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Background and Motivation
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4 | What use is computer modeling?

(an incomplete list)
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* 'To test physical assumptions e

* Explore complex behavior unamenable to theory A a
* In the design and engineering of systems p 0 -
* Identifying failure mechanisms

* Learn physical intuition

"Spot the cowgif” by Nepluno is licensed under CC BY-SA 4.0 “xked: Up Goer Five” by Randall Munroe is licensed under CC BY-NC 2.5

(1)% 13/2 “The Great Wave off Kanagawa” by Katsushika Hokusai, public domain




: | Why use a kinetic description?
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Capture behavior not represented by fluids

*  Wave-particle interactions
*  Runaway electrons

* Nonequilibrium excitation
Explore regimes of model validity
Investigate microscale physics

Not because it’s fast

Dawson, Rev. Mod. Phys. 55, 403-447 (1983).

“Energy Unleashed” by Sandia Labs is licensed under CC BY-NC-ND 2.0
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Physical Models
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The Klimontovich Equation

oF, | OF,
ot ox

* Each particle’s velocity and position as a L] -
function in phase-space

* F :summation over all N particles in a system

*  Given initial conditions, system can be solved for
all time

* Implies a “spikey” distribution function

See D.R. Nicholson’s “Introduction to Plasma Theory” for more details
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The Poisson Equation

* B is assumed negligible or fixed B,
* Simple use of Poisson’s equation for fields

*  Dimensionality important in determining force
between particles

* In 1-D (used here) the force does not vary with
distance
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o | That’s it, right?

* Can we just solve the Klimontovich equation
directly?
* Set initial particle positions and velocities
* Calculate forces
*  Move forward in time

* Repeat!
* This can work...sometimes, mostly impractical

* Number of force calculations is O(N?)
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Consider a typical low temperature plasma
Volume ~ 10 cm?, density 101 cm™

10! particles in the system

~ 10?2 calculations per timestep
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From reduced distribution functions to macroparticles

In kinetic theory use ensemble averaging to
reduce system

Similarly reduce complexity for modeling

Segments of phase space — single
“macroparticle”

Spatial scale set by range of electrostatic
interactions (Ap)

After all that, just F=ma. Really.

0.5 . o o
= : o
.0 } ‘.‘I_&_‘f————6--__.’____6__.£_,.. ;. . ..
e 0.0 ...0 ‘ 20 .... % ... 0..‘ 0‘
® (4 ®
.“' ® o ® e © ®
-0.5 ° s Se
[ ]
0.0 0.2 0.4 0.6 0.8 1.0
X
100
A
i 50
Vv
0

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
A\

B s s B



Numerical Methods
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Particle-in-Cell Basics

Macroparticles — discrete computational
particles representing ensembles

Particle Mapping - interpolating particle
charges to the mesh

Field Solve - solving for electric fields on the
mesh and interpolating to particles

Particle Updates — advancing particle velocity
and positions in time




3 | Macroparticles

1q6

AKA, super or notional or computational or

i i —— Analytic
representative particles 1.0¢

B Sampled

Temperature = 1e+00 e
Number = 1le+12
Samples = 1000

Can be thought of as representing some number

of physical particles! 0.81
* Correspondence between physical and 0.61

computational particle given by “weight” —
* Each macroparticle possesses its own 0.4 1

* Position, velocity, mass, charge, ...

* Initialize particles by sampling from prosctibed 0-21

distributions

| 0.0
*  Number needed set by resolution of f =2 -1 0 1 12e "
v

Not strictly the case, they typically have altered interaction potentials and a finite (as opposed to singular) spatial extent. Morse and Nielson (1969) suggest that instead of
considering them “very large real particles” to treat them as “random Lagrangian mesh points imbedded in a collisionless phase fluid,” see previous discussion of ensemble

107132 average.
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Particle Mapping

14

°  Macroparticles convert 10! particles to 10° still
O(10'Y) calculations per timestep

*  Use particle-grid mapping to get O(N?)—O(N)

* Implies finite particle size (recall reduced
distribution)

¢ Particle ”shapes” determine how charge is
distributed to grid

* Influences particle-particle collisions and noise

Xi—Xj
pj = 2 wigi| 1 ———=—

|xi—Xj|<AX

Dawson, Rev. Mod. Phys. 55, 403-447 (1983).
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Electric Field Solution

d@ i
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Use Poisson’s equation to solve for E!
Calculate V? with a three-point stencil
Form tridiagonal matrix for entire grid (A-x=b)

Get the inverse of .4 however you like (Gaussian

elimination, Cholesky decomposition, ...)

! Other approaches are both possible and common. A particulatly fast method is by solving the problem in Fourier space by means of FFTs. It is also possible to simply integrate
the charge density to obtain E. Meanwhile, electromagnetic codes must approach the problem from a different angle entirely.

