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The development of scramjet engines is crucial for attaining efficient and stable propulsion
under hypersonic flight conditions. Design for well-performing scramjet engines requires ac-
curate flow simulations in conjunction with uncertainty quantification (UQ). We advance the
start-of-the-art in bringing together UQ and large-eddy simulations for scramjet computations,
with a focus on the HIFiRE Direct Connect Rig combustor. In particular, we perform uncer-
tainty propagation for spatially dependent “field”” quantities of interest by treating them as
random fields, and numerically compute low-dimensional Karhunen-Loéve expansions (KLEs)
using a finite number of simulations on non-uniform grids. We also describe a formulation and
procedure to extract conditional KLEs that characterize the stochasticity induced by uncertain
parameters at given designs. This is achieved by building a single KLE via samples drawn
jointly from the parameter and design spaces, and leverage polynomial chaos expansions to in-
sert input dependencies into the KLE. The ability to access conditional KLLEs will be immensely
useful for subsequent efforts in design optimization under uncertainty.

I. Nomenclature

~ U(a,b) = uniform distribution from a to b

a = primary injector angle, degrees

CyHy = ethylene

Cr = modified Smagorinsky constant

cgn = coeflicient for the nth basis function

d = injector diameter, mm

fNo = ratio between volume fractions of nitrogen and oxygen in the oxidizer streams
I, Iy = inlet and fuel turbulence intensity magnitudes
J = index set

K(,),K = covariance kernel and matrix

k; = truncation index
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L, Ly = inlet and fuel turbulence length scales, mm

M = Mach number

Mo, My = inlet and fuel Mach numbers
N = number of samples

ng = number of design variables

g = number of grid points

np = number of uncertain parameters
n = number of expansion terms
Pr; = turbulent Prandtl number

)4 = polynomial degree

Po = inlet stagnation pressure, MPa
0 = eigenvector matrix

(), gk kth eigenfunction and eigenvector
R; = ratio of turbulence intensity vertical to horizontal components

S = sample matrix

Sc; = turbulent Schmidt number

T = temperature, K

Ty = inlet stagnation temperature, K

U = left-singular matrix

Vv = right-singular matrix

wj, W = weight for the jth point, weight matrix

B 9 24 = streamwise, wall-normal, and spanwise coordinates, mm
x/d,yld,z/d = streamwise, wall-normal, and spanwise coordinate normalized by injector diameter
X = vector of spatial coordinates, mm

X1 = primary injector x-location, m

X2 = secondary injector x-location, m

Yco = carbon monoxide mass fraction

B = multi-index

Okl = Kronecker delta

4 = random variables in Karhunen-Log&ve Expansion

A = eigenvalue matrix

Ag = kth eigenvalue

u = regularization parameter

& = polynomial chaos expansion random variables

z = singular value matrix

oG = global equivalence ratio (total of primary and secondary)
?r = ratio of primary to secondary injector equivalence ratios
W, ¥p; = multivariate and univariate orthonormal polynomial basis functions
w = sample space random event

II. Introduction

Research in powered hypersonic flight has thrived in the past decades with strong interests from both military and
civilian aerospace applications [, 2]. Among others, one significant technical challenge involves the need for propulsion
systems that can sustain operations under hypersonic flight conditions (Mach > 5 and typically below low Earth orbit)
in an efficient and stable manner [2]. In these environments, one type of air-breathing propulsion systems known as
supersonic combustion ramjet (scramjet) engines seeks to burn fuel using atmospheric air at supersonic speeds, and
so sidesteps the need for carrying on-board oxidizer or decelerating airflow to subsonic speeds. Scramjets thus can
potentially achieve much higher efficiencies compared to traditional technologies such as rockets or turbojets.

The design for well-performing scramjet engines is still in its early stages. It faces major scientific difficulties in
characterizing and predicting combustion properties for multiscale and multiphysics turbulent flows under extreme
conditions, and whereby mixing and combustion must occur on time scales on the order of milliseconds while flow
in the combustion chamber is supersonic. Designing an optimal engine typically involves maximizing combustion
efficiency while minimizing pressure losses, thermal loading, and the risk of unstart and flame blow-out. Achieving this



while also producing designs that are robust and reliable in the presence of uncertainty and noise presents an extremely
challenging undertaking. An important step for advancing scramjet design thus involves conducting accurate flow
simulations together with uncertainty quantification (UQ).

