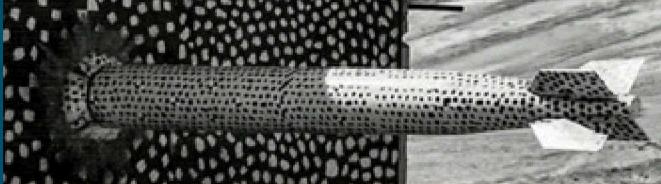


Fusing Diverse Datasets with Machine Learning to Inform System State Conditions: An Application for Photovoltaic Plants



Thushara Gunda

INFORMS 2020

TB44. Statistical Machine Learning for Energy Analytics

Acknowledgements

Funding support from DOE SETO Agreement 34172

Colleagues –

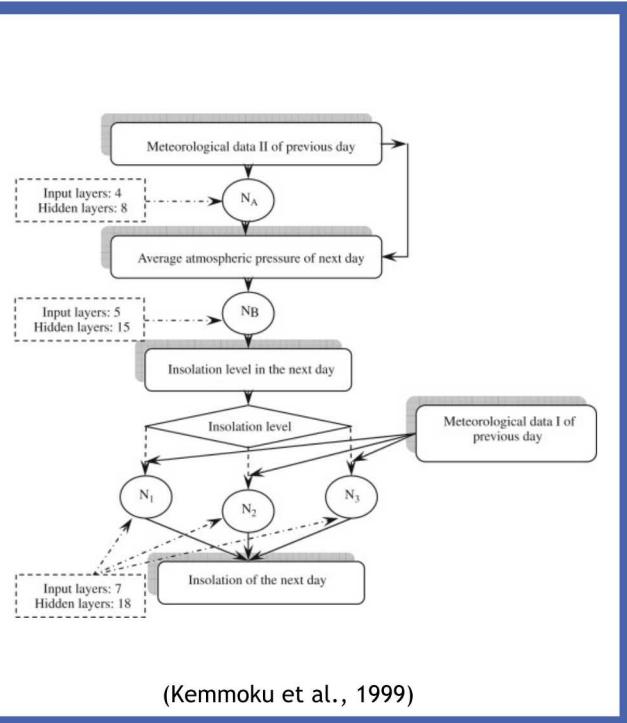
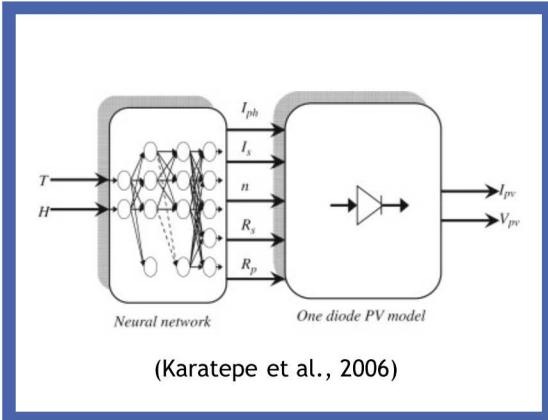
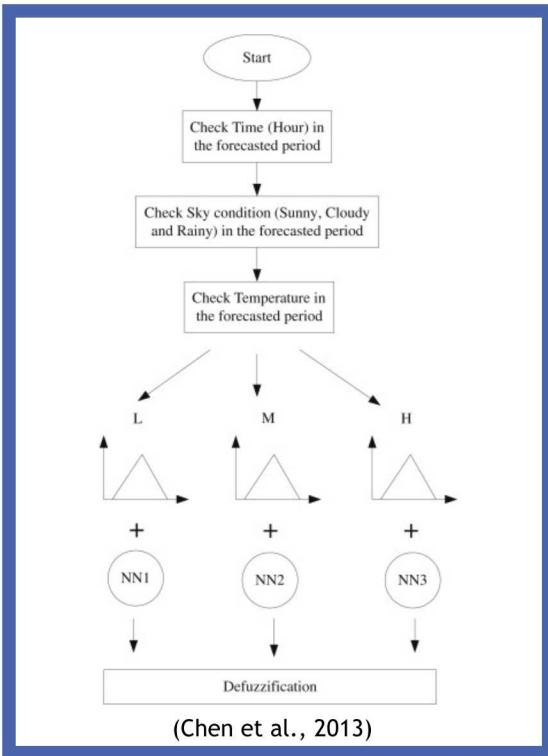
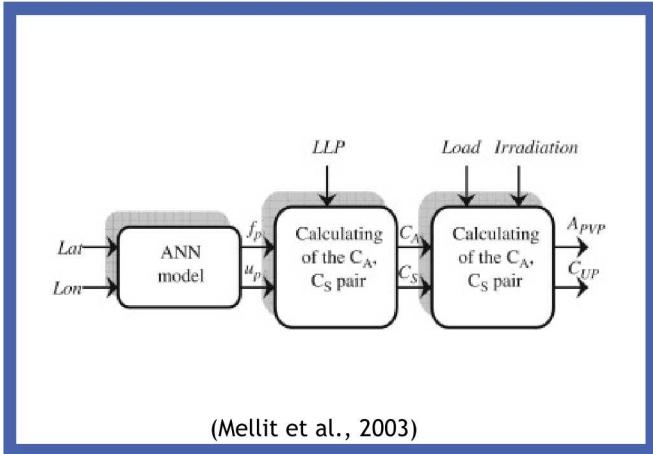
- Nicole Jackson, Hector Mendoza, Michael Hopwood, Rachel Homan, Cliff Hansen
- Andy Walker, Gerald Robinson, Roger Hill, Jal Desai
- Christopher Downs, Laura Kraus, Ryan Jones, ...

Views expressed in this presentation are solely my own and do not reflect those of the DOE or any other US Government entity.

