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Abstract—Achieving fault tolerance is one of the significant
challenges of exascale computing due to projected increases
in soft/transient failures. While past work on software-based
resilience techniques typically focused on traditional bulk-
synchronous parallel programming models, we believe that
Asynchronous Many-Task (AMT) programming models are bet-
ter suited to enabling resiliency since they provide explicit
abstractions of data and tasks which contribute to increased
asynchrony and latency tolerance. In this paper, we extend
our past work on enabling application-level resilience in single
node AMT programs by integrating the capability to perform
asynchronous MPI communication, thereby enabling resiliency
across multiple nodes. We also enable resilience against fail-stop
errors where our runtime will manage all re-execution of tasks
and communication without user intervention. Our results show
that we are able to add communication operations to resilient
programs with low overhead, by offloading communication to
dedicated communication workers and also recover from fail-
stop errors transparently, thereby enhancing productivity.

Index Terms—Resilience, AMT Runtimes, Habanero C/C++,
MPI communication, Fenix, MPI-ULFM

I. INTRODUCTION

Fault Tolerance is one of the significant challenges of
exascale computing due to projected increases in soft/transient
failures. According to [[I], the application failure probability
on the Blue Waters system increases by a factor of 20x
when the number of nodes is only doubled. This emphasizes
the importance of providing failure mitigation mechanisms.
One of the insightful conclusions from [1] is that application-
level resilience plays an essential role in improving application
resiliency.

The most popular application-level resilience technique to-
day is coordinated checkpoint and restart (C/R) typically with
bulk-synchronous parallel programming models [2]-[4], where
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processing elements (PE) cooperatively maintain a consistent
global application state. While global recovery models are bet-
ter suited for hard failures such as node failures, unfortunately
they are inefficient for transient local failures because global
reactions to locally-maskable failures can incur significant
performance overheads. Since the majority of application
failures are attributed to local node/process failure [2]], local
recovery approaches such as Containment Domains (CDs) [5]]
are essential.

Additionally, given that the complexity of node architectures
is increasing, it is important to enable resiliency in emerging
parallel programming models such as asynchronous many-
task (AMT) programming models [6]-[13]. One of the in-
teresting properties of AMT models is that they decompose
an application program into small, transferable units of work
(many tasks) with associated inputs (dependencies or data
blocks) rather than simply decomposing the application at
the process level (MPI ranks). Such properties enable both
a decomposition of work on to heterogeneous node resources
as well as more efficient local error recovery, better than bulk-
synchronous models. That is, given that tasks represent a small
piece of program execution and assuming that failures are
manifested as failed or lost tasks, failures can typically be
remediated using lightweight mechanisms such as task replay.

In our previous work [[14], we introduced a comprehensive
approach to enabling application-level resilience in Asyn-
chronous Many-Task (AMT) programming models with a fo-
cus on remedying Silent Data Corruption (SDC) that can often
go undetected by the hardware and OS. Mainly, this approach
offers different resilience techniques including task replay,
task replication, algorithm-based fault tolerance (ABFT), and
checkpointing in a single parallel programming model: the
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Habanero C/C++ library (HClib).

Since one of the key limitations of the previous work is
that it only provides single-node resilience, in this paper,
we integrate our resilient AMT programming model with
asynchronous MPI communication to enable resiliency across
multiple nodes including fail-stop and fail-continue errors.
Essentially, our programming model introduces a high-level
asynchronous MPI communication API that can be trans-
parently used in different resilience scenarios. This design
makes it possible for the application programmer to declara-
tively express resilience attributes and inter-node asynchronous
communication routines with minimal code changes, and to
delegate the complexity of efficiently supporting resilience to
the HClib runtime system.

To the best of our knowledge, this is the first work to
provide the design, implementation, and evaluation of a uni-
fied programming model that transparently supports multiple
resilience techniques across multiple nodes.

This paper makes the following contributions:

1) Programming model extensions to enable resiliency
across multiple nodes by introducing asynchronous com-
munication APIs, which is built on top of an on-node
resilient AMT runtime [[14].

2) Unified execution of resilient, non-resilient, and asyn-
chronous communication tasks in a single framework.

3) Implementation of our approach as extensions to the
Habanero-C/C++ library for many-task parallelism.

4) Performance evaluation of our implementation with syn-
thetic error rates, and analysis of the results.

II. BACKGROUND

In this section, we discuss the background of resilient
programming models and runtimes for HPC.

A. Types of Errors: Fail-stop vs Fail-continue

On HPC systems, failures in application programs are
manifested as job failures or incorrect application outputs,
resulting in wastage of computing cycles or use of wrong
results. From the resilience perspective, the errors that cause
these failures are classified into two major categories [15]:
fail-stop and fail-continue errors.

Fail-stop errors causes the process to stop or crash, resulting
in loss of all computation and data. Typically, failures from
fail-stop errors can be detected by the operating system,
middleware, or transport layer of HPC systems. For example,
in parallel programs written with MPI, a crash of single rank
(process) is detected by MPI message passing calls to the lost
rank or the underlying process manager interface.

Fail-continue errors causes the process to fail but continue
to execute, often due to a transient error. In some cases,
the process might decide to continue execution even after
detection of errors (Detected Uncorrected Errors - DUE).
In other cases, the error goes undetected by the hardware,
operating system, and other middleware components, which is
referred to as Silent Data Corruptions (SDC). If SDC happens
in the lowest bits of a mantissa or in application data that is

never referenced after the error, the final output of the program
is likely to be unchanged. If the corruption occurs in more
significant bits, however, it can impact the final output of the
application in a way that is either obvious or subtle. Therefore
we need suitable mechanisms to check the correctness of
results where precision is critical.

B. Types of Recovery

Next, we discuss the failure recovery techniques targeted at
today’s dominant SPMD model. In particular, resilience and
fault-tolerance for the MPI programming model is discussed.