While UQ in general has received substantial attention in the past decades, UQ for scramjet applications is much
less developed but gaining traction in recent years [3-10]. A comprehensive assessment of uncertainty in such systems
has been prohibitive due to the high cost of simulating turbulent reacting flows compounded with the multi-query nature
of UQ investigations that generally requires some form of exploration in the stochastic space. These challenges are
exacerbated when one wishes to carry out large-eddy simulations (LES), which, although more computationally intensive,
can describe detailed turbulent flows and features often not accessible through the more widely used Reynolds-averaged
Navier-Stokes (RANS) models. Indeed, one of several recognized computational grand challenges of LES for scramjets
is “the quantification of associated uncertainties in the computational results with regard to both aleatoric and epistemic
errors in input simulation parameters and physical models” [2].

We advance the start-of-the-art in bringing together UQ and LES for scramjet computations. While our previous
work [6—10] explored different aspects of this endeavor, most of them studied an initial unit test problem focusing on
the jet-in-crossflow physics with reaction switched off. This paper thus presents new results with combustion enabled.
We also set the scope of our UQ investigation to performing uncertainty propagation for spatially dependent “field”
quantities of interest (Qols). We treat these Qols as random fields (RFs), and numerically compute Karhunen-Loeve
expansions (KLEs) (see e.g., [11]) using a finite number of simulations on non-uniform grids. A truncated KLE
treatment is advantageous compared to a direct grid-discretized random variable approach, since a RF can effectively
capture correlations across spatial dimensions while KLE further reduces the stochastic degrees of freedom (DOFs)
needed for an accurate representation of the RF toward numbers much smaller than the number of grid points. We
also describe a formulation and procedure to extract conditional KLEs that characterize the stochasticity induced by
uncertain parameters at given designs. A naive approach may entail repeating the KLE construction multiple times at
select design points and interpolate, which would be computationally burdensome. Instead, we build a single KLE via
samples drawn jointly from the parameter and design spaces, and leverage polynomial chaos expansions (PCEs) to insert
input dependencies into the KLE [11, 12]. Once the joint KLE is constructed, we can then assess statistical properties
and generate samples of the RF at different designs. This will be immensely useful as a statistically consistent surrogate
model for subsequent efforts in optimal experimental design and design optimization under uncertainty. In summary,
the key contributions of this paper are:

1) to illustrate advances in bringing together UQ and LES for scramjet computations;

2) to perform uncertainty propagation for spatially dependent “field” Qols using RF treatment and low-dimensional

KLE representation;

3) to demonstrate the formulation and procedure for extracting conditional KLEs that characterize the stochasticity

induced by uncertain parameters at given design variables.

This paper is organized as follows. describes the physical setup and LES solver. We then introduce KLEs
in for representing RFs of spatially dependent Qols, including their numerical construction from samples and
the procedure for extracting conditional KLLEs. Descriptions of simulation results along with their KLEs are presented

in[Sec. V]. Lastly, the paper concludes with summary and discussions in Sec. V1.

I1I. Large-Eddy Simulations for the HIFiRE Direct Connect Rig

We concentrate on a scramjet configuration studied under the HIFiRE (Hypersonic International Flight Research and
Experimentation) program [[13, 14], which has been the target of a mature experimental campaign through its HIFiRE
Flight 2 (HF2) project [15-17]. The HF2 payload, depicted in [Fig. 1(a)} consists of a cavity-based hydrocarbon-fueled
dual-mode scramjet, and was tested under flight conditions of Mach 6-8+. A ground test rig, designated the HIFiRE
Direct Connect Rig (HDCR) (Fig. 1(b)), was developed to duplicate the isolator/combustor layout of the flight test
hardware, and to provide ground-based measurements for comparisons with flight test data, verifying engine performance
and operability, and designing fuel delivery schedule [18, 19]. While data from flight tests are not publicly released,
HDCR ground test data are available [18, 20]. Therefore, we aim to simulate and assess reactive flows inside the HDCR,
and intend to leverage existing experimental datasets to drive modeling developments in the future.