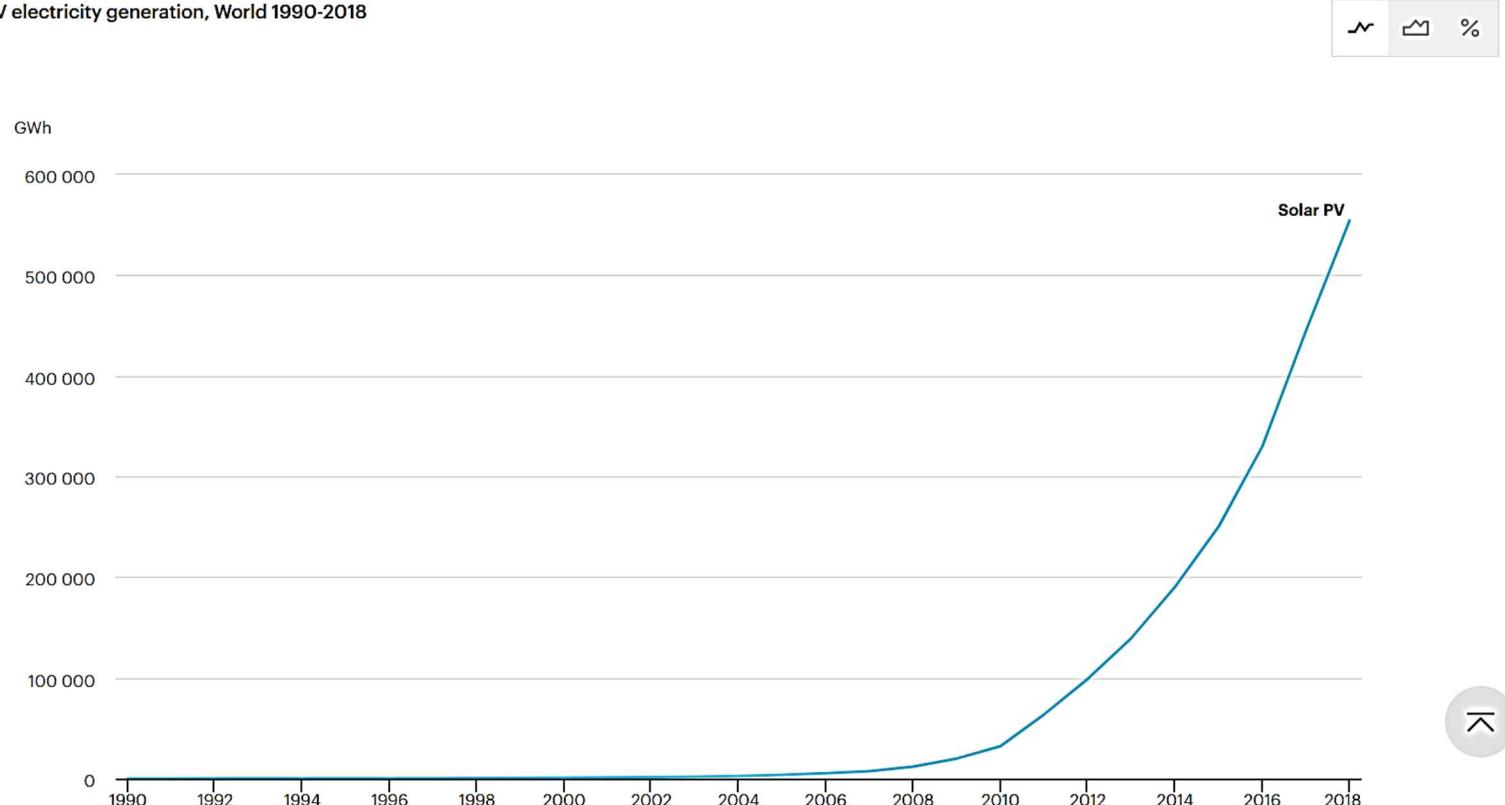
- Machine learning & Photovoltaics
- PV & Failures
 - Failure characterization using IV Traces
 - Identification of common failure modes within text records
 - Fusion of datasets to evaluate weather impacts
- PV plants as a complex system
- Future work

Machine Learning & Photovoltaics

- ML has been leveraged in PV for decades
- Multiple applications, including
 - Radiation and weather forecasting
 - Sizing of PV systems
 - Simulation of PV systems and controls
- Across stand-alone, grid-connected, and hybrid systems



Solar PV electricity generation, World 1990-2018

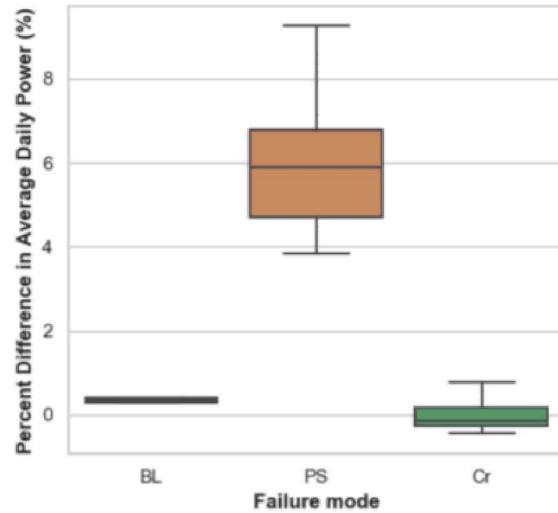


(IEA, 2020)