Multiply by charge vector to find ¢

1 0
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0 0
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" | Particle Updates
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Velocity
t t, t t-.';

S N
Position

Advance particles with leapfrog algorithm
Calculated for each particle independently
Fast with many desirable properties:

Vasrsa = Vo + A2 (B q/m)

X1 = X T Voyqp At

Field update (see previous)

Vot1 = Var12 T At/2 (B ,,q/m)

t = 0.00e+00 s
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7 | Solution Constraints

For a valid solution, must meet three basic constraints

1. Resolve Debye Length (Ax < 1p) 3. Meet CFL condition (Ax/At >v__)!
* Properly resolve shielding effects * Necessary for convergence
* Avoid grid heating and instability * Speed of light’ for an explicit finite difference
scheme

2. Resolve Plasma Frequency (At <1/f)

* Capture plasma oscillations and electron dynamics

These are necessary but not sufficient.

' Tt’s perhaps instructive to note that the first two requirements are equivalent to the CFL condition if v, is taken to be the electron thermal velocity. The electron thermal

— velocity is often an appropriate choice for the fastest characteristic velocity in a system.
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Intermission! (Take 5)
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0 | Anatomy of a PIC code
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Most PIC codes have this structure:

g B - ol -l ol o o

Initialize particles

Solve fields

Update velocity by dt/2
Update position

Solve fields

Update velocity by dt/2
Goto (3)

35 def main():

36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52

initialize_particles()

map_particles_to_grid()
solve_electric_field()
map_field_to_particles()

for t in timesteps:
half_velocity_update()
full_position_update()
map_particles_to_grid()

solve_electric_field()
map_field_to_particles()

half_velocity_updatel()




,; | Particle Mapping

For each particle:

1. Find its member cell

S

Xi — X j
Calculate fraction to assign to left and right nodes Pj = 2 wiqi({1— TAY
3. Adjust for particle charge, weight, and cell size

4. Repeat for all particles

def map_particles_to_grid():
grid_chargel:] =
for particle in particles:
left_node = particle.x // dx

right_node = left_node +
grid_charge[left_node] += particle.q * particle.w * (particle.x - left_node) /dx
grid_charge[right_node] += particle.q * particle.w * (right_node - particle.x) / dx
grid_chargel[?], grid_chargel[-1] = 0,
return grid_charge

10/13/2
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Field Solutions

To update the electric field:

2 1 0 - 07[ é o —Va
1. Form the stencil and take its inverse! 1 -2 1 . o0 P2 P2
| | ] ) L .; ba Au? o
2. Calculate the grid charge (see previous) o 1 . . 0 : = S :
5. Dot the two together to get the potential e = . L ON-2 pPN-2
0 0 0o 1 -2||éna on—1— Vi,
4. Take the gradient to obtain the field

)y def solve_electric_filed():
A = eye(diagonal=-1) - 2 * eye() + eye(diagonal=1)

b = —dx*%” * grid_charge / epsilon_#@

electric_potential = dot(A*x-1, b)
electric_field = gradient(electric_potential)
return electric_field

! For our purposes, the inverse can be calculated once before the time iteration and used for the entire simulation. This is often not possible for large systems.
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Position and Velocity Updates

29
30
31
32
i

Particle velocity and position updates staggered

Velocity update based on electric field interpolated to N o At .Emgg@fﬁﬁ “
particle %ﬂ-ﬂtﬁ 24 = Un,i + 9 M |

Tupli = Tng T mm_&m@&ﬁ

Interpolation should match particle shape function

When writing output, should ensure velocity and
position are aligned

def half_velocity_update():
particles.v += (particles.q * electric_field / particles.m) * dt/

def full_position_update():
particles.x += particles.v * dt




.4 | SIMPIC: An Introduction

https://gitlab.com/btyee/simpic/

A simple PIC code written specifically for this tutorial Fast enough
* 1D, bounded * Concise, readable, heavily commented

* Electrostatic * Portable to many systems with few dependencies
(Python 3+, numpy 1.17+)

* Simple input deck, easily extendable

*  Non-relativistic

* Leap-frog update

* Particle resampling on exit *  Freely available
* Particle heating

* Variety of spatial/velocity sampling methods

¢ Single core

10/13/2
020
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Basic verification and validation

Electric Field (V/m)

Potential (V)
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Matching Fluid Results: Stable Sheath
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This solution is only marginally stable for the given electron-ion temperature ratio. See: Baalrud, Plasma Sources Sci. Technol. 25, 025008 (2016).
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7 | Uniquely Kinetic Behavior: Tonks-Langmuir Plasma
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Harrison, Thompson, Proc. Phys. Soc. 74, 145-152 (1959).
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Number of helium ions



Application: Streaming
Instabilities
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o | Problem Description

* Plasma bound between two equipotential
electrodes

*  Composed of electrons, helium 1ons, and xenon
ions

. . kT,
*  Bohm criterion states ¢g = /m;

