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4 I What use is computer modeling?

(an incomplete list)

• To test physical assumptions

• Explore complex behavior unamenable to theory

In the design and engineering of systems

Identifying failure mechanisms

Learn physical intuition

"Spot the cowgif" by Nepluno is licensed under CC BY-SA 4.0 "xkcd: Up Goer Five" by Randall Munroe is licensed under CC BY-NC 2.5
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"The Great Wave off Kanagawa" by Katsushika Hokusai, public domain



Why use a kinetic description?

Capture behavior not represented by fluids

Wave-particle interactions

Runaway electrons

• Nonequilibrium excitation

Explore regimes of model validity

• Investigate microscale physics

Not because it's fast

Dawson, Rev. Mod. Phys. 55, 403-447 (1983).
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Physical Models
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7 I The Klimontovich Equation

AM • 

Each particle's velocity and position as a
function in phase-space

• FS : summation over all N particles in a system

Given initial conditions, system can be solved for
all time

• Implies a "spikey" distribution function

See D.R. Nicholson's "Introduction to Plasma Theorr for more details
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8 The Poisson Equation

B is assumed negligible or fixed Bext

Simple use of Poisson's equation for fields

Dimensionality important in determining force
between particles

In 1-D (used here) the force does not vary with
distance
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9 That's it, right?

• Can we just solve the Klimontovich equation
directly?

• Set initial particle positions and velocities

• Calculate forces

• Move forward in time

• Repeat!

This can work...sometimes, mostly impractical

\umber of force calculations is ON)

• Consider a typical low temperature plasma

• Volume — 10 cm3, density 1010 cm-3

1011 particles in the system

— 1022 calculations per timestep

10/13/2
020



10 1 From reduced distribution functions to

• In kinetic theory use ensemble averaging to
reduce system

• Similarly reduce complexity for modeling

Segments of phase space —> single
"macroparticle"

Spatial scale set by range of electrostatic
interactions (A,D)

After all that, just F=ma. Really.

macroparticles
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Numerical Methods
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12 I Particle-in-Cell Basics

Macroparticles — discrete computational
particles representing ensembles

Particle Mapping - interpolating particle
charges to the mesh

Field Solve - solving for electric fields on the
mesh and interpolating to particles

Particle Updates — advancing particle velocity
and positions in time

h.-
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13 I Macroparticles
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• AKA, super or notional or computational or
representative particles 1.0 -

Can be thought of as representing some number
of physical particles1

Correspondence between physical and
computational particle given by "weight"

hach macroparticle possesses its own 0.4 -

Position, velocity, mass, charge, ...

• Initialize particles by sampling from proscribed
distributions

Number needed set by resolution of f

0.8 -

0 6 -
,,,

0.2 -

0.0

1e.6

Temperature = le+00 e
Number = le+12
Samples = 1000 , Iill

li

Analytic

Sampled

2
v 1e6

1Not strictly the case, they typically have altered interaction potentials and a finite (as opposed to sin ar) spatial extent. Morse and Nielson (1969) suggest that instead of
considering them "very large real particles" to treat them as "random Lagrangian mesh points imbedded in a collisionless phase fluid," see previous discussion of ensemble
average.



14 I Particle Mapping

• Macroparticles convert 1011 particles to 105 still
0(1010) calculations per timestep

• Use particle-grid mapping to get 0(N2)—>O(N)

Implies finite particle size (recall reduced
distribution)

. Particle "shapes" determine how charge is
distributed to grid

I Influences particle-particle collisions and noise

Pj = wiqi(1 
xi - Xj

AX
lxi-xi 1<AX

Dawson, Rev. Mod. Phys. 55, 403-447 (1983).
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15 Electric Field Solution

10/13/2

Use Poisson's equation to solve for E1 A

Calculate 02 with a three-point stencil

• Form tridiagonal matrix for entire grid (A. x=b)

• Get the inverse of A however you like (Gaussian
elimination, Cholesky decomposition, ...)

• Multiply by charge vector to find

2 1 0

•
XJ-1

0
000

• •
X• X•j+1

1 Other approaches are both possible and common. A particularly fast method is by solving the problem in Fourier space by means of FFTs. It is also possible to simply integrate
the charge density to obtain E. Meanwhile, electromagnetic codes must approach the problem from a different angle entirely.