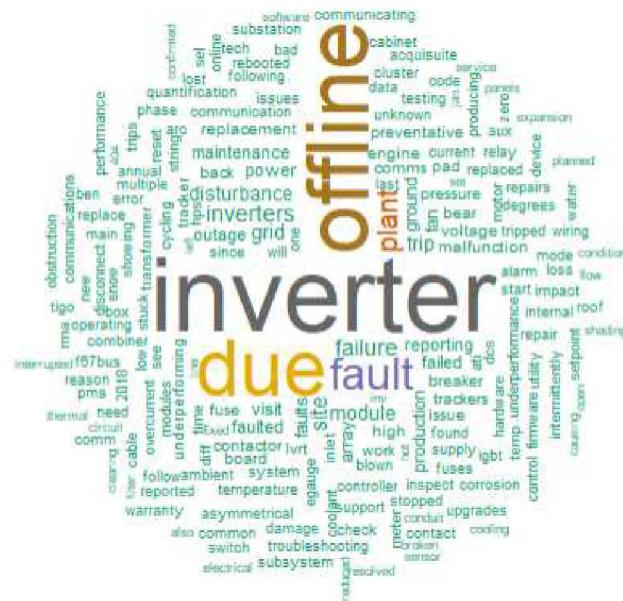
- PV production has demonstrated exponential growth over the last decade
- Understanding and dealing with the PV system aging process is creating a new and unknown set of challenges

PV & Failures

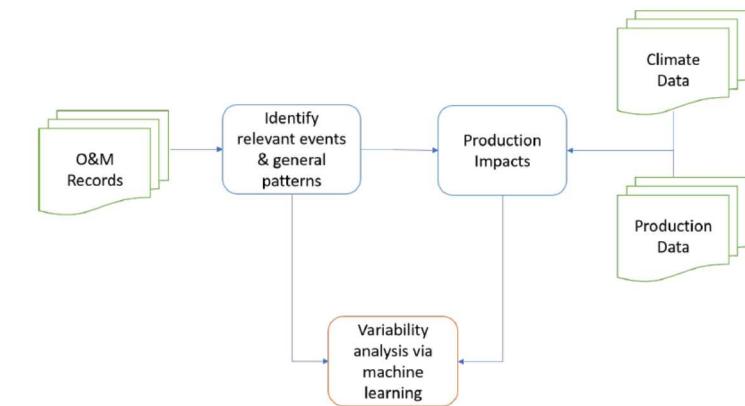
- More recently, machine learning is being increasingly used for understanding failures within the PV industry



Failure Characterization



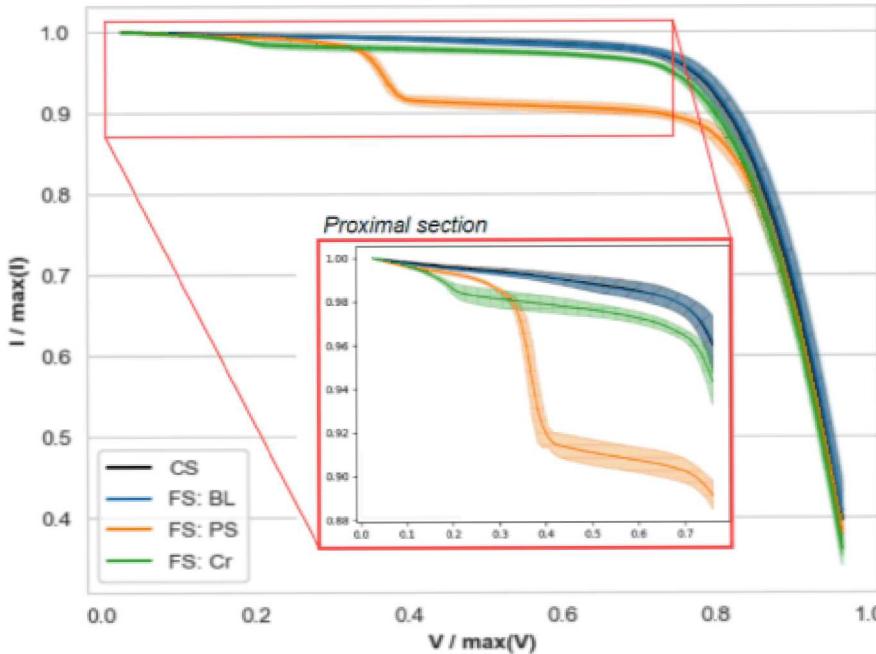
Common Failure Modes



Weather Impacts

Failure Characterization

- Extended current approaches of feature extraction to consider the entire IV trace using 3 NN architectures
- Data processing including quality checks, normalization, and interpolation
- Multi-headed LSTMs and 1D CNNs had comparable high accuracies. Single-headed LSTM outperformed when only considering proximal regions.



NN Architecture	Sampling Region	Num. Predictors	Average accuracy, % (SD) across 20 tests			
			BL	PS	Cr	Total
Multi-headed LSTM	Entire Curve	4	100.0 (0)	100.0 (0)	98.0 (2.8)	99.3 (1.0)
	Proximal	4	99.1 (2.8)	100.0 (0)	97.6 (5.1)	98.9 (1.7)
Single-headed LSTM	Entire Curve	4	74.5 (37.5)	68.2 (42.0)	23.7 (36.3)	51.8 (15.8)
	Proximal	4	70.3 (44.6)	95.0 (21.8)	76.2 (37.4)	79.0 (20.8)
1D CNN	Entire Curve	4	99.4 (2.4)	100.0 (0)	100.0 (0)	99.8 (0.8)
	Proximal	4	100.0 (0)	100.0 (0)	94.0 (10.3)	98.0 (3.2)
1D CNN	Entire Curve	2 ^a	71.2 (40.8)	80.0 (40.0)	62.7 (42.7)	68.9 (27.4)

^aUtilizing only I_{CS} , I_{FS} out of the normal set: I_{CS} , I_{FS} , ϵ_{FS} , and δ_I

