidden
from a StarCraft
player and must be
actively discovered
by "scouting".

LONG TERM
PLANNING:

Like many real-world
problems cause-and-
effect is not
instantaneous. Games
can take up to one hour
to complete, meaning
actions taken early in
the game may not pay
off for a long time.

I Al research challenges including:
REAL LARGE ACTION
TIME: SPACE:

Unlike traditional
board games where
players alternate
turns between
subsequent moves,
StarCraft players
must perform actions
continually as the
game clock
progresses.

Hundreds of
different
units/buildings must
be controlled at
once, in real-time,
resulting in a
combinatorial space
of possibiliti



Ay
Lifelong
Learning

A future where
hypersonics are
plugged in and
constantly training for
their missions

Hypersonic systems are envisioned to penetrate and
disintegrate enemy A2/AD systems

Just like troops constantly train for their mission, so
too should Al-based adaptive systems

Future conflicts will be decided in hours need to
constantly train to be agile and adaptive

This learning environment can be continually updated
based on real-world situation awareness, e.g. regular
updates based on space-based imagery analysis
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22 Adversarial Reinforcement Learning
A form of unsupervised machine learning in which you provide the computer a goal, which it seeks to optimize.
• Let the computer generate its own training data
• Often done in a simulated environment (although not always)

• Distance to target

• Angle between distance
vector & HGV velocity

• HGV altitude & speed

STATE REWARD

• Positive when HGV gets closer to target

• Negative when HGV gets away from
target

• When target is destroyed

• Penalty for time to reach the target

/

1

AGENT

,,•

S IMULATED ENVIRONMENT

r• Trajectory• 6DOF control of
1 vehicle

ACT ION

• Red versus Blue

• Continual updates
based on new
intelligence



Encoding
Physics
Constraints
Knowledge
representations of
physics-based constraints
will allow machines to
explore large action
spaces for complex,
dynamic systems

AlphaStar relies on vast amounts of training data
developed from perfectly simulated games: during
training, each agent experienced up to 200 years of
real-time StarCraft play

This approach maps poorly to complex, dynamic
systems

To successfully apply AlphaStar-like methods to
hypersonics, knowledge representations of physics-
based constraints are needed that allow the machine
to quickly explore huge combinatorial action spaces
for complex, real-world environments
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24 Encoding Physics for Real-Time Evasive Maneuvers

Physics-based
Computational
Fluid Dynamics
reduced order

modeling-
simulation

Hypersonic
Wind-Tunnel

Testi ng

Development of
Motion

Primitives Library

ML algorithms
that rapidly

generate physics-
based

trajectories
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Human-Al
Symbiosis

Humans and machines
partner to better
understand the complex,
rapidly-evolving multi-
domain battlefield
environment and make the
best decisions on when,
why, where and how to
employ autonomous
hypersonic systems

Human-Al symbiosis is a critical need, in
particular for facilitating better decisions in
complex, time-critical, battlefield environments

The challenge:from a multi-domain perspective
determine the best options on when, where, why
and how to employ autonomous hypersonic
systems

o

Ea



26 Human-Machine Teaming
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Transparency Human
input 4

Mission
Planning

Fused
Situational
AwarenessA

Shared
Mental
Model

Leverage advances in
Al/ML, and data science
to provide real-time
situational awareness to
human operator.

Determine how a human
and machine work
collaboratively to
leverage real-time
intelligence to quickly
build tailored mission
plans



27 Current Research Collaborations

E ILLINOIS Georgia
Tbch"

Jennifer Hasler
+ CralgVineyard

Neund-inspired Approaches and
Implementations for AlICOMICiC Target
Recny ei 

Ani Mazumdar
+ Katya Casper

Ilypersonic Wind Ttinnel Test Bed
for Faultl.blerant and Adaptive
Col itrol

Evan gelos Theodorou
+ David Kozlowski

mid Rob um. Control
Technique for use in Plight Control
Design for 14pm-sonic Vehicles

Jonathan Rogers
+ Julie Parish

Real-Time Evasive Mancuvcrs in

Contested, encertain Lavironments

Panos Tsiotras
+ Bart van Bloan en Waanders

Hyper-Differential Analysis to
Miasmic Unaniainiirs for Coffin)] of
Hypersonic Ychielst

.1=1
77)TEXAS

UfukTopc:111
+ David Kozlowski

An Optimization and Robust Control
Technique for WIC in Fligin Ccinirni

Design for Ilypersonic Velicles

Todd Humphreys
+ Julie Parish

Iniegnand Navigation

and Guidance for Target
Acquisition

Karen VVillcox
+ Patrick Blonigan

Rapid High-Fidelity AerodtezmaA
Responses with 171:4 via
Reduited-Order Modeling

Renato Zanetti
+ Scott Jenkins

SAR. Image Formation for
Navigation GPS-Denied

Maruthi Akella
+ Mike Grant
Autonomous GDOF RTIG
for 11 Uglily Guist miner!

Hypersonic Missions

Visit autonomy.sandia.gov for additional info

PURDUE
UNIVERSITY&

r-1 ETHE UNIVERSITY
. OF ARIZONA

o e o u aro
+ Bethany Nicholso

ReaMme, Nonlinear,
' inition-Esnatel Control

Algorithms Lbr Hypersonies

TEXAS A&M
UNIVSKSIT T•

ICANSAS 
UNIVERSITY

ill Hsu
Jason Searcy

signs t iv-Aided GPS-Des tied•toine .
avigatioes

Meeko Dishi
+ John Richards
Ault)] ton tom Multi-Phil 

Sensor Scheduling

Don Hush
+ Mary Moya
Improvit Moclel-ba sal Tra• ' g of

Automatic litrget Recognition for
Rapid Response to Evolving Threats

J

NM
STATF  

Flyeongiun Park
+ Bethany lf+iichoise
Real-Time, Nonlinear,
Optimization-Based Control
Algonthms for llypersonics

J-

Liang Sun
+ Michelle Hummel
Justification and Transparency in
SLAB ATR. using Al Rule Latraete
and Pused Ciassiti

)1)

•



» Autonomy and Al can provide a transformational capability
enhancement for hypersonics

)) A number of incremental advances are possible that
increasingly Ieverage approaches across all "Three Waves ofAl"

_
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