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3 | Outline

"Machine learning & Photovoltaics

="PV & Failures

= Failure characterization using IV Traces
= [dentification of common failure modes within text records

" Fusion of datasets to evaluate weather impacts
=PV plants as a complex system

*Future work
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Machine Learning &
Photovoltaics

=ML has been leveraged in PV for
decades

= Multiple applications, including
= Radiation and weather forecasting
= Sizing of PV systems

= Simulation of PV systems and
controls

" Across stand-alone, grid-
connected, and hybrid systems



5 | Photovoltaics

Solar PV electricity generation, World 1990-2018
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» PV production has demonstrated exponential growth over the last decade

»Understanding and dealing with the PV system aging process is creating a new and unknown set of challenges



| PV & Failures

»More recently, machine learning is being increasingly used for understanding failures within the PV
industry

Percent Difference in Average Daily Power (%)

BL PS Cr
Failure mode

Failure Characterization

i i 18

yre COMMUMEC3LNg

g .0 E5E
= = - BN o
E 2 w3 =F|45-E" ENG N e entative & Sux
I n
%{ = B & maintenance —=ngme cument relmy
o ,'. W back POWET =Tl pag r:,.
it

3-1 C PTESSLITE

I
2 -”‘;
£ |rwt.r!u‘1 o 5o

SE
e 5
‘“E
e

14
ﬂ.“ll_,luln”unr.iltl

since

sa

: TE‘II|Llrt"' fF'f‘“"“"
ﬁlcl -A'Y)
||r=l=’ |

® fuse visit 2l-'rl“sr.lfjl.” : 5

faulted g w_ =
r*hl:!”w it 2 E
, E @

repoited

WarTERtY

Common Failure Modes

nveﬁemw!

[
Climate
Data i
[ dentify ( h ==
relevant events Production ‘
O&M & general Impacts
Records patterns )
. Production
Data
" Variability )
analysis via
machine
. learning |

Weather Impacts



7 | Failure Characterization

"Extended current approaches of feature extraction to consider the entire IV trace using 3 NN
architectures

"Data processing including quality checks, normalization, and interpolation

*Multi-headed LSTMs and 1D CNNss had comparable high accuracies. Single-headed LSTM

outperformed when only considering proximal regions.

o NN Architecture Sampling Region ~ Num. Predictors Average accuracy, % (SD) across 20 tests
- BL PS Cr Total
08 Multi-headed LSTM Entire Curve 4 100.0 (0) 100.0 (0) 98.0(2.8) 993 (1.0)
Proximal - 99.1 (2.8) 100.0 (0) 97.6 (3.1) 989 (1.7)
? 07
£ Single-headed LSTM Entire Curve - 745(37.5) 68.2(42.0) 237(36.3) 51.8(15.8)
= an Proximal - 703(446) 95.0(21.8) 76.2(374) 79.0(20.8)
05 1D CNN Entire Curve - 994 (2.4) 100.0 (0) 100.0(0) 99.8 (0.8)
' Proximal - 100.0 (0) 100.0 (0) 94.0(103) 98.0(3.2)
04
1D CNN Entire Curve 2¢ 71.2(40.8) 80.0(40.0) 62.7(42.7) 68.9(274)

FS: Cr

@Utilizing only I s, I'Fs out of the normal set: [cs, [Fs. €Fg, and o5

0. 02 04 06 08 1.0

VI max(V) (HOpWOOd et al., 2020)



O&M Data

*Maintenance logs contain valuable contextual information

*However, significant diversity in the structure and detail of the logs makes it
challenging to ascertain needed insights

"Most contain a general comment field to capture issue description

Context

Where
" " T T T

What
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Why How

|

. , | . 3 1 Completion
[0 WO type 0 Site ID O Generaldesc. [ Event Start [ Priority |
| desc.
, . | r Production -
[0 WO Status O Asset O Failure cat. [ Event End = [ Effort (labor)
impact |

[ Warranty info O Impact level
randid WOType WONumber FailureCategories Cause ImpactLevel FullDesc CompletionActivity
C2516 Corrective 17 014989 Hardware Malfunction NA Partial Circuit 2 trackers stuck in flood Hardware Adjustmel
C2s1 Corrective 17 017409 Software Problem NA Partial Trackers going into flood stow Software/Firmware
C2516 Corrective 17 015278 Hardware Malfunction NA Partial Circuit 2 Trackers went to FloocPower Cycle
C2516 Corrective 17 015727 Software Problem NA Partial Circuit 2 in flood stow due to m Power Cycle
C2S16 Corrective 17 018812 Hardware Malfunction NA Partial Circuit 2 in flood stow. Power CPower Cycle
C2s1 Corrective 17 019236 Hardware Failure NA Mixed All trackers in intermittent floo Hardware Replacem:
€251 Corrective 17 025187 Software Problem NA Partial Tracker NCUs indicate in flood Software/Firmware ;



Topic Number

(Gunda et al., In review)
|dentification of Common Failure Modes

24 Inverter offling

19,4355 Saomics "Focused on inverters — one of the leading causes of PV
4753 Ground Faults .
. —— system failures
1 1 Remote reset

—_Combiners .
et R — *Used ML in 2 ways:
45 ——001ANTS

o — = Single Vector Decomposition to identify inverter-related
50— records

33,49 E closures
63 Egses
29 Breakers
22 BEEOSEI'

10,42 ansformers
26 Cabling

= Latent Dirichlet Allocation to group “like” records

"Temporal patterns in clustered records were evaluated

| umageos using survival analysis and estimateEffects
30 Repairs made
151 e
0.0 25 5.0 75 10.0
Probability of Topic Occurrence within Records (%) Communications Ground faults

w

N

754

Probability of First Failure (%)

S
{0
Q
—e
Q
'_
£
(]
: &
Topic §
~—— Communications 8 Heat Mgmt Systems IGBTs
504 —— Ground Faults Q
o
— Heat Mgmt. Sys |93
e
— IGBTs o
é‘2
254 =
[
e}
<]
a1
o
0 1000 2000 3000 i 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

Days since Commissioning Month of Failure



(Jackson & Gunda, In review)

| Weather Impacts

Climate
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=*O&M data was used to constrain analysis

=Unlike inverter-analysis, significant diversity
emerged when considering weather events

Weather-related Records {%)
wm

" Key Term Identification was used to identify relevant

records
= Quality control and categorization was conducted g
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(Jackson & Gunda, In review)

11 | Weather Impacts: Storms
LIME output e
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"Variations in performance evaluated using statistics and
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| PV Plants as Complex Systems

PV Junection Cable
maodule > Box > connectors B w éﬁ - —— SA_L "
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Cristaldi et al., (2015)

Fig. 1. Simplified schematic diagram of photovoltaic plant.

*Lots of parts and interconnections

"Both human and machine elements in laten

weaknesses and controls Flawed
Controls

"Precursors can be maintenance-oriented

. . Latent Initiating '
= Actions can be chronic or acute Weakness Action _
*Non-linear pathways with lots of Error
uncertainty and dynamic components Precursors

9 COMPLEX SYSTEM Adapted from the DOE Human Performance Improvement Handbook



13 | Future Work

Weather Data

» From failure characterization to failure prediction Production Data

: x5 Maintenance Logs STM
» Stop evaluating data and analyses in silos -
Images CNN

> Better integrate system network architecture into algotithm approach
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