1) Global Recovery: Today, Coordinated Check-
point/Restart (C/R) is widely used for global recovery and a
few production-ready software packages [2]-[4] are available
in the public domain. In a parallel program execution,
Coordinated C/R synchronizes all running processes to
create a consistent global snapshot of the program, called a
checkpoint, which is then stored in persistent storage such
as a globally-accessible, networked file system. When failure
is detected in the program execution, rollback is initiated.
Global recovery can lead to the disproportionate use of
computational resources to handle the most common failures
occurring on a single thread, process, or node.

A proposed resiliency addition to the MPI specification,
User Level Fault Mitigation (ULFM) [[16], aims to reduce the
overhead of failures by allowing MPI to detect failed ranks and
users to modify communicators to exclude those ranks. This
enables recovery of a failed rank without doing full process
shutdown/restart and instead only doing an in-process recovery
and restart. MPI-ULFM is highly performant and versatile, but
applications may need significant modifications to implement
error handling. Fenix [17], [18] is a framework which lever-
ages MPI-ULFM to provide user-level recovery of failed ranks
with a streamlined API that limits code modification to a few
locations. Fenix provides two separate interfaces for process
and data recovery, and is designed in principle to function with
a variety of backends for either with minimal changes to user
code when switching.

2) Local Recovery: Along with the emergence of fault-
tolerance proposals in the Message Passing Interface (MPI)
standard, there has been an emerging idea of the local re-
covery of parallel programs to overcome the shortcomings
of coordinated C/R. This idea is based on the observation
that the majority of application failures are attributed to local
node/process failure as reported by [2], and that the recovery
need only be applied to the corrupted processes without global
coordination.

For  example, uncoordinated Checkpoint  Restart
(UC/R) [19] exploits message contents (message logging)
exchanged between MPI ranks to enable localized recovery.
Another example of local recovery is Containment Domains
(CDs) [5] that enables efficient and transparent recovery
of applications by providing good abstractions for failure
detection and correction.



C. Asynchronous Many-Task Programming and Execution
Model

The asynchronous many-task (AMT) model [6]-[13] is a
category of programming and execution models proposed as
an alternative to the dominant SPMD programming models.
AMT programming models and runtime softwares have sev-
eral common functionalities across different implementations
and packages. Typically, these frameworks decompose an
application program into small, transferable units of work
(many tasks) with associated inputs (dependencies or data
blocks) rather than simply decomposing at the process level
(MPI ranks). To enable more sophisticated decomposition of a
program, the architecture of a typical AMT runtime involves
several software components as listed below.

o Tasks

o Data blocks

o Runtime scheduler (task queues, dependency graph and
task/data tables)

o Workers (thread/processes)

Despite minor differences between individual AMT im-
plementations, an AMT runtime provides APIs to instantiate
these components. The most important features are task and
data objects encapsulated with their meta-data representations
so that the runtime scheduler can orchestrate these objects.
The runtime scheduler consists of task queues and a special
construct to represent the task dependencies and monitor the
status of task and data objects. Task dependencies can be ex-
pressed either explicitly or implicitly. For example, ParSEC [9]
employs a static parametric task-graph to express all task
dependencies, and the open community runtime (OCR) [13]
employs event objects to notify of state changes of individual
tasks and data objects. OpenMP has supported task parallel
computing since version 3.0, and extends the capability in
later versions. The latest version of Kokkos [20] supports
task parallel computing to extend its performance-portable,
data-parallel computing interface. Like Kokkos, HClib [21],
described in Section [V, exploits modern C++ features to
instantiate tasks and data objects.

The term many-task encompasses the idea that the appli-
cation is decomposed into many transferable or migratable
units of data/work, to enable the overlap of communication and
computation as well as asynchronous load balancing strategies.
The transferable units and load balancing can be used as a
mechanism to support easy incorporation of fault tolerance.

In this paper, we discuss the design of a unified interface
for AMT programming models that enables the recovery of
distributed applications from Silent Data Corruptions (SDC)
as well as fail-stop errors.

III. DESIGN

In this paper, we extend the resilience mechanisms in-
corporated in the Habanero C++ library (HClib) [21] that
was published at Euro-par 2019 [14] to include inter-node
communication.

A. Execution Model

shows the high level structure of the execution
model for the j;;, rank of a distributed job, shown as pro-
cess[j], with memory[j] representing that process’s locally
accessible memory. This rank with its n cores is split between
computation and communication worker threads. A few of
the cores get allocated for computation workers (shown as
executing on core[1:i]) and the rest of the cores allocated for
communication workers (shown as executing on core[i+1:n]).

Process|j] Remote
Computation |°™°%¢ [ communication | Jcommunication
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Fig. 1. The internal structure of workers within a single rank.

To enable asynchronous communication, we offload the
remote accesses on to a communication worker by spawning
a communication task. Then, the communication worker picks
up that task and performs the actual remote communication.
Once the communication is complete, the communication
worker notifies the arrival of data to the computation workers.
Since we use separate workers for computation and commu-
nication, they can progress without starving the other.

B. Resilience Module Recap

A brief recap of the resilience mechanisms incorporated [[14]
in HCIib is discussed here. Enabling resilience efficiently
requires identification of two key points, 1) where in the
program and 2) what data we need to check to correct faults.
Task boundary is an ideal program location where we can
perform error checking and recovery without worrying about
the task’s internal state or the application’s global state. The
next step is to identify the data that needs to be verified. For
that, we look at data that is going to be used past the task
boundary, i.e., the task outputs. Primarily we look at data that
is live with respect to task boundary. Since task-based runtimes
encourage the use of built-in constructs for task inputs and
outputs (for example, Logical regions in Legion [§] and Data-
blocks in Open-Community-Runtime(OCR) [13]), we can find
out the live data at task boundary using the construct used to
express task outputs. Similarly C++11 introduced promise
and future constructs to facilitate data transfer across tasks
along with synchronization to avoid data races. A promise
is a thread-safe container with single-assignment semantics to
fill its value. The value written to a promise is read using
its read-only handle called as future. Thus promise and
future enable point-to-point synchronization between one
source task to many sink tasks.