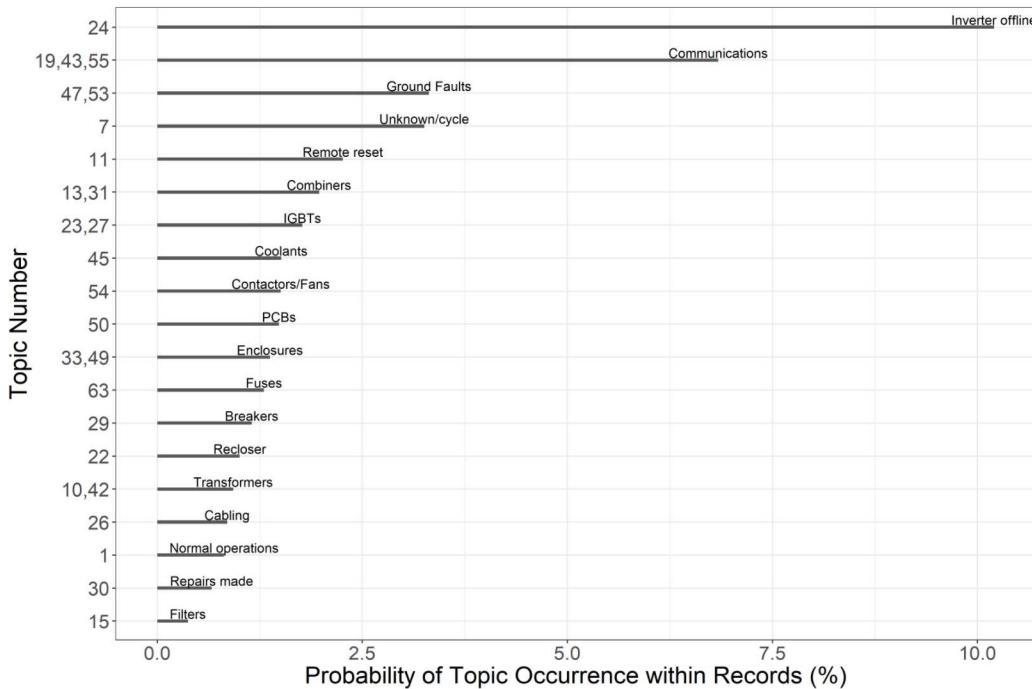
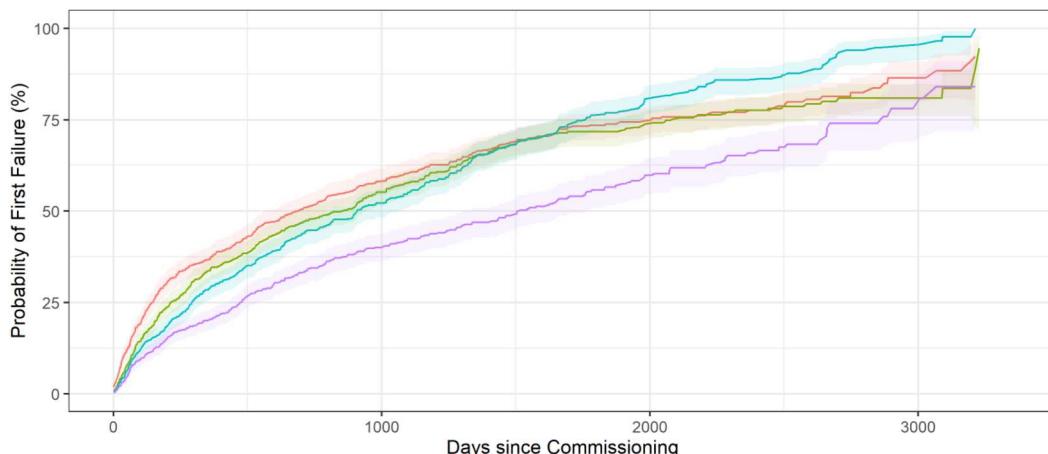
O&M Data

- Maintenance logs contain valuable contextual information
- However, significant diversity in the structure and detail of the logs makes it challenging to ascertain needed insights
- Most contain a general comment field to capture issue description

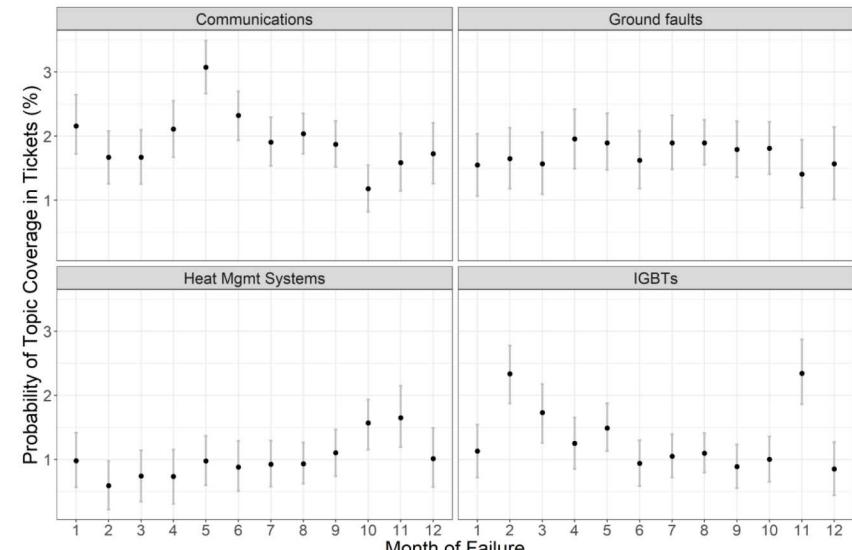
Context	Where	What	When	Why	How
<input type="checkbox"/> WO type	<input type="checkbox"/> Site ID	<input type="checkbox"/> General desc.	<input type="checkbox"/> Event Start	<input type="checkbox"/> Priority	<input type="checkbox"/> Completion desc.
<input type="checkbox"/> WO Status	<input type="checkbox"/> Asset	<input type="checkbox"/> Failure cat.	<input type="checkbox"/> Event End	<input type="checkbox"/> Production impact	<input type="checkbox"/> Effort (labor)
<input type="checkbox"/> Warranty info				<input type="checkbox"/> Impact level	

