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Expect non-thermal distributions in the presheath, but
thermal distributions have been measured

* lon velocity distribution function (IVDF or f;(v;))

e Expected: IVDF has a flow shift and a “fat” low-velocity

(v; K vr;) tail
* Measured: IVDF is as expected in most of the ion

presheath, but can be thermalized near the sheath edge

Sketch of IVDF in bulk and near ion sheath edge
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Figure 2. ivdfs of Xenionsina P = 0.13 mTorr, 7, = 1.7 eV,
n. = 3.5x10° cm~3 xenon plasma at varying distances from the

sheath edge.
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|AFs are predicted to affect
collisions in the ion presheath
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* Wave-particle interactions can increase i — i scattering 107 = - L

* |VDF could be thermalized near the sheath edge 2/l
* This effect is consistent with experiments S. D. Baalrud and C. C. Hegna. Plasma Sources Sci. Technol. 20 (2011) 025013

C. Yip, N. Hershkowitz and G. Severn. Plasma
Sources Sci. Technol. 24 (2015) 015018
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These predictions can be tested by comparing
two types of PIC simulations

Uniform Plasma Flowing Plasma
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One simulation with specular boundary
conditions where a set number of
particles are introduced once and no
particles are added or removed afterward

f
/

Another where particles are constantly
introduced to the domain and are permanently
removed once they reach a boundary




Aleph can simulate a low temperature plasma

e Simulations had 1 dimension for particle positions and 3 for velocities
(1D3V)

* Two species = electrons and singly charged argon ions
* Particles are deposited at a fixed rate, uniformly throughout the domain

e Collisions with neutrals can be included with the direct simulation
Monte-Carlo method (DSMC)

* The domains were 50 cm long and contained 10,000 cells each ~Ap,./5
* ng~5 % 10°cm™3 T,~6eV Ape~.025 cm




Specular and absorbing boundary conditions

simulate uni
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vx VDF

IVDFs exhibit expected properties in both
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Linear dielectric theory predicts instability in
the simulation containing the presheath

* The instability boundary (unstable above)
is calculated from the growth rate (y) and

. T, V;
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uctuations are present throughout entire
olasma, but also in the uniform plasma
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Spectral energy density indicates instability
rather than thermal noise in the presheath
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Simulations indicate significant IAF reflection
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on-ion collisions frequency can be calculated

from simulated data
The collision operator is related to the =gy o 5
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To do this we must have a well
resolved §f, meaning many (~100)
particles per cell or few cells




Conclusions

* Simulations of a uniform plasma and those of an ion presheath exhibit
ion-acoustic fluctuations

* The fluctuations in the uniform simulation seem to be entirely thermal
in nature, while those in the presheath are enhanced due to the ion-
acoustic instability driven by the ions streaming out of the plasma