1) Resilience API Specification: Now we can see how
we extended different AMT components, mainly tasks and
promise/futures to enable various resiliency techniques. For
demonstration purposes, we use async as a generic AMT



construct that creates an asynchronous task with a user-
provided lambda expression, and async_await is a variant
of async that can wait on a future.

shows the incremental extensions that was added to
HClIib to enable various resilience mechanisms. The additional
parameters are shown in red color.

The async_await API is used to create a data-driven task
with future_deps as its dependencies. async_await_check is
its corresponding resilient API which uses various resilience
mechanisms such as Replay, Replication, and ABFT. Further,
checkpointing can be added to any of these by separately
enabling checkpoint storage and thus keeping the respective
API of replication/replay/ABFT effectively unchanged. Please
refer [14] for more details.

C. Communication Module

We focus our study on distributed resiliency on MPI as MPI
is the most commonly used communication library in HPC.
Additionally, the MPI standards committee is working towards
enabling resilience for MPI communication in exascale sys-
tems. This is very helpful since we can now work on enabling
resilience by treating communication as a reliable black box.

This work focuses on the non-blocking MPI send and
receive APIs. We currently do not support other APIs such
as collectives and so on. We focus on non-blocking com-
munication as it is synergistic with the AMT model since
both are capable of launching the operation asynchronously
thereby allowing the execution to proceed without waiting for
the operation to complete.

We expose two APIs in the HClib C++ namespace: Isend
and Irecv. These APIs have similar signatures to their MPI
analogues. The API signature of Isend and Irecv is given
below in [Listing 1. The corresponding MPI routines are also
listed in the comments for reference.

Listing 1. Communication API signature.
1
2 void Isend(COMMUNICATION_OBJ xdata, int dest,
3 hclib::promise_t<COMMUNICATION_OBJ*> *prom,
4
5

int source, int64_t tag,
MPI_Comm comm)

8 void Irecv (int count,
9 hclib::promise_t<COMMUNICATION_OBJ*> *prom,

We are targetting C++ rather than C, and therefore the
benchmarks used C++ objects to represent data. Since MPI
routines usually transport a block of contiguous memory, it
is needed to convert these objects to a contiguous blob of
data. Although MPI provides interfaces to create custom MPI
datatype from a general set of datatypes, we felt it is more
readable to extend the user’s object with serialization/deseri-
alization facilities. The first parameter of Isend is the data
object that needs to be communicated. This object needs to
be a subtype of the hclib: :communication: :obj type.
The hclib::communication: :obj is an abstract type
with serialization and deserialization routines. One noticeable

int64_t tag,
MPI_Comm comm)

and important difference is the lack of data size parameter,
which specifies the amount of data to be communicated. This
size and blob of data to be transferred is obtained using the
serialization of data which is explained in [Section III-C1]. The
dest parameter is the destination rank, and the tag is the integer
message tag as in MPI calls.

MPI non-blocking APIs use the MPI_Request parameter
to signal the completion of the operation. Instead, we use a
promise, the prom parameter, to signal the completion of
the operation. Internally the runtime will do the job of putting
the data into the promise to signal the completion of the
communication operation.

Irecv uses a similar set of parameters but with a big differ-
ence in the first parameter. Here the first parameter specifies
the number of bytes that need to be received. The runtime
internally deserializes the bytes received to the required type
requested by the user which is explained in [Section III-CT].

A sample program using the communication APIs to trans-
mit data across ranks is given below in [Listing 2. Here we can
see that the output promise prom_recv of Irecv at Line
B2 is used as the task dependency in Line [39
Listing 2. An example program that performs basic send-receive communi-
cation.

class test_obj : public communication::obj {
public:

int n;

archive_obj serialize ()

{

archive_obj ar_ptr;

9 ar_ptr.size = sizeof (int);

10 ar_ptr.data = malloc(ar_ptr.size);

11 memcpy (ar_ptr.data, &n, ar_ptr.size);
12 return ar_ptr;

13 }

14

15 void deserialize (archive_obj ar_ptr)

16 {

17 n = x(intx) (ar_ptr.data);

23 auto prom_recv = new hclib::promise_t<test_obj*>();
24 auto prom_send = new hclib::promise_t<test_obj*>();

e
-8

if (rank == 0) {

27 auto *xtst = new test_obj();

28 tst->n = 22;

29 communication::Isend(tst, 1, 1, O,
30 }

31 if (rank == 1) {

32  communication::Irecv(sizeof (int), O,

prom_send) ;

1, prom recv);
34 hclib::async_await ( [=] ()

2 {auto recv_tmp = prom_recv->get_future()->get();
37 printf ("Value Recv %d\n", recv_tmp->n);

zz géom_recv—>get_future());

40 }

Communication Operations
Serialization/Deserialization Routines
Task waiting for completion of communication

The communication APIs can be used directly within a
non-resilient or resilient task without any special handling.
However, there are some differences in their behavior. While
using Isend inside a non-resilient task, the communication
operation is immediately scheduled for execution. In a resilient



| Non-resilient (Original API) |

async_await( task_body_lambda, future_deps )

|
| Replication | async_await_check( task_body_lambda, promise_out, future_deps ) |
| Replay | async_await_check( task_body_lambda, promise_out, error_check_fn, future_deps ) |
| ABFT | async_await_check( task_body_lambda, promise_out, error_check_fn, ABFT_lambda, future_deps ) |

TABLET
RESILIENT APIS WITH THE ADDITIONAL PARAMETERS SHOWN IN RED COLOR COMPARED TO THE NON-RESILIENT VERSION. THE BOLD FONT
EMPHASIZES THE NEW PARAMETER REQUIRED, COMPARED TO THE API JUST ABOVE THE ONE UNDER CONSIDERATION.

task, scheduling the communication is delayed until the error
checking (or equality checking) succeeds. If we were to
eagerly schedule communication and have the error checking
fail, then we might be communicating the wrong values.
Therefore we delay communication until error checking is
successful. Similar delayed execution within resilient task
applies to Irecv also.