randid	WOType	WONumber	FailureCategories	Cause	ImpactLevel	FullDesc	CompletionActivity
C2S16	Corrective	17_014989	Hardware Malfunction	NA	Partial	Circuit 2 trackers stuck in flood	Hardware Adjustment
C2S1	Corrective	17_017409	Software Problem	NA	Partial	Trackers going into flood stow	Software/Firmware /
C2S16	Corrective	17_015278	Hardware Malfunction	NA	Partial	Circuit 2 Trackers went to Flood	Power Cycle
C2S16	Corrective	17_015727	Software Problem	NA	Partial	Circuit 2 in flood stow due to n	Power Cycle
C2S16	Corrective	17_018812	Hardware Malfunction	NA	Partial	Circuit 2 in flood stow. Power C	Power Cycle
C2S1	Corrective	17_019236	Hardware Failure	NA	Mixed	All trackers in intermittent floo	Hardware Replacem
C2S1	Corrective	17_025187	Software Problem	NA	Partial	Tracker NCUs indicate in flood	Software/Firmware ,

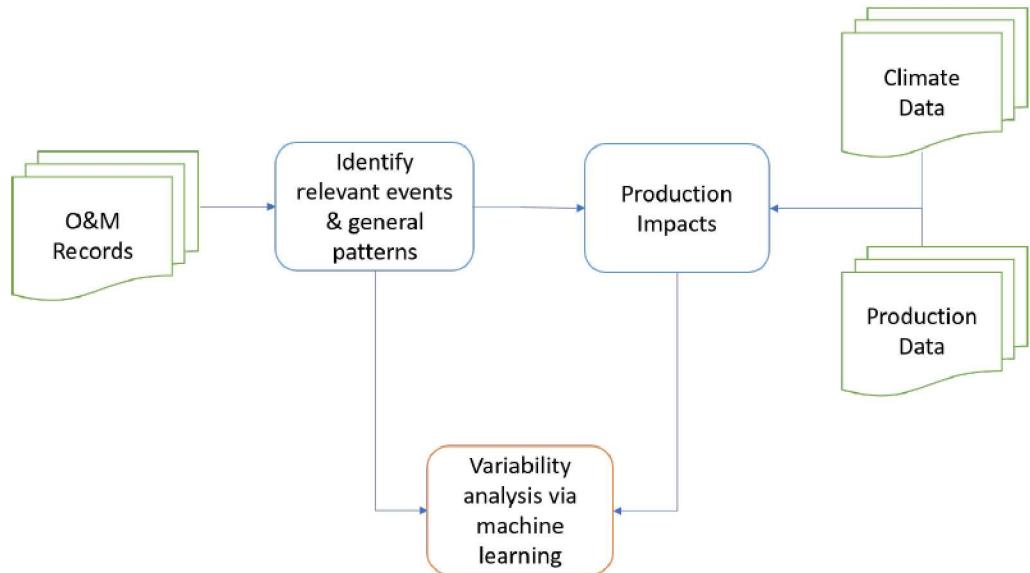
Identification of Common Failure Modes



- Focused on inverters – one of the leading causes of PV system failures
- Used ML in 2 ways:
 - Single Vector Decomposition to identify inverter-related records
 - Latent Dirichlet Allocation to group “like” records
- Temporal patterns in clustered records were evaluated using survival analysis and estimateEffects