The HDCR consists of a constant-area isolator (planar duct) attached to a combustion chamber. It includes four
primary injectors that are mounted upstream of flame stabilization cavities on both the top and bottom walls. Four
secondary injectors along both walls are positioned downstream of the cavities. Flow travels from left to right in the
x-direction (streamwise), and the geometry is symmetric about the centerline in the y-direction. We take advantage
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Fig. 1 HIFiRE Flight 2 payload [16] and HDCR cut views [18].
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Fig. 2 The HDCR experimental setup and schematic of the full computational domain.

of this symmetry in our numerical simulations by considering a domain that covers only the bottom half of the rig.
To further reduce the computational cost, we consider one set of primary/secondary injectors and impose periodic
conditions in the z-direction (spanwise). The overall computational domain is highlighted by the red lines in Fig. 2.

The fuel supplied through the injectors is a gaseous methane-ethylene mixture containing 36% CH, and 64%
C,H4 by volume, which acts as a surrogate with similar combustion properties as JP-7 [21]. A reduced, three-step
mechanism [22, 23] is initially employed to characterize the combustion process:

CH4 + 2(03 + fnoN2) — CO; + 2H,0 + 2 fnoNs (1)
C2H4 + 3(02 + fNONZ) d 2C02 + 2H20 + 3fNON2 (2)
2CO + 0y — 2COy, 3)

where fno = 0.79/0.21 is the ratio between volume fractions of N, and O, in the oxidizer streams. Arrhenius
formulations of the kinetic reaction rates are adopted, and the parameters are selected to retain robust/stable combustion
in the current simulations.

LES calculations are then performed using the RAPTOR code framework developed by Oefelein [24, 25]. The
solver has been optimized to meet the strict algorithmic requirements imposed by the LES formalism. The theoretical



framework solves the fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically
reacting flow, while accounting for detailed thermodynamics and transport processes at the molecular level, and under
high Reynolds number, high-pressure, real-gas and/or liquid conditions over a wide Mach operating range. RAPTOR
is designed specifically for LES using non-dissipative, discretely conservative, staggered, finite-volume differencing.
This eliminates numerical contamination of the subfilter models due to artificial dissipation and provides discrete
conservation of mass, momentum, energy, and species, which is imperative for high quality LES.

Lastly, we would like to point out some limitations of our numerical results in the current paper stemming from
additional simplifications necessitated by practical considerations. In particular, constraints on computational resources
both encouraged and compelled an initial UQ investigation involving simulations in a two-dimensional geometry,
where we placed a single cell in the z-direction at a x-y plane intersecting the injectors. We fully acknowledge the
decreased fidelity of these runs as a result of the reduced geometric description as well as the relatively simple chemical
model in to[(3). Indeed, certain physical features and phenomenon are eroded or otherwise not representable
in a two-dimensional setting. Nonetheless, given the scale of computations demanded by any form of uncertainty
assessments, performing UQ even under these emulatory settings has not been achieved previously. At the same time,
fully three-dimensional simulations are computationally possible but only for relatively coarse grids and where only a
small number of runs can be completed under the present computational budget; they are thus not ready to support a
meaningful UQ demonstration, and are part of our future work.

IV. Conditional Karhunen-Loeve Expansions for Random Fields

A. General Formulation

We seek to construct KLEs for spatially dependent field Qols computed from the RAPTOR LES code described
in Sec. ITI. We begin by making a brief introduction of KLEs in the general setting without making the distinction
of conditioning; mathematical details can be found in references such as [[11]. A field Qol, for example temperature
T(x,w), is treated as a RF that depends on both the spatial coordinates x = (x,y,z) € X and sample space random
event w which induces the stochasticity of the RF (we will make this more precise when we discuss the conditioning in
Sec. IV.C). Without loss of generality, we restrict ourselves to centered (zero mean) RF where, for example, the mean
behavior may be subtracted out from dataset samples during preprocessing. When the RF is square integrable and
continuous in the mean square sense, it can be expressed via a spectral decomposition known as the KLE:

T(xw) = )" Vg (W) @)
k=1

where {(w) are mutually uncorrelated random variables with zero mean and unit variance. A; > 0 and gx(x) are
eigenvalues and eigenfunctions, respectively, of the RF covariance function between two locations x; and x;:

K(x;,x;) = B [T(x;,w), T(x,0)] , 5)

and they are solutions to the homogeneous Fredholm equation of the second kind:

th%&mwmm=@%mx k=12,.... ©)

The eigenfunctions, when properly normalized, satisfy

[\/ gk (X)qi(X) dX = Ok, ki1=12,... (7

where 0; is the Kronecker delta. The KLE can be shown to be optimal in the sense that a finite truncation under
decreasing eigenvalues yields the minimum mean square error equaling to the sum of truncated eigenvalues. Thus, a
k,-term truncated KLE can provide an accurate representation of the RF using a finite number of random variables
G(w),k = 1,...,k;, where k; is often much smaller than the number of grid points (i.e., the dimension of a grid
discretized RF) especially when rapid spectrum decay takes place (which occurs under high correlation settings).