1) Serialization and Deserialization: MPI generally sup-
ports sending of a contiguous block of memory. However,
the data used by the user in the application may not be a
contiguous block of memory, and therefore, it might become
necessary to perform serialization when we want to communi-
cate such data objects. One way is to ask the user to serialize
the object and give the buffer as input to Isend. In that
case, the destination rank that receives the buffer will need to
perform the deserialization of the buffer to get back the usable
data object. Since the Irecv operation is asynchronous, the
user will need to perform the deserialization in a dependent
task which waits for the completion of the communication
operation. While converting from a single node program to
its distributed version, this asynchronous usage of serializa-
tion/deserialization causes programming overheads.

To streamline this process, we decided to go ahead with
using the typed user object directly while sending data and
perform the serialization and deserialization within the ex-
tended HClib runtime which, in turn, passes the contiguous
data buffer to MPI runtime. Thus the user needs to extend
the hclib: :communication: :ob7j class to and create a
custom data type to work on. Primarily the class needs to
include a serialize routine that can convert the user object to a
serialized object of type archive_obj and a deserialize that
can give back the user object. The archive_ob7j includes
the data buffer that represents the serialized user object and the
size of the buffer as shown in [Listing 3] A concrete example
of serialization routines is shown in at lines [ and
15l

Listing 3. Definition of Archive Object which is used for serialization to help

perform MPI communication operations.
1 class archive_obj {
2 //size of ect blob

int size =

ect to be archived

void xdata = nullptr;

3

4

5 //blob of
6

7}

2) Process Crash Recovery: discuss how to

overcome fail-continue errors. The addition of the communi-
cation module to enable distributed execution also presents
opportunities to overcome fail-stop errors. MPI-ULFM [16]

is a fault-tolerant extension of MPI, that adds a small set of
APIs thereby enabling users to implement application-specific
recovery during MPI rank failures. Fenix [[17], [18] exposes
a user-friendly layer on MPI-ULFM to enable transparent
recovery from process failures. Fenix provides mechanisms to
use spare nodes to re-spawn the failed processes and restore
the application state. Together, MPI-ULFM and Fenix enable
the user to implement application-specific recovery during
failures.

Adding application-specific recovery for each application
is time-consuming and hurts programmer productivity. There-
fore we wanted to remove this recovery process from the
application programmer’s workflow and automate it within the
runtime. To achieve this, we presented our resilient runtime
extension as the application to Fenix and MPI-ULFM. Our
runtime extension keep tab of all messages send and received
using the APIs in along with its completion status.
Therefore, we can use this information to re-execute the
communication operations in case of failure without user
intervention.

Fenix allows us to restart the execution from the point
of Fenix Initialization or continue execution on non-crashed
ranks in case of a failure. Just re-executing all ranks from
the point of Fenix initialization is a trivial recovery process.
However, a better design would be to use the already computed
partial results available in the non-crashed ranks rather than
re-executing them. Based on this insight, our high-level design
is to re-execute the full computation task graph only for the
crashed rank and reuse the partial results on non-crashed ranks,
thereby bypassing tasks that have already completed in them.
This same approach is used in various runtimes such as Fenix
and Reinit [22]. However, they require the user to manage the
handling of error recovery.

As mentioned above, the crashed rank starts execution on a
new spare rank, and therefore must execute the full task graph.
As a result, it has to re-execute all communication operations
that had been completed before the crash. This is required
since all remote data received from neighbors before the crash
will not be available in the new spare rank. To support the re-
execution in spare rank, the non-crashed ranks will also have
to participate in the corresponding communication operations.
However, since the completed tasks are not re-executed in the
non-crashed nodes in our design, in the absence of any other
support, the user will have to add handling of these repeated
communication operations as additional “compensation code”.

However, we want to avoid adding this programming burden



on the user to achieve the re-execution of the completed
communication operations and offload it to our runtime. To
achieve this, we bookkeep all the send/receive operations and
use this information to re-execute any required communication
in the error handling callback provided by Fenix. In each rank,
the runtime maintains a list of pending communication oper-
ations that the user has invoked. Once the runtime identifies
a communication operation as completed using MPI_Test,
the handle to this communication operation is moved from
the pending list to a completed list. In the error handling
callback, we reissue all operations on the pending list since the
Fenix/MPI-ULFM runtime invalidates all outstanding commu-
nication operations during a failure.

The operations in the completed list can be classified into
two categories, the ones to the crashed rank and others to the
non-crashed ranks. We reissue all operations to the crashed
rank since the spare rank executes all tasks from the start,
including communication operations. From the completed op-
erations to the non-crashed ranks, we can safely ignore the
receive operations since the data is already available locally.
From the send operations, we need to identify which among
them needs to be reissued since MPI_Isend completion only
means the send buffer can be reused and do not indicate the
message is received. We tried to overcome this issue by using
MPI_TIssend, which waits for the matching receive to signal
completion. But currently, MPI-ULFM is not well integrated
with MPI_TIssend and was behaving erroneously due to
which we initially reissued all completed send operations.

Later we enhanced the protocol and introduced an all-
to-all communication through which all nodes exchange the
completed receive tags. Instead of reissuing all completed send
operations, we ignore any send that matches these received
tags. We use MPI_Alltoallv (currently not exposed the
user) to exchange the tags. We believe once MPI_Issend
is integrated with MPI-ULFM, we can find out the exact
subset of send operations that needs to be reissued without
the current all-to-all communication that we perform. Another
point to note is that we do not free the serialized data buffer
sent to remote ranks since the non-crashed nodes can reuse
this serialized data buffers to send data in case of failure
without recomputing. This can potentially cause scaling issues
if many serialized data buffers get accumulated over a long
period. In the future, we would also like to add occasional
local checkpointing so that the spare rank can start from the
local checkpoint rather than the initialization point. Once a
local checkpoint of the current state is taken, we can free
all serialized data buffers that were kept around as part of
the compensation code. The crash tolerant version of the
program shown is created by building it with an
additional flag -DUSE_FENIX and the user does not have to
add any compensation code anywhere in the program to enable
recovery.