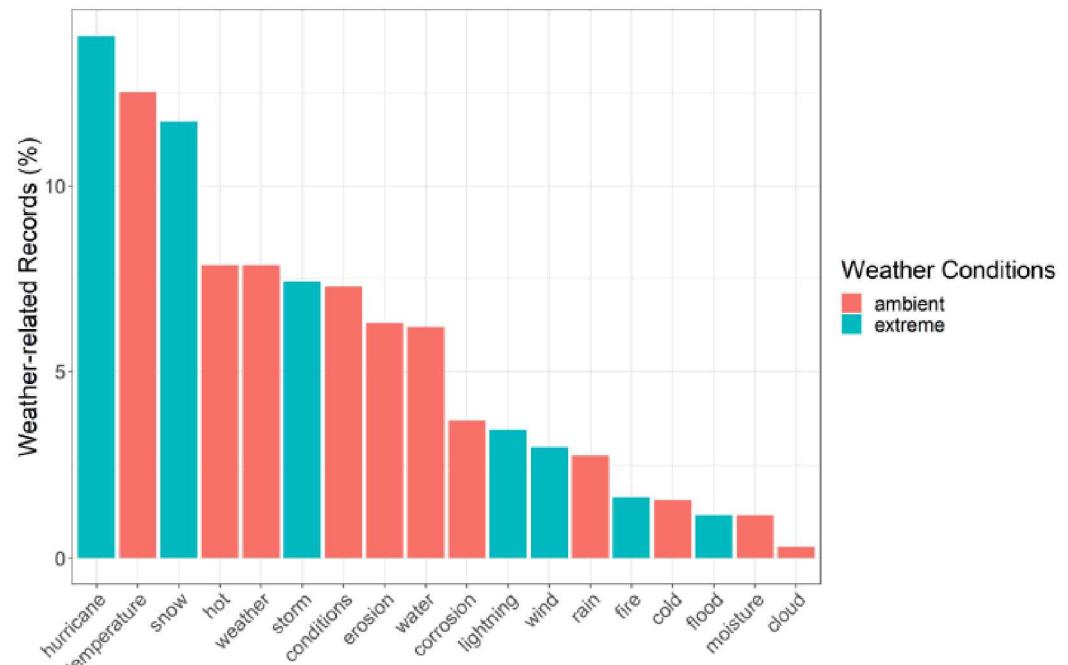


Weather Impacts



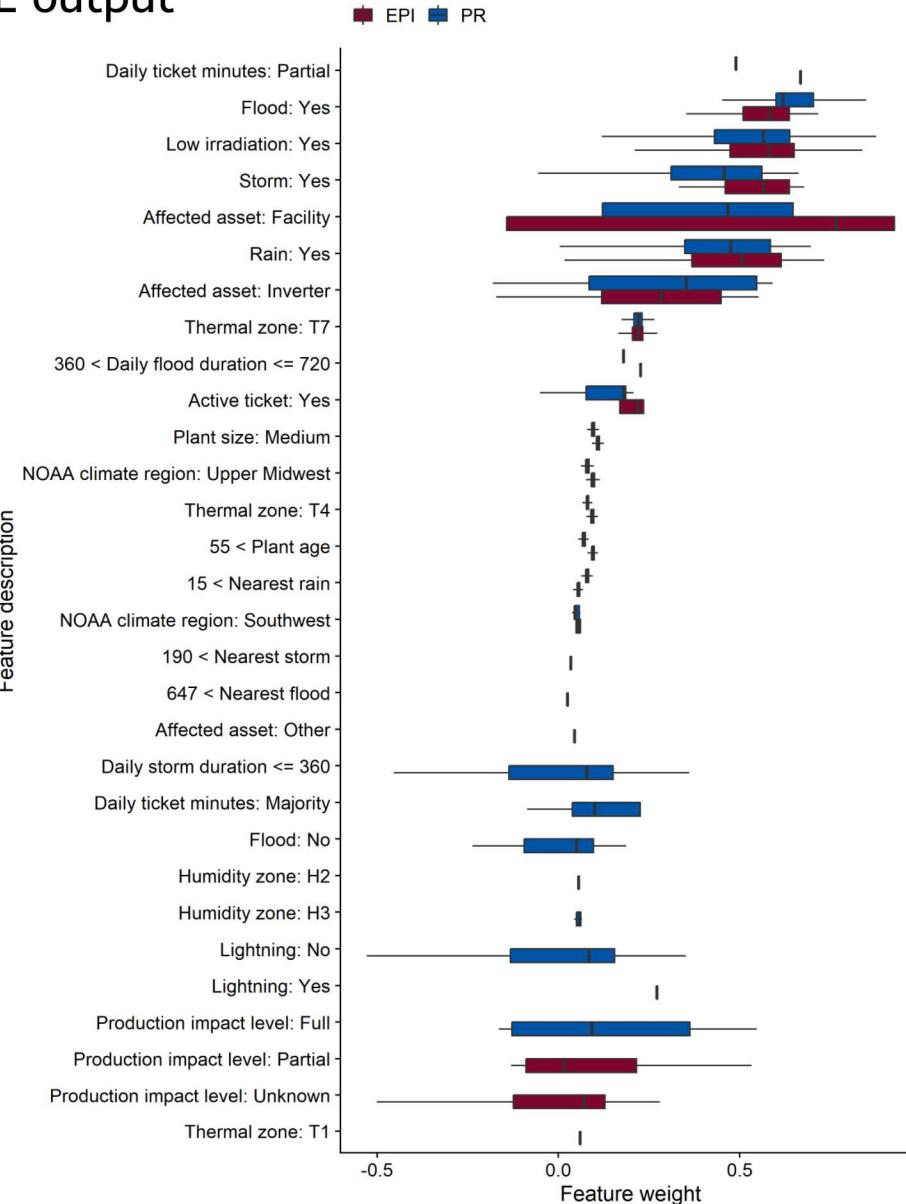
- O&M data was used to constrain analysis
- Unlike inverter-analysis, significant diversity emerged when considering weather events
 - Key Term Identification was used to identify relevant records
 - Quality control and categorization was conducted manually

- Fused 3 datasets:
 - Production data
 - Weather data
 - O&M records
- Lot of processing involved!