•
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16 I Particle Updates

Velocity
t • WWoo

t5/2 -2°

Position

- Advance particles with leapfrog algorithm

Calculated for each particle independently

• Fast with many desirable properties:

1. v,i+1/2 + At/2 (Er,q/m)

2. xn+1 = x + Vti+1/2 At

3. Field update (see previous)

4. vn+1 = Vn+1/2 + At/2 (En+1q/m)
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17 I Solution Constraints

10/13/2

For a valid solution, must meet three basic constraints

Resolve Debye Length (Ax < Xi))

Properly resolve shielding effects

• Avoid grid heating and instability

Resolve Plasma Frequency (At < 1/fp)

Capture plasma oscillations and electron dynamics

Meet CFL condition (Ax/At > vmax)1
Necessary for convergence

`Speed of light' for an explicit finite difference
scheme

These are necessary but not sufficient.

I It's perhaps instructive to note that the first two requirements are equivalent to the CFL condition if vmax is taken to be the electron thermal velocity. The electron thermal
velocity is often an appropriate choice for the fastest characteristic velocity in a system.

020



Intermission! (Take 5)

10/13/20
20

18



. •

• • .._ribti I. ,

A Simple PIC Code

- • =21!. lider

MIMI MEM/ MOO
IMMO



20 I Anatomy of a PIC code

Most PIC codes have this structure:

1. Initialize particles

2. Solve fields

3. Update velocity by dt/2

4. Update position

Solve fields

6. Update velocity by dt/2

7. Goto (3)

35 def main():
36 initiatize_particles()
37
38 map_particles_to_grid()
3g solve_etectric_field()
40 map_field_to_particles()
41
42 for t in timesteps:
43 #run
44
45
46
47
48
49
50
51
52

half_velocity_update()
full_position_updatell

map_particles_to_grid()
solve_electric_field()
map_field_to_particles()

half_velocity_update()
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21 I Particle Mapping

For each particle:

1. Find its member cell

2. Calculate fraction to assign to left and right nodes

3. Adjust for particle charge, weight, and cell size

4. Repeat for all particles

Pj wiqj

lxi—Xi I<AX (1 xi — Xj)

AX

6 def map_particles_to_grid():
7 grid_chargekl =
8 for particle in particles:
9 left_node = particle.x // dx
10 right_node = left_node +
11 grid_charge[left_node] += particle.q * particle.w * (particle.x left node) /dx

grid_charge[right_node] += particle.q * particle.w * (right_node particle.x) / dx
grid_charge[A, grid_charge[- ] =
return grid_charge
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22 I Field Solutions

To update the electric field:

1. Form the stencil and take its inverse'

2. Calculate the grid charge (see previous)

3 Dot the two together to get the potential

Take the gradient to obtain the field

Al1 *I

*.) 1.

-2

16 def solve electric filed():
17 A = eye(diagona1=-1) - * eye() 4- eye(diagonal 1)
18 b = -dx**2 * grid_charge / epsilon_O
19 electric_potential = dot(A**- b)
20 electric_field = gradient(electric_potential)
21 return electric_field

1 For our purposes, the inverse can be calculated once before the time iteration and used for the entire simulation. This is often not possible for large systems.

10/13/2
020



23 I Position and Velocity Updates

• Particle velocity and position updates staggered

• Velocity update based on electric field interpolated to
particle

• Interpolation should match particle shape function

When writing output, should ensure velocity and
position are aligned

29 de half_velocity_update():
30 particles.v += (particles.q * electric_field / particles.0 * dt/2
31
32 de full_position_update():
33 particles.x += particles.v * dt
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24 I SIMPIC:An Introduction

https://gitlab.com/btyee/simpic/ 

A simple PIC code written specifically for this tutorial

1D, bounded

Electrostatic

Non-relativistic

Leap-frog update

Particle resampling on exit

Particle heating

Variety of spatial/velocity sampling methods

Single core

Fast enough

Concise, readable, heavily commented

Portable to many systems with few dependencies
(Python 3+, numpy 1.17+)

Simple input deck, easily extendable

Freely available

10/13/2
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25 I Basic verification and validation
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26 I Matching Fluid Results: Stable Sheath
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This solution is only marginally stable for the given electron-ion temperature ratio. See: Baalrud, Plasma Sources Sci. Technol. 25, 025008 (2016).
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27 I Uniquely Kinetic Behavior:Tonks-Langmuir Plasma
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Application: Streaming
Instabilities
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29 
I Problem Description

Plasma bound between two equipotential
electrodes

• Composed of electrons, helium ions, and xenon
ions

Bohm criterion states cs kTe/
mi

• Ions are accelerated in the same field, thus
differential flow

• Can lead to instabilities under right conditions

Baalrud et al. Plasma Sources Sci. Technol. 24, 015034 (2015)
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30 I Choosing model parameters: part one

Nominal parameters

Plasma density: 1015 m-3 (a "real" density)