IV. IMPLEMENTATION

In this section, we discuss the implementation of our
communication module prototype by extending the Habanero

C++ library (HClib). An overview of HCIlib and its runtime

capability are discussed in followed by efforts
for the extension of HClib.

A. HClib

HClib [21] is a lightweight, work-stealing, asynchronous
many-task based programming model based runtime. HClib
focuses on offering simple tasking APIs with low overhead
task creation. HClib is entirely library-based and supports
both a C and C++ API and therefore does not require a
custom compiler. HCIlib’s runtime consists of a persistent
thread pool, across which tasks are load balanced using lock-
free concurrent deques. At the user-visible API level, HClib
exposes several programming constructs that helps the user to
express parallelism easily and efficiently.

A brief summary of the relevant APIs is below:

1) launch: Initialize the HClib runtime, including spawn-
ing runtime threads.

2) async: Dynamic, asynchronous task creation.

3) finish: Bulk, nested task synchronization. Waits on
all tasks spawned within a given scope.

4) promise and future: Point-to-point inter-task syn-
chronization. A promise is a single-assignment, thread-
safe container that stores some value and a future is
a read-only handle on that value. Waiting on a future
causes a task to suspend until the corresponding promise
is satisfied - i.e. some value is put to the promise.

5) async_await: Data-driven execution for tasks using
future as task dependency

Also, HClib accepts a target platform model which is
an abstraction of the homogeneous/heterogeneous hardware
resources across which the application execution will be
distributed. With this feature enabled, users can use the
async_await_at ([]1 { body; }, dependency,
place) API to create a data-driven task at a specific place.
More details can be found in [21]. In this paper, we use
the async_await_at feature to offload asynchronous
communication tasks onto dedicated communication workers.

B. Enabling Communication in Resilience Module

As mentioned in the computation worker

offloads all communication calls to communication workers. In
the current implementation, we use one communication worker
in each rank and hence configure MPI in the thread funneled
mode.

As mentioned in we allow the use of commu-
nication APIs throughout the program i.e., both non-resilient
or resilient tasks can invoke these APIs without any special
handling. However, the semantics of the communication calls
on non-resilient vs. resilient versions are not the same.

For Isend, while using in a non-resilient task, the commu-
nication operations are immediately scheduled for execution.
But when resilient tasks are used, the communication oper-
ations only get scheduled for execution after error checking
succeeds. This delay is used to make sure error data is not
communicated thereby removing the necessity to a rollback



of messages. We use task local storage to collect all commu-
nication operations invoked within a resilient task. Once the
error checking succeeds we get back the list of communication
operations saved to the task local storage and schedule them.

For Irecv, the distinction between resilient and non-
resilient task is more subtle. Since we are receiving data from
a different rank, there is no need to wait until error checking,
which works on local data to succeed. Therefore any task can
go ahead and schedule the communication operations. The
only difference between resilient and non-resilient task is that
resilient tasks might involve the creation of multiple replica
tasks and therefore the runtime picks one task to schedule the
MPI communication.

The Isend and Irecv operations notify completion using
a promise rather than an MPI_Request object as in MPL
This difference implies we need a mechanism to convert
MPI_Request returned by an MPI call to a promise. This
is done through a combination of interactions between the
communication API and the underlying work-loop in the
communication worker.

When the user invokes an Irecv call, it creates a com-
munication task to perform the actual MPI call. Within the
communication task, we create a serialized object of type
archive_obj with size as given in the Irecv call. We
invoke the MPI operation with the data buffer from the
serialized object. The MPI call returns an MPI_Request to
query for status or completion of the operation. We add the
MPI_Request along with the serialized object and the output
promise parameter to a pending queue which gets polled by
the communication worker loop.

The communication worker loop does periodical polling
of the pending queue. It iterates over the list of pending
MPI operations from the queue and process any that have
completed. During processing, it first deserializes the received
data (in case of Irecv) and satisfies the output promise
associated with that communication operation. If there are no
pending MPI operations, it yields so that other tasks can use
the worker before polling again.

During failures, Fenix performs recovery and restarts ex-
ecution from the point of Fenix initialization. This involves
performing a longjump to the initialization point. The
jumping across stack caused by longjump was interfering
with cleanup procedures within the HClib tasking runtime.
To overcome this issue, we added a new Fenix mode to
continue the execution after recovery without getting back to
the Fenix initialization point. Our recovery procedure, which
performs the re-execution of communication, is added to the
error handling callback invoked by Fenix during the recovery
process.

V. EVALUATION

This section presents the results of an empirical evaluation
of our runtime system on a multi-node platform.
Purpose: Our goal is 1) to demonstrate that our program-
ming model supports various resilience techniques with asyn-

chronous MPI communication, and 2) to study the perfor-
mance impact of the resilient runtime system.

Machine: We present the results on the Cori supercomputer
located at NERSC, in which each node has two sockets,
each of which has 16-core Intel Xeon E5-2698 v3 CPUs at
2.30GHz.

Benchmark: Our first benchmark is the stencil 1D benchmark
that solves linear advection (a hyperbolic PDE): We break the
1-D domain up into contiguous, non-overlapping subdomain
for inter-node parallelism. Each subdomain is further divided
into contiguous, non-overlapping tiles, each of which will be
time-advanced by an independent task on each iteration to
allow for intra-node parallelism. Time-advancing the left-most
value on each tile requires the right-most previous value from
the left neighbor by performing intra/inter-node communica-
tion. Similarly, time-advancing the right-most value requires
the left-most previous value from the right neighbor. For this
reason, a task will be ready to execute once the tasks that
generate the previous data for its own tile and the neighboring
tiles to the left and right have completed. In each node, we use
128 tiles of size 16,000 doubles, 128 time steps per iteration
(each task advances its assigned tile 128 time steps), and 4,096
iterations.