* Jons are accelerated in the same field, thus
differential flow

* Can lead to instabilities under right conditions

Baalrud et al. Plasma Sources Sci. Technol. 24, 015034 (2015)
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3 | Choosing model parameters: part one

Nominal parameters

*  Plasma density: 10> m™ (a “real” density)

* Electron temperature: 4.5 eV (by theory)
— Ap = 500 um, f, = 10 GHz

System size

*  Lower limits:
*  Much larger than the sheath (many Ap)

*  Long enough presheath for wave growth

*  Upper limits:

* Solution time (field calculations and particle number)

— L =10 cm

10/13/2
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Spatial discretization

Lower limits:
Solution time (more cells, longer field solve)

CFL condition (balance with timestep)

Upper limits:
Gradients, prevent grid heating (~ Ap)

— Ax = 50 pm

Diagnostic output

Often enough to resolve wave behavior



;1 | Choosing model parameters: part two

* Temporal discretization

* Resolve plasma frequency
* Satisfy CFL
— At = 40 ps

*  Total simulation time

* Sufficient for steady state solution (several ion transit
times)

— T =100 ps

*  Repopulation rate

* Determined by steady state flux out of system,
approximate with Bohm flux (iterate)

— R,, = 10¥ s (iterate)

10/13/2
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Particle Temperatures

Initial conditions chosen so that T./T, is in the
unstable regime

Distributions evolve self-consistently, limited control
—T,=4.5eV, T;,=0.3eV

Heating Rate

Keeps electrons from cooling by collection at walls

Add through random kicks in velocity space
— AP = 5x10"P W (iterate)

Runtime

As much as needed

— ~ 24 hours
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lon-lon Streaming Instability: Phase Space Results
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lon-lon Instability: Time Domain Analysis

33
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* Presheath sampled at center of domain, minimal ¢ Strong waves originating in presheath, propagating
flow into boundary

* Sheath edge sampled just prior to departure from ¢ Appears in all species (strongest in helium, weakest
quasineutrality in electrons)

* Presheath quiescent relatively little structure
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Frequency (w/(cs/Ap))

lon-lon Instability: Frequency Domain Analysis

Presheath

Sheath Edge
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Take 2D Fourier transform of helium ion density ¢  Sheath edge shows strong signal in region where
for comparison to dispersion relation ion-1on instability is expected

Both presheath and sheath edge have strong low ¢ Can reproduce cutting edge sheath physics results
frequency content with simple 1D PIC code (and enough time)

Likely due to simulation noise (add more particles)

Baalrud et al. Plasma Sources Sci. Technol. 24, 015034 (2015)
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Summary

Particle simulations can accurately reproduce detailed kinetic behavior of plasmas
While they are derived from kinetic theory, writing them can be easy as F=»a and F¢p=-p/¢,

Particle-in-cell simulations should
* Resolve the Debye length
* Resolve the electron plasma frequency

* Satisty the CFL condition

Finding a solution 1s an iterative process
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Questions?

Contact: btyee@sandia.gov, mmhopki@sandia.gov
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Advanced Topics & Resources
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Software

Many PIC codes available with a variety of

licenses and features

Models and methods often chosen for particular
application (wakefield accelerators, beams, gas
dynamics, etc.)

Compatible computer architectures and ease of
use also widely vary

Aleph
CHICAGO

EMPIRE
MAGIC
OSIRIS
Vsim

VPIC
Warp(X)

XPDP1, XOOPTC, ...
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Research Areas

Heterogeneous architectures
Implicit methods

Hybrid models

Uncertainty quantification
Strongly-coupled plasmas
Adaptive methods

Photon transport

Reweighting and merging algorithms
Kinetic chemistry models

Solid state transitions

Multiphysics coupling

Surface interactions

Finite element methods
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0 | (Optional) Homework Problems
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Include neutral particle collision effects through Monte-Carlo collisions. What new solution constraints should be introduced?
Implement secondary electron emission from the electrodes. How could a highly emissive surface restructure a plasma sheath?

Incorporate the ability to solve for a periodic domain using an FFT for the field solutions. What are some advantages to this approach, how could it be
used for finite systems?

Explore the use of higher-order particle shapes, how do these impact solution time, simulation noise, and large scale behavior?

Change the coordinate system to cylindrical or spherical to explore unequal electrode area properties. Why could a particle approaching r = 0 be a
problem, how might you deal with it?

Develop a merge algorithm to dynamically limit the number of computational particles. How do you preserve the characteristics of the distribution
function when removing particles?

Explore the equilibration of non-Maxwellian distribution functions, how fast should this occur based on kinetic theory? Can PIC reproduce the
appropriate equilibration rate?

Add a model assuming a Boltzmann relation for the electrons, only treating the ions kinetically. Why is this sometimes desirable? What limits does this
place on the types of phenomena that can be modeled?