The construction of a RF thus involves characterizing Ak, gk, and &, which we will compute numerically from a
dataset of samples of the targeted field Qol.



B. Computing Eigenvalues 1; and Eigenvectors g,
Let {x; }Jnj , represents the grid locations where the field variable is stored. Associated with these points are also

quadrature weights w; > 0 that reflects the local cell area (for example, a uniform grid would have w; = 1/n,). We
begin by establishing the spatially discretized version of Eqn. (6)] and Eqn. (7):

g
/ K(x;,Xj)qr(X;) dx; = Axqr(x;) — Z w;iKiiqr,j = Akqk,i» LN R (8
X :
j=1
g
/ qr(x)qi(x) dx = 6 — Z Widk.jq1,j = Okl» 9
X .
j=1

for k,I = 1,2,.. ., and where we adopted notations K;; = K(x;,X;) and gx ; = gx(X;). With a total of N < oo samples,
the covariance matrix can be forged from sample covariance of our dataset via the formula

N
1 a
Kij = N1 ; T(xi,w(”))T(xi,w(")), Lj=1,...,ng, (10)
where the RF is assumed to be centered in preprocessing and so the mean subtrahend is zero, and the superscript (-)™
represents the nth sample from the dataset. in matrix form is then
(KW)Q = QA, 1D

where K € R(%s*"s) W e R("s*"2) is the diagonal quadrature weight matrix with W;; = wj, and Q and A are the right
eigenvector matrix and the eigenvalue matrix, respectively. Two comments are warranted at this point. First, proper
scaling of the eigenvectors is required in order to attain orthonormality with respect to W, as required by [Eqn. (9).
Second, while K € R(s*"2), the number of nonzero eigenvalues (assuming all samples are unique) equals its rank,
min(ng, N — 1), as a consequence of discretization and finite sampling. In practice, good accuracy can often be retained
while truncating the expansion further with

ke
T(xw) ~ ) Aqe(x)d(w). (12)
k=1

One practical rule of thumb is to select the smallest k, such that 1, has decayed to some fraction (e.g., e~!) of the
largest eigenvalue A;. One may also choose the smallest k; so that the retained energy Zi’: | A achieves some large
percentage (e.g., 90%) of the total energy ZZi | Ak, but this requires computing all Ax. When the spectrum decay is
rapid, k; is often much smaller than either ng or N.

Lastly, we note that the eigenvalue problem in can be solved through singular value decomposition (SVD),
since the (weighted) covariance matrix (with zero mean) may be expressed as

1 | 1 T
KW = w2s STWT) (13)
(VN -1 ) (VN — Il
where S = [T(x,wV),...,T(x,w™)] € R"«*N) is the sample matrix. With the SVD: \/ﬁW%S = UXVT, the nonzero
singular values in X are square root of nonzero eigenvalues in A, and the columns of U are eigenvectors in Q. With the
truncation in Eqn. (12), iterative algorithms would be advantageous to target only the leading modes. Furthermore, since
our study with scramjet computations deals with expensive simulations with large grids and few available simulation

samples—that is, n, > N—working with the S matrix of size (n, X N) involves less intensive memory requirements

than the (ng X ng) system in Eqn. (IT).

C. Conditional Karhunen-Loéve Expansions by Representing {; Using Polynomial Chaos Expansions
Once A; and gy are obtained, we can recover the N samples of the uncorrelated random variables & (w™) for each
k, from our dataset through

!

n
1 1 &

Gw) = - /X T(x,w)gx (x) dx G = D w0, n=looN. ()
j=1



One may use these samples, for example, to perform a kernel density estimate (KDE) for i, from which new samples
can be generated and evaluated for subsequent uncertainty analysis. However, such an approach would not
build a relationship to the uncertain parameters and design variables, i.e., the model inputs, explicitly. Since ultimately
we would like to access conditional KLEs that are functions of design variables and capture the stochasticity induced by
uncertain parameters at given designs, we need to be more specific about the role of w.