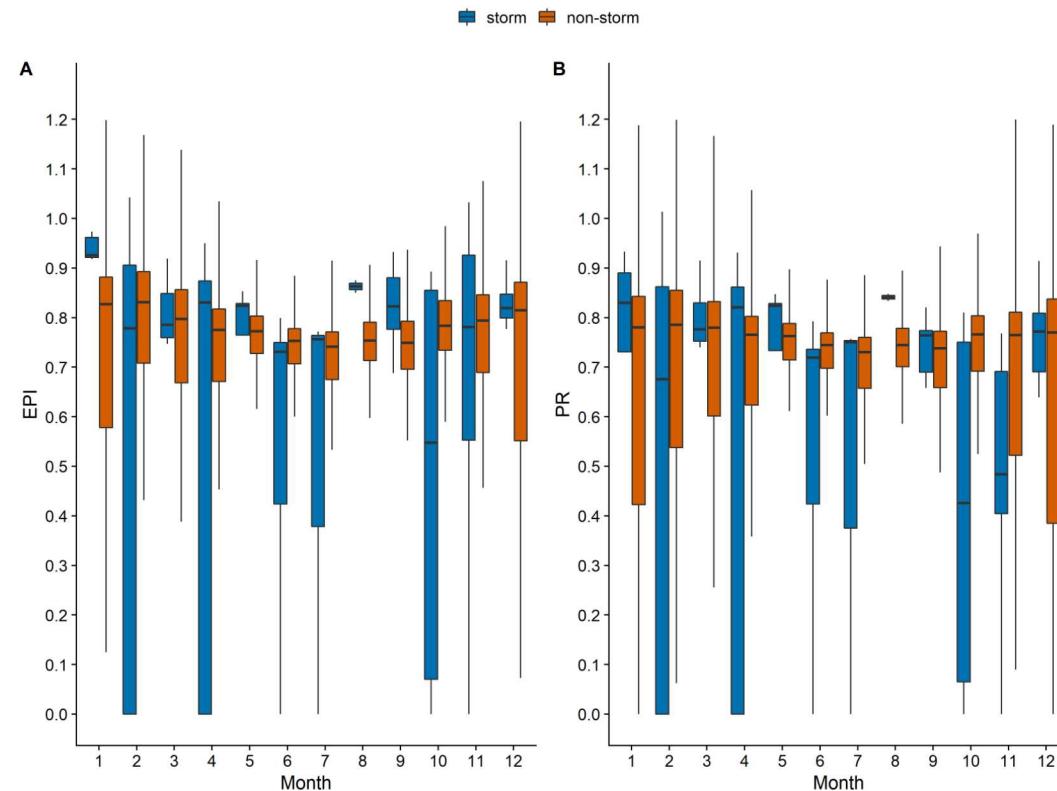


Weather Impacts: Storms

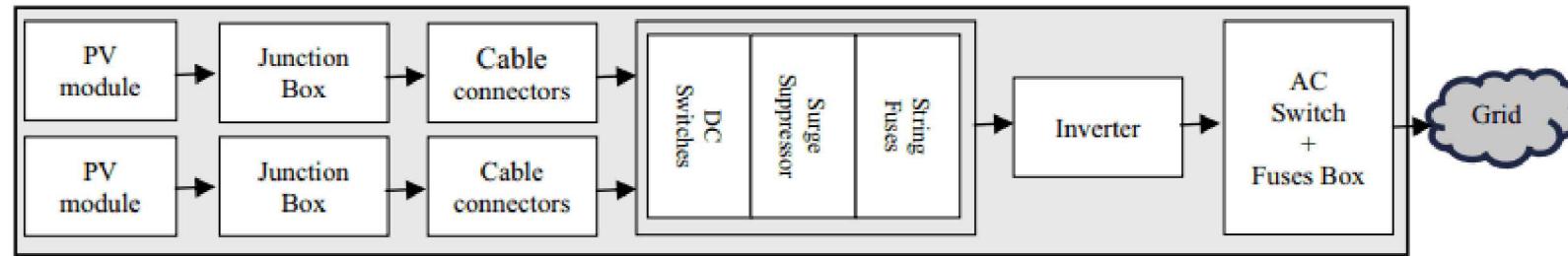
LIME output



- Variations in performance evaluated using statistics and random forest (RF) implementation
- RF analysis incorporated weather, O&M, and metadata information
- LIME analysis was used to characterize important features



PV Plants as Complex Systems

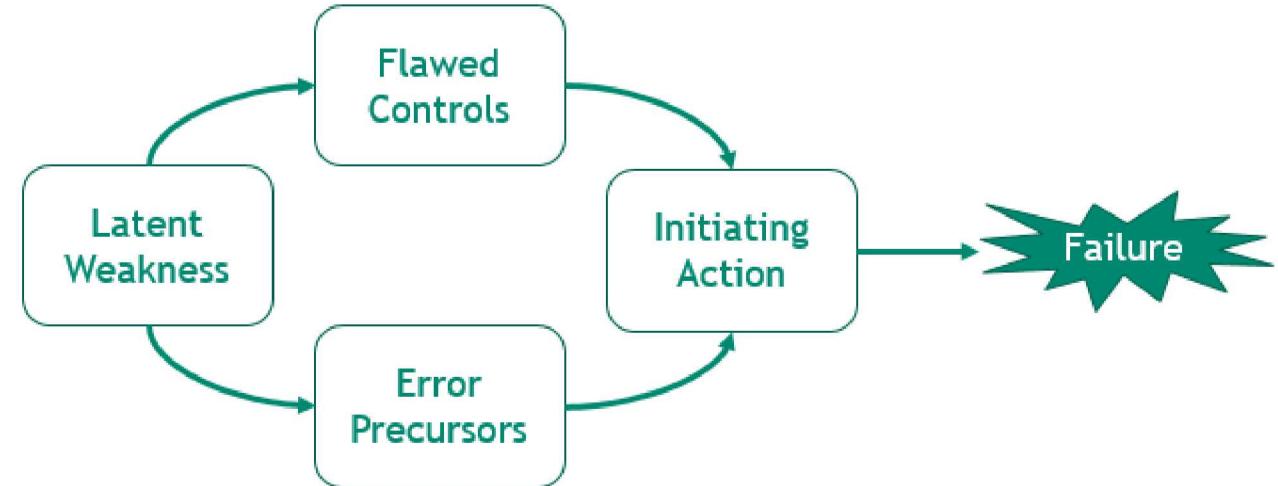


Cristaldi et al., (2015)

Fig. 1. Simplified schematic diagram of photovoltaic plant.