• Electron temperature: 4.5 eV (by theory)

—> AD = 500 um,/, = 10 GHz

System size

• Lower limits:

Much larger than the sheath (many X,D)

Long enough presheath for wave growth

• Upper limits:

Solution time (field calculations and particle number)

—> L = 10 cm

Spatial discretization

Lower limits:

• Solution time (more cells, longer field solve)

• CFL condition (balance with timestep)

Upper limits:

- Gradients, prevent grid heating (— X,D)

—> Ax = 50 pLm

Diagnostic output

Often enough to resolve wave behavior

10/13/2
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31 I Choosing model parameters: part two

Temporal discretization
• Resolve plasma frequency

• Satisfy CFL

—> At = 40 ps

• Total simulation time

• Sufficient for steady state solution (several ion transit
times)

—> T = 100

Repopulation rate

Determined by steady state flux out of system,
approximate with Bohm flux (iterate)

—> Riz = 1019 s-1 (iterate)

• Particle Temperatures
• Initial conditions chosen so that Te/Ti is in the

unstable regime

• Distributions evolve self-consistently, limited control

—> Te = 4.5 eV, Ti = 0.3 eV

Heating Rate

Keeps electrons from cooling by collection at walls

Add through random kicks in velocity space

—> AP = 5x10-19 W (iterate)

Runtime

As much as needed

— 24 hours

10/13/2
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32 I lon-lon Streaming Instability: Phase Space Results
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33 I lon-lon Instability:Time Domain Analysis
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34 lon-lon Instability: Frequency Domain Analysis
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1.5

1.0

0.5

—1.5

—3 —2 —1 0 1
Wavenumber (k2in)

3

Sheath Edge
43 343

42 42
4. 2.5

2
41 41

Z IC

D.) mmmmmm • 1,5

40 40 a

39 39

0.6
38 38

2 1 0 i—3 3
Wavenumber (kXn)

• Take 2D Fourier transform of helium ion density
for comparison to dispersion relation
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frequency content

Likely due to simulation noise (add more particles)

Baalrud et al. Plasma Sources Sci. Technol. 24, 015034 (2015)
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35 I Summary

Particle simulations can accurately reproduce detailed kinetic behavior of plasmas

While they are derived from kinetic theory, writing them can be easy as F=ma and 170=--p/so

Particle-in-cell simulations should
- Resolve the Debye length

• Resolve the electron plasma frequency

• Satisfy the CFL condition

Finding a solution is an iterative process
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Advanced Topics & Resources
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39 I Software

Many PIC codes available with a variety of
licenses and features

Models and methods often chosen for particular
application (wakefield accelerators, beams, gas
dynamics, etc.)

Compatible computer architectures and ease of
use also widely vary

• Aleph

• CHICAGO 

Fi,MPIRF,

• MAGIC 

• OSIRIS 

• Vsim 

• VPIC 

• WarpN 

• XPDP1, XOOPIC, ... 
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40 Research Areas

Heterogeneous architectures

• Implicit methods

• Hybrid models

• Uncertainty quantification

Strongly-coupled plasmas

Adaptive methods

• Photon transport

Reweighting and merging algorithms

Kinetic chemistry models

• Solid state transitions

Multiphysics coupling

Surface interactions

Finite element methods
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41 I Literature

Birdsall and Langdon — "Plasma Physics via Computer Simulation"

Hockney and Eastwood — "Computer Simulation Using Particles"

• Bird — "Molecular Gas Dynamics and the Direct Simulation of Gas Flows"
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42 I (Optional) Homework Problems

• Include neutral particle collision effects through Monte-Carlo collisions. What new solution constraints should be introduced?

• Implement secondary electron emission from the electrodes. How could a highly emissive surface restructure a plasma sheath?

• Incorporate the ability to solve for a periodic domain using an FFT for the field solutions. What are some advantages to this approach, how could it be
used for finite systems?

• Explore the use of higher-order particle shapes, how do these impact solution time, simulation noise, and large scale behavior?

• Change the coordinate system to cylindrical or spherical to explore unequal electrode area properties. Why could a particle approaching r = 0 be a
problem, how might you deal with it?

• Develop a merge algorithm to dynamically limit the number of computational particles. How do you preserve the characteristics of the distribution
function when removing particles?

• Explore the equilibration of non-Maxwellian distribution functions, how fast should this occur based on kinetic theory? Can PIC reproduce the
appropriate equilibration rate?

• Add a model assuming a Boltzmann relation for the electrons, only treating the ions kinetically. Why is this sometimes desirable? What limits does this
place on the types of phenomena that can be modeled?
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