In the presentation so far, w is a collective embodiment of all sources of stochasticity, and the dataset samples
are perceived as different realizations of this process. To be more specific, in this work, our samples are generated
by performing simulations at jointly randomized uncertain parameters as well as design variables, and so we wish to
map w into those two contributions. One possible approach is to represent {i(w) as finitely-truncated PCEs (detailed
descriptions of PCEs can be found in references such as [[11}, 26-28]):

G@) = D g¥p(Er, . o Enpobnyit - rbnping) (15)
peT
where cg are the expansion coefficients, 8 = (5i,.. ., B, +ny ), VB, € Ny, is a multi-index, J is some finite index set,
np is the number of uncertain parameters, ng is the number of design variables, £; are a chosen set of independent
random variables, and g (¢1, . . .,fnp,f,,pﬂ . .,§np+,, ;) are multivariate polynomials of the product form
np np+ng
W6t bl - onpeng) = | U5 E) || ws, &), (16)
i=1 jEnp+1

with 5, being degree-f; polynomials orthonormal with respect to the probability density function of &; (i.e., p (£)):

E [y (&)wn(€))] = '[ Ui (&) v (&) p (&) déj = Skn. (17)

While different choices of ¢; and 3, are available under the generalized Askey family [29], our application will use
only Legendre expansions with uniform &; ~ U(—1, 1) since our parameters and design variables are endowed with
uniform measures and so linear transformations between them to £; can be conveniently established. Furthermore, we
focus on total-order expansions of degree p with J = {8 : || 81|; < p} for simplicity. The total number of basis terms
(np+na+p)!
(np+nq)'p! *

Since we have samples ¢ ("), n=1,...,N from , we may estimate PCE coeflicients cg via regression. This
involves solving c in the following regression linear system Ac = b:

for a total-order expansion is

\P’Bl(f(l)) TE \Pﬁn, (6(1)) C,Bl ]El)
: f : 1= & (18)
P EMY o Wn EV] [ cgne g}iN)
S~—— ~——
A c b

where the notation Wg: refers to the ith basis function for a total of n, terms, cg: is the coefficient corresponding to that
basis, and £ is the nth regression point (here & without subscript represents the vector of all & 7). The Karhunen-Loeve
theorem states that {; are zero mean, unit variance, and mutually uncorrelated. We thus remove the constant basis term
to impose zero mean. Unit variance is enforced through

Var(Zy) = Z =1 (19)

Zero mutual correlation is more difficult to achieve, as it requires

Eladl= D cpap=EIG]E[L]=0,  ki=1.. .kandk#l, (20)
0+Bed

where the first equality can be obtained by applying Eqn. (2.11) and (2.22) in [30], the second equality is the condition
for no correlation, and the last equality is due to the zero-mean properties of these random variables. A is thus the



regression matrix where each column corresponds to a basis (except the constant basis term) and each row corresponds
to a regression sample point. The number of columns n can easily become quite large in high-dimensional settings;
for example, a total-order expansion of degree 3 in 16 dimensions contains n; = (3;:66,)! — 1 =969 terms. In fact, we
often encounter situations where the number of samples N may be much smaller than n,. We thus employ compressive
sensing [31, 32] to discover sparse structures in PCEs by finding a sparse solution for the (potentially underdetermined)
system in [Eqn. (18). Specifically, we target the unconstrained least absolute shrinkage and selection operator (LASSO)

form:

min || Ac — b |[3 + u|l ¢ ||, subject to and (20), 1)
c

where y is a regularization constant. We solve the LASSO problem numerically using the alternating direction method
of multipliers (ADMM) [33, 34] with modification to include constraints and (20), and select u based on
cross-validation techniques (such as in the manner utilized by [35]).

