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LIF

lon-acoustic fluctuations (IAFs)
observed in an ion presheath

Blue = LIF viewing volume

Grey = Movable, biased

Electrode

• Ion acoustic fluctuations were measured using

laser-induced-fluorescence in an Ar-e plasma

• no-9 x 108cm-3 Te-5 eV LIF

Signal

• The fluctuations were measured far from the

electrode, around the entrance to the presheath

• ZEI^' 6 Cm /1De^' .06 cm
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Expect non-thermal distributions in the presheath, but
thermal distributions have been measured

• Ion velocity distribution function (IVDF or n (vi))
• Expected: IVDF has a flow shift and a "fat" low-velocity
(vi « vTi) tail

Measured: IVDF is as expected in most of the ion
presheath, but can be thermalized near the sheath edge

Sketch of IVDF in bulk and near ion sheath edge
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Figure 2. ivdfs of Xe n ions in a P = 0.13 mTorr, Te = 1.7 eV,
ne = 3.5 x 109 cm-3 xenon plasma at varying distances from the
sheath edge.
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IAFs are predicted to affect
,ns collisions in the ion presheath
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• Wave-particle interactions can increase i — i scattering 10
1

• IVDF could be thermalized near the sheath edge

• This effect is consistent with experiments

C. Yip, N. Hershkowitz and G. Severn. Plasma

Sources Sci. Technol. 24 (2015) 015018
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• Ai_n < 1 implies

possible IVDF

thermalization
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These predictions can be tested by comparing
two types of PIC simulations

Uniform Plasma

One simulation with specular boundary
conditions where a set number of
particles are introduced once and no
particles are added or removed afterward

Flowing Plasma

•

0

Another where particles are constantly
introduced to the domain and are permanently
removed once they reach a boundary
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Aleph can simulate a low temperature plasma

• Simulations had 1 dimension for particle positions and 3 for velocities
(1D3V)

• Two species = electrons and singly charged argon ions

• Particles are deposited at a fixed rate, uniformly throughout the domain

• Collisions with neutrals can be included with the direct simulation
Monte-Carlo method (DSMC)

• The domains were 50 cm long and contained 10,000 cells each r%j Ape / 5

• no,,5 x 109cm-3 Te. ,64 eV Ape^' .025 cm

I 11 itilat



Specular and absorbing boundary conditions
simulate uniform and experimental plasmas
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IVDFs exhibit expected properties in both
lOSep20
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Linear dielectric theory predicts instability in
the simulation containing the presheath

• The instability boundary (unstable above)
is calculated from the growth rate (y) and

simulated 
( 
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Te 
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Fluctuations are present throughout entire
plasma, but also in the uniform plasma
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Spectral energy density indicates instability
rather than thermal noise in the presheath
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2d fft then sum
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Simulations indicate significant IAF reflection

lOSep20
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lon-ion collisions frequency can be calculated
from simulated data

The collision operator is related to the
time average of VDF and E-field
fluctuations

a
C(f)c)(

av<sfsE>

6f = f(t) (f), 6E = E(t) (E

< > and — < dE * dfr > at 194,3rn of 205 m

To do this we must have a well
resolved 6f, meaning many ("1.00)
particles per cell or few cells
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Conclusions

• Simulations of a uniform plasma and those of an ion presheath exhibit
ion-acoustic fluctuations

• The fluctuations in the uniform simulation seem to be entirely thermal
in nature, while those in the presheath are enhanced due to the ion-
acoustic instability driven by the ions streaming out of the plasma
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