Our second benchmark is the Smith-Waterman algorithm
that performs local sequence alignment, which is widely used
for determining similar regions between two strings of nucleic
acid sequences. In each node, use two input strings of sizes
167,040 and 172,800, divided among 4,096 tiles arranged as
64x64.

Experimental variants: The benchmark was evaluated by
comparing the following versions:

o Baseline: Non-resilient execution with async_
await with the asynchronous communi-
cation API (communication: :Isend,

communication: :Irecv).

o Replay: Resilient execution with replay::async_
await_check with the asynchronous communication
APL

o Replication: Resilient execution
replication::async_await_check
the asynchronous communication API.

To the three versions listed above, we also add variants

where we crash a process to check our runtime’s tolerance
to fail-stop errors and use the support from Fenix and MPI-
ULFM to recover.
Runtime Settings: We used the HClib-based resilient runtime
system [23] described in Section [[IT and [[V| for this evaluation.
We used GCC 8.3.0 and MPI-ULFMv4.0.2ul for compiling
and running benchmarks as well as the HClib runtime exten-
sions.

We measured weak scaling performance using up to 9 nodes
with an additional spare rank (i.e. 10 nodes in total). We
start the execution with an additional spare rank rather than
dynamically spawning during a crash because Fenix currently
does not support a new spare rank’s dynamic creation. Our
runtime does not depend on when the spare is created and

with
with



can work with both scenarios. Also, we used 32 workers per
node. The performance was measured in terms of elapsed
seconds from the start of the parallel computation(s) to their
completion.

A. Performance Numbers without failures

To show the overhead of the distributed resilient runtime,
we measured the execution time of the StencillD benchmark
using task replay and task replication resilience techniques
without failures. shows the weak-scaling numbers
with up to nine nodes. The graph shows good scalability since
the time taken for each variant across the various number of
nodes remains almost constant.

Task Replay vs. Non Resilient (Baseline) The performance of
task replay is comparable to the non-resilience variant, which
means our implementation is efficient. The small overhead
comes from the additional error checking needed for replay
and the necessary bookkeeping to collect promises with the
task so that their signaling can be delayed until error checking
succeeds.

Task Replication vs. Non Resilient (Baseline) The perfor-
mance of task replication is approximately 2x slower than the
non-resilience variant because the replication variant executes
each task two times.

Analyses of Communication Overheads

The results show good scalability for the stencil benchmark.
This is because, for each time step, all tiles (or tasks) within a
node can be executed independently, and similarly, all nodes
can also be executed simultaneously. This parallel execution is
possible because there are no dependencies within a timestep.
To get more insight into the results we analyzed them using
HPCToolkit ( [24], Fig. B), which enables sampling-based
performance measurements with low-overhead, on Cori. With
the HPCToolkit using a sampling frequency of 1kHz, we
ran the 1D stencil code with the same data size on 4 ranks
and collected its profile using the total time (REALTIME)
event. includes the performance counter numbers for
libmpi.so in the Non Resilient, Task Replay, and Task
Replication variants. Note that we report the inclusive metric in
[Table II, which means the cycles contains the value measured
for libmpi.so itself as well as costs incurred by any
functions it calls. The results show that the communication part
only accounts for 1.2-2.0% of the whole program execution,
and most of the time is spent in the 1D stencil user program
(95%), which is why we saw great weak scaling numbers.
also shows that the percentage of communication is
low on the replication variant compared to the other two.
This is because the kernel computation is doubled in the
replication variant since it executes the kernel two times,
but the communication remains the same. This increase in
kernel execution time gets reflected as a lower communication
percentage.

For the smith-waterman benchmark, we see that the execu-
tion time increases with the number of nodes. This is because
of the dependency that is present in the smith-waterman
algorithm where tile[i,j] depends on tiles tile[i-1,j], tile[i,j-1]

Communication (%)

Baseline 2.0%

Task Replay 1.9%

Task Replication 1.2%
TABLE T

THE SAMPLED REALTIME % NUMBERS FOR LI1BMPI .50 ON CORI.

and tile[i-1,j-1]. Due to this dependency, nodes that contain
tiles with higher values of i and j have to wait when their
dependencies are calculated in some earlier nodes. We did not
try to optimize this part since our focus was on incorporating
resilience, given a parallel program rather than optimizing the
parallel program itself.

B. Performance Numbers with Fail-continue Errors

To check the effectiveness of our resilience mechanisms
in the presence of soft errors, we ran the benchmarks while
injecting failures. We inject failures deterministically by in-
putting a list of specific tasks that should fail and then flipping
a deterministic bit in the tile or cube output from that task.
The bit was carefully chosen to ensure no false positives or
false negatives with checksums. Note that this is not meant to
model real failure behavior. Each task was independently given
some probability of failure in the 0.01% to 1% range. Under
replay resilience, we allowed at most two failed attempts per
unique task because that was the runtime limit; increasing
this limit would have increased the memory overhead of
replay resilience. We allowed at most one replica to fail under
replication resilience because triplication requires two out of
three replicas to agree. Under these constraints, we built up
our list of failed tasks by evaluating whether each individual
task should fail.

shows how the failure injections degrade the per-
formance of the replay and replication runtimes. We injected
errors at a rate of 1% and 10% per node. Here, X% implies
that an error is injected into X% of the total tasks per node.
The results show that the increase in execution time closely
follows the amount of failure occurred. The performance
degradation is proportional, for example around 10% with the
10% failure rate case, which is an extremely high rate in real-
world systems [25].

C. Performance Numbers with Fail-stop Errors and/or Fail-
continue Errors

To check the effectiveness of our resilience mechanisms
in the presence of hard failures, we ran the benchmarks
while crashing a process. To accomodate the process crash,
execution is started with a spare rank in reserve. We crash a
process at two points in all the three variants, namely baseline,
replay, and replication. One experimental variant introduces a
crash towards the beginning of execution, and another variant
crashes towards the middle of the execution. To add fail-
continue errors, each task is also independently given some
probability of failure in the 1% range by introducing soft errors
to the replay and replication variants. This helps us to demon-
strate that our runtime can tolerate both soft and hard failures
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together. We used a timeout (-mca mpi_ft_detector_timeout
parameter) of 3 sec for the 2-node case, 5 sec for the 4-
node case, and 10 sec for the 9-node case for the stencil 1D
experiment. The timeout values that can tolerate errors for
the given node count were empirically found by running the
experiments. In Figure 5], the timeout’s impact can be noticed
in the recovery time for early crash (blue vs. orange), which is
very low for the 2-node case, but higher for the 9-node case.
For the smith-waterman benchmark, we use a timeout value of
10 sec for all node counts. The smith-waterman benchmark has
a lower amount of communication compared to the stencil 1D
benchmark. Using a small timeout might result in MPI-ULFM
accidentally report as an error due to the smith-waterman
benchmark’s infrequent communication patterns.

We can see that recovering from a crash increases the time
by around 10 seconds for smith-waterman in [Figure 5 Also,
Fenix/MPI-ULFM runtime takes around 10 seconds to recover
in case of a crash in the current experimental setting with the
given timeout. The same pattern can be seen for the stencil
1D benchmark, such as the 2-node case taking only 3 seconds
to recover. Thus we can see that our communication runtime
does not add much overhead compared to what we can achieve
using Fenix and MPI-ULFM for recovering from a failure.
More importantly, our runtime achieves this recovery without
any compensation code from the user, thereby improving
programmer productivity.

VI. RELATED WORK

There is an extensive body of literature on software-based
resilience scheme for SPMD programs, including coordinated
checkpoint and restart (C/R). However, enabling resilience in
the AMT programming model has not yet been well studied
despite the fact that the abstraction of tasks and data in AMT
models facilitates modeling recovery patterns to enable asyn-
chronous and localized application recovery with simplicity.
For example, Subasi et al [26], [27] study a combination
of task replication/replay and checkpoint/restart for a task-
parallel runtime, OmpSs [11]. Cao et al [28] has a similar
replay model in the PaRSEC task-based runtime framework.
However, these approaches do not support resiliency across
multiple nodes.

In the context of MPI+X, where X is an AMT programming
model, one of our prior work, HiPER [21] (a.k.a HClib), offers
an MPI module that enables the composability of MPI APIs
with an AMT programming model. However, HiPER does not
support resiliency, and this paper provides a resilience module
with the HiPER runtime.

We used MPI-ULFM [16] and Fenix [18] to enable global
recovery and restart. Reinit [22], [29] is another interface that
supports global-restart recovery and provides an easier inter-
face compared to MPI-ULFM. Reinit requires modifications to
the job scheduler, which makes it hard to deploy. Reinit++ [30]
is a new design and implementation of the Reinit approach for
global-restart recovery that removes the need for application
re-deployment. We used MPI-ULFM/Fenix as our recovery
interface due to our current familiarity with them. Our runtime

can be interface with any alternatives such as Reinit++, which
can enable MPI recovery.

In summary, our approach provides a unified AMT pro-
gramming model that enables resiliency across multiple nodes
by enabling a unified execution of resilient, non-resilient, and
communication tasks in a single framework to accommodate
fail-stop and fail-continue errors.

VII. CONCLUSIONS AND FUTURE WORK

Resilience in bulk-synchronous MPI programming model
was supported using the traditional checkpoint/restart (C/R)
approach. This causes a disproportionate use of resources
by triggering global recovery even for local failures. Also,
this model worked under the assumption that a fault is a
rare event. The Asynchronous Many-Task programming model
decomposes the program into a set of tasks, thereby removing
the need for bulk synchronization. The task decomposition
also allows localization and isolation of faults in the program
thus making a recovery scalable and inexpensive. Therefore
by composing MPI with an AMT runtime we are able to
enable scalable localized fault tolerance with minimal over-
head. Additionally, in case of hard failures such as a crash,
we use the recovery mechanisms provided by MPI to recover
transparently without user intervention, thereby enhancing
productivity. During this exercise, we also identified that MPI
routines such as MPI_Issend can aid in the user’s recovery
process and hence needs to be supported in MPI-ULFM.

In the future, we would like to incorporate more commu-
nication routines other than send and receive. We want to
experiment with tuning error detection using other mecha-
nisms, for example, mpi_ft_detector_thread instead
of the timeout. We would also like to add occasional local
checkpointing so that the spare rank can start from the local
checkpoint rather than the initialization point in case of a
failure. We would also like to try with multilevel checkpointing
that can, in turn, help with creating multilevel resilient tasks.
We would also like to study the characteristics of faults in real-
world systems and use error rates and patterns accordingly.
We would also like to extend our implementation to support
recovery from multiple node failures.

ARTIFACT AVAILABILITY

https://github.com/srirajpaul/hclib/tree/feature/resilience_
mpi/modules/resilience

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration (NNSA)
under contract DE-NA0003525. This work was funded by NNSA’s Advanced
Simulation and Computing (ASC) Program. This paper describes objective
technical results and analysis. Any subjective views or opinions that might
be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

This research used resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231.



[11

2

—

[3]

[4

=

[5]

[6

—_

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

REFERENCES

C. D. Martino et al., “Measuring and understanding extreme-scale ap-
plication resilience: A field study of 5,000,000 hpc application runs,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, June 2015, pp. 25-36.

A. Moody et al., “Design, modeling, and evaluation of a scalable multi-
level checkpointing system,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC *10, 2010, pp. 1-11.

P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (blcr)
for linux clusters,” Journal of Physics: Conference Series, vol. 46, no. 1,
p- 494, 2006. [Online]. Available: http://stacks.iop.org/1742-6596/46/i=
1/a=067

F. Cappello, K. Mohror, B. Nicolae, R. Gupta, S. Di, A. Moody,
E. Gonsiorowski, and G. Becker, “VeloC,” https://veloc.readthedocs.io/
en/latest/, 2018.

J. Chung et al., “Containment domains: A scalable, efficient, and
flexible resilience scheme for exascale systems,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC "12, 2012, pp. 58:1-58:11.

H. Kaiser et al., “Parallex an advanced parallel execution model for
scaling-impaired applications,” in 2009 International Conference on
Parallel Processing Workshops, 2009, pp. 394-401.

C. Augonnet et al., “StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 2, pp. 187-198, 2011.

M. Bauer et al., “Legion: Expressing locality and independence with
logical regions,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC 12,
2012, pp. 66:1-66:11.

G. Bosilca et al., “PaRSEC: Exploiting Heterogeneity to Enhance
Scalability,” Computing in Science Engineering, vol. 15, no. 6, pp. 36—
45, Nov 2013.

A. Duran et al., “Ompss: a proposal for programming heterogeneous
multi-core architectures,” Parallel Processing Letters, vol. 21, no. 2, pp.
173-193, 2011.

A. Fernandez et al., “Task-Based Programming with OmpSs and Its
Application,” in Euro-Par 2014: Parallel Processing Workshops - Euro-
Par 2014 International Workshops, Porto, Portugal, August 25-26, 2014,
Revised Selected Papers, Part 11, 2014, pp. 601-612.

J. Bennett et al., “ASC ATDM Level 2 Milestone #5325: Asynchronous
Many-Task Runtime System Analysis and Assessment for Next Gener-
ation Platform,” Sandia National Laboratories, Tech. Rep. SAND2015-
8312, September 2015.

T. G. Mattson et al., “The open community runtime: A runtime system
for extreme scale computing,” in 2016 IEEE High Performance Extreme
Computing Conference (HPEC), Sept 2016, pp. 1-7.

S. R. Paul, A. Hayashi, N. Slattengren, H. Kolla, M. Whitlock, S. Bak,
K. Teranishi, J. Mayo, and V. Sarkar, “Enabling resilience in asyn-
chronous many-task programming models,” in Euro-Par 2019: Parallel
Processing - 25th International Conference on Parallel and Distributed
Computing, Gottingen, Germany, August 26-30, 2019, Proceedings,
2019, pp. 346-360.

F. Cappello et al., “Toward exascale resilience: 2014 update,” Super-
comput. Front. Innov.: Int. J., vol. 1, no. 1, pp. 5-28, Apr. 2014.

W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. J. Dongarra,
“Post-failure recovery of MPI communication capability: Design and
rationale,” International Journal of High Performance Computing Ap-
plications, p. 1094342013488238, 2013.

M. Gamell, K. Teranishi, E. Valenzuela, M. Heroux, and M. Parashar,
“Fenix, a fault tolerant programming framework for mpi applications,
version 00,” 10 2016. [Online]. Available: https://www.osti.gov//servlets/
purl/1336604

M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring automatic, online failure recovery for scientific applications
at extreme scales,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1EEE
Press, 2014, pp. 895-906.

B. Bouteiller, F. Cappello, T. Herault, K. Krawezik, P. Lemarinier, and
M. Magniette, “MPICH-V2: a Fault Tolerant MPI for Volatile Nodes
based on Pessimistic Sender Based Message Logging,” in Supercomput-
ing, 2003 ACM/IEEE Conference, Nov 2003, pp. 25-25.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

H. C. Edwards and B. A. Ibanez, “Kokkos’ Task DAG Capabilities,”
Sandia National Laboratories, Tech. Rep. SAND2017-10464, September
2017.

M. Grossman et al., “A pluggable framework for composable hpc
scheduling libraries,” in 2017 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW), 2017, pp. 723—
732.

I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, B. R. de Supinski,
K. Mohror, and H. Pritchard, “Evaluating and extending user-level
fault tolerance in mpi applications,” International Journal of High
Performance Computing Applications, vol. 30, no. 3, 1 2016.

“HClib Resilience Branch,” https:/github.com/srirajpaul/hclib/tree/
feature/resilience_mpi, accessed: 2019-09-03.

L. Adhianto et al., “Hpctoolkit: Tools for performance analysis of
optimized parallel programs http://hpctoolkit.org,” Concurr. Comput.
: Pract. Exper., vol. 22, no. 6, pp. 685-701, Apr. 2010. [Online].
Available: http://dx.doi.org/10.1002/cpe.v22:6

M. Gamell, D. S. Katz, K. Teranishi, M. A. Heroux, R. F. Van der Wi-
jngaart, T. G. Mattson, and M. Parashar, “Evaluating Online Global Re-
covery with Fenix Using Application-Aware In-Memory Checkpointing
Techniques,” in 45th International Conference on Parallel Processing
Workshops (ICPPW). 1EEE, 2016, pp. 346-355.

O. Subasi et al., “Designing and modelling selective replication for
fault-tolerant hpc applications,” in 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), May
2017, pp. 452-457.

——, “Nanocheckpoints: A task-based asynchronous dataflow frame-
work for efficient and scalable checkpoint/restart,” in 2015 23rd Eu-
romicro International Conference on Parallel, Distributed, and Network-
Based Processing, pp. 99-102.

C. Cao et al., “Design for a soft error resilient dynamic task-based run-
time,” in 2015 IEEE International Parallel and Distributed Processing
Symposium, May 2015, pp. 765-774.

S. Chakraborty, I. Laguna, M. Emani, K. Mohror, D. K. Panda,
M. Schulz, and H. Subramoni, “Ereinit: Scalable and efficient
fault-tolerance for bulk-synchronous MPI applications,” Concurr.
Comput. Pract. Exp., vol. 32, no. 3, 2020. [Online]. Available:
https://doi.org/10.1002/cpe.4863

G. Georgakoudis, L. Guo, and I. Laguna, “Reinit*™: Evaluating
the performance of global-restart recovery methods for MPI fault
tolerance,” in High Performance Computing - 35th International
Conference, ISC High Performance 2020, Frankfurt/Main, Germany,
June 22-25, 2020, Proceedings, ser. Lecture Notes in Computer
Science, P. Sadayappan, B. L. Chamberlain, G. Juckeland, and