V. Numerical Results

In our numerical studies, we designate 11 parameters to bear uncertainty (uncertain parameters), and allow a separate
set of 5 parameters to vary and reflect the scramjet design configuration (design variables). The total model input
space is thus 16 dimensional, and tabulated in [Table 1. The uncertain parameters reflect uncertainty in inlet and fuel
inflow boundary conditions as well as turbulence model parameters for the Smagorinsky model. With lower and upper
bounds suggested by domain experts, we invoke the maximum entropy principle [36, 37] and endowed the parameters
with uninformative uniform “prior” distributions across the ranges indicated in the table. While there are no intrinsic
distributions associated with the design variables, we view them as random variables in the exploratory stage. Without
any prior information to favor particular regions of the design space, we also sample the design variables in accordance
with uniform measures™.

We will perform our investigations on multiple field (spatial) Qols, such as temperature (7'), Mach number (M),
mass fractions of chemical species (e.g., Yco), etc. All Qols are time-averaged variables unless indicated otherwise.
The simulation data utilized in the current analysis are from two-dimensional scramjet computations, employing grid
resolutions where cell sizes are 1/8 (coarse), 1/16 (medium), and 1/32 (fine) of the injector diameter d = 3.175 mm.
The run lengths at different grid resolutions are selected to try to keep the total time in the problem context roughly
equal, while considering practical constraints of computational resources. While the timestep sizes are determined
adaptively based on guidance from the Courant-Friedrichs-Lewy (CFL) condition, their values for the next refined grid
resolution roughly decrease by a factor of two. The simulations are thus performed for 2 x 10° iterations for the coarse
grid, 4 x 103 for medium, and 8 x 10° for fine, from their respective warm-start solutions that were engineered from a
quasi-steady state nominal condition simulation, and the last halves of these iterations are used for time-averaging. The
total number of simulations performed in establishing our database, as well as their average central processing unit
(CPU) times, are shown in Table 2.

to [§] present the sample mean and variance fields for 7 [K], M, and Yco, and the three figures correspond
to the coarse (N = 1053 samples), medium (N = 222 samples), and fine (N = 23 samples) grids, respectively.

The mean and variance are computed from our database of runs in Table 2, which consists of simulations conducted
at input samples drawn jointly from the parameter and design spaces in accordance to [Table 1. Together with effects of
time-averaging, these plots thus are not meant to display detailed time-dependent LES flow features, but rather only a
summary of statistical behaviors. We emphasize that working directly with these samples cannot produce conditional
statistics for any given design variables, which would be needed to perform subsequent design optimization. We thus
produce conditional KLE using the tools introduced in this paper.

For the full version of this paper, we will include the main KLE results, including examples of KLE modes,
eigenvalue decay, generated sample fields, and also conditional statistics at select design values.

* A more appropriate measure for the design space would be one proportional to the frequency or probability of where the optimizer would visit,
since we would like more samples (accuracy) in areas evaluated more often. However, it is heavily dependent on the problem and the numerical
methods employed, and certainly difficult to assess a priori.



Parameter Range Description

Inlet boundary conditions:

Do [1.406,1.554] x 10° Pa  Stagnation pressure

Ty [1472.5,1627.5] K Stagnation temperature

My [2.259,2.761] Mach number

I1; [0,0.05] Turbulence intensity horizontal component

R; [0.8,1.2] Ratio of turbulence intensity vertical to horizontal components
L [0,8] x 1073 m Turbulence length scale

Fuel inflow boundary conditions:
Ir [0,0.05] Turbulence intensity magnitude
Ly [0,1] x 1073 m Turbulence length scale

Turbulence model parameters:

Cr [0.01,0.06] Modified Smagorinsky constant
Pr, [0.5,1.7] Turbulent Prandtl number
Sc; [0.5,1.7] Turbulent Schmidt number

Design variables:

oG [0.5,0.8] Global equivalence ratio (total of primary and secondary)
OR [0.25,0.35] Ratio of primary to secondary injector equivalence ratios
X1 [0.231,0.2564] m Primary injector x-location

X2 [0.40755,0.43295] m  Secondary injector x-location

ai [3.25]° Primary injector angle

Table 1 Uncertain model parameters and design variables. The distributions are assumed uniform across the
ranges shown.

VI. Conclusions
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Grid resolution | Run length (iterations)  Approximate CPU hours per run  Total number of runs
Coarse 2% 10 1.7%x10° 1053
Medium 4%10° 1.1x10* 222
Fine 8 x 10° 3.9 x 10* 23

Table 2 Run lengths, CPU hours per run, and total number of runs performed in establishing our database.
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