- Lots of parts and interconnections
- Both human and machine elements in latent weaknesses and controls
- Precursors can be maintenance-oriented
- Actions can be chronic or acute
- Non-linear pathways with lots of uncertainty and dynamic components

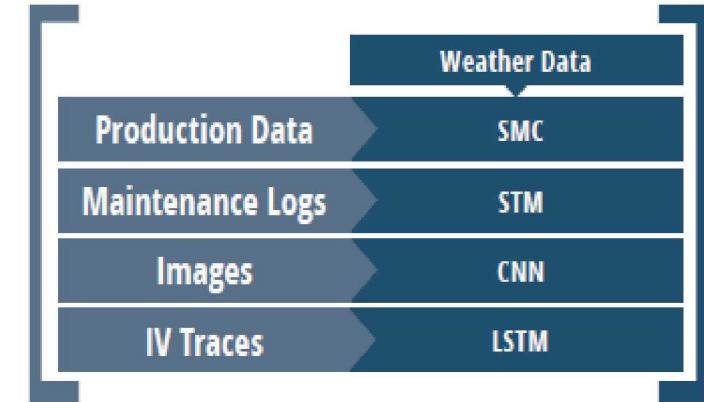
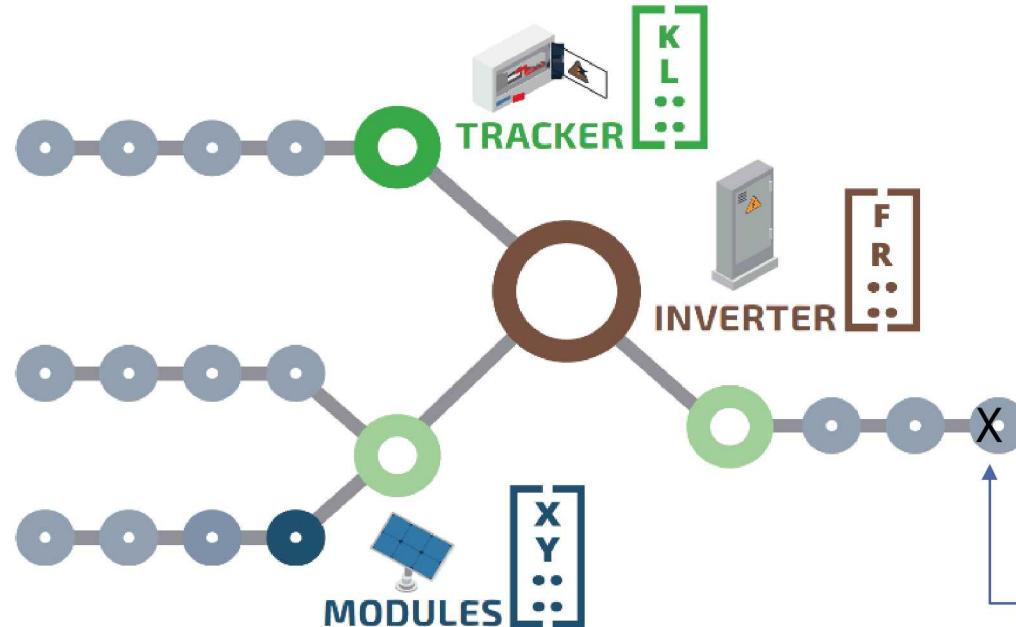
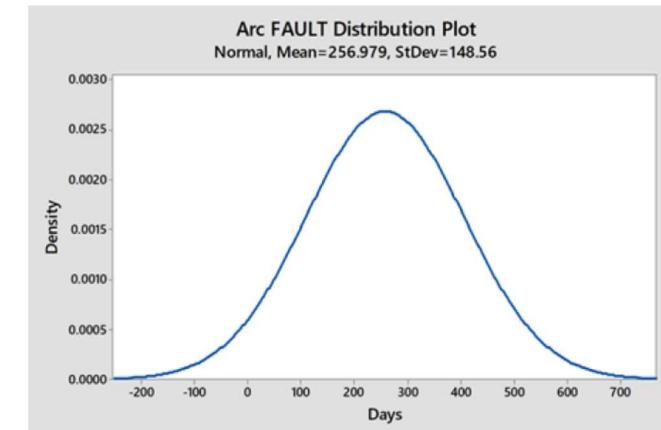
→ COMPLEX SYSTEM



Adapted from the DOE Human Performance Improvement Handbook

Future Work

- From failure characterization to failure prediction
- Stop evaluating data and analyses in silos
- Better integrate system network architecture into algorithm approach



References

Chen, S. X., Gooi, H. B., & Wang, M. Q. (2013). Solar radiation forecast based on fuzzy logic and neural networks. *Renewable Energy*, 60, 195-201.

Gunda et al., “A Machine Learning Evaluation of Maintenance Records for Common Failure Modes in PV Inverters”. Currently in review.

Hopwood, M. W., Gunda, T., Seigneur, H., & Walters, J. (2020). Neural Network-Based Classification of String-Level IV Curves From Physically-Induced Failures of Photovoltaic Modules. *IEEE Access*, 8, 161480-161487.

IEA, 2020: <https://www.iea.org/data-and-statistics?country=WORLD&fuel=Renewables%20and%20waste&indicator=SolarGen>

Jackson, N. and T. Gunda. “Evaluation of Extreme Weather Impacts on Utility-scale Photovoltaic Plant Performance.” Currently in review.

Karatepe, E., Boztepe, M., & Colak, M. (2006). Neural network based solar cell model. *Energy conversion and management*, 47(9-10), 1159-1178.

Kemmoku, Y., Orita, S., Nakagawa, S., & Sakakibara, T. (1999). Daily insolation forecasting using a multi-stage neural network. *Solar Energy*, 66(3), 193-199.

Mellit, A., Benghanem, M., Arab, A. H., & Guessoum, A. (2003, June). Modelling of sizing the photovoltaic system parameters using artificial neural network. In *Proc. of IEEE, CCA* (Vol. 1, pp. 353-357).

Thank you for your time!

Thushara Gunda: tgunda@sandia.gov