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3 I Outline

■ylachine learning & Photovoltaics

■PV & Failures
■ Failure characterization using IV Traces

■ Identification of common failure modes within text records

■ Fusion of datasets to evaluate weather impacts

■PV plants as a complex system

■Future work
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Machine Learning &
Photovoltaics

oML has been leveraged in PV for
decades

oMultiple applications, including
• Radiation and weather forecasting

• Sizing of PV systems

• Simulation of PV systems and
controls

oAcross stand-alone, grid-
connected, and hybrid systems

1 4



5 I Photovoltaics

Solar PV electricity generation, World 1990-2018
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> PV production has demonstrated exponential growth over the last decade

>Understanding and dealing with the PV system aging process is creating a new and unknown set of challenges



6 PV & Failures

>More recently, machine learning is being increasingly used for understanding failures within the PV
industry
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7 I Failure Characterization

oExtended current approaches of feature extraction to consider the entire IV trace using 3 NN
architectures

oData processing including quality checks, normalization, and interpolation

oMulti-headed LSTMs and ID CNNs had comparable high accuracies. Single-headed LSTM
outperformed when only considering proximal regions.
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NN Architecture Sampling Region Num. Predictors Average accuracy, % (SD) across 20 tests

BL PS Cr Total

Multi-headed LSTM Entire Curve 4 100.0 (0) 100.0 (0) 98.0 (2.8) 99.3 (1.0)
Proximal 4 99.1 (2.8) 100.0 (0) 97.6 (5.1) 98.9 (L7)

Single-headed LSTM Entire Curve 4 74.5 (37.5) 68.2 (42.0) 23.7 (36.3) 51.8 (15.8
Proximal 4 70.3 (44.6) 95.0 (21.8) 76.2 (37.4) 79.0 (20.8)

1D CNN Entire Curve 4 99.4 (2.4) 100.0 (0) 100.0 (0) 99.8 (OA)
Proximal 4 100.0 (0) 100.0 (0) 94.0 (10.3) 98.0 (3.2)

1D CNN Entire Curve 2a 71.2 (40.8) 80.0 (40.0) 62.7 (42.7) 68.9 (27.4)
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I O&M Data
oMaintenance logs contain valuable contextual information

oHowever, significant diversity in the structure and detail of the logs makes it
challenging to ascertain needed insights

oMost contain a general comment field to capture issue description

Context
•
0 WO type

0 WO Status

p Warranty info

Where
•
0 Site 10

13 Asset

What
N

When
•

0 General desc, 0 Event Start

I=1 Failure cat. 0 Event End

Why
•
O Priority

0 Production
im pa ct

O impact level

How

: C 0 ri",1Ei on

desc,

= Effort labor)

ra nd id WOType WONumber FailureCategories Ca use lmpactLevel FullDesc Com p letionActivity

C2S16 Corrective 17_014989 Hardware Malfunction NA Partial Circuit 2 trackers stuck in flood Hardware Adjustmei

C2S1 Corrective 17_017409 Software Problem NA Partial Trackers going into flood stow Software/Firmware i

C2S16 Corrective 17_015278 Hardware Malfunction NA Partial Circuit 2 Trackers went to Floo( Power Cycle

C2S16 Corrective 17_015727 Software Problem NA Partial Circuit 2 in flood stow due to rr Power Cycle

C2S16 Corrective 17_018812 Hardware Malfunction NA Partial Circuit 2 in flood stow. Power C Power Cycle

C2S1 Corrective 17_019236 Hardware Failure NA Mixed All trackers in intermittent floo Hardware Replacem,

C2S1 Corrective 17_025187 Software Problem NA Partial Tracker NCUs indicate in flood Software/Firmware i



(Gunda et al., In review)
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Identification of Common Failure Modes
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oFocused on inverters — one of the leading causes of PV
system failures

oUsed ML in 2 ways:

• Single Vector Decomposition to identify inverter-related
records

• Latent Dirichlet Allocation to group "like" records

oTemporal patterns in clustered records were evaluated
using survival analysis and estimateEffects
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(Jackson Et Gunda, In review)

10 Weather Impacts
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NO&M data was used to constrain analysis

oUnlike inverter-analysis, significant diversity
emerged when considering weather events
• Key Term Identification was used to identify relevant

records

• Quality control and categorization was conducted
manually

oFused 3 datasets:
• Production data

• Weather data

• O&M records

oLot of processing involved!
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11 I Weather Impacts: Storms
LIME output
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(Jackson a Gunda, In review)

oVariations in performance evaluated using statistics and
random forest (RF) implementation

oRF analysis incorporated weather, O&M, and metadata
information

oLIME analysis was used to characterize important features
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12 I PV Plants as Complex Systems
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Fig. 1. Simplified schematic diagram of photovoltaic plant.

oLots of parts and interconnections

oBoth human and machine elements in laten
weaknesses and controls

oPrecursors can be maintenance-oriented

oActions can be chronic or acute

oNon-linear pathways with lots of
uncertainty and dynamic components
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Cristaldi et al., (2015)

Performance Improvement Handbook



13 I Future Work

>From failure characterization to failure prediction

>Stop evaluating data and analyses in silos

>Better integrate system network architecture into algorithm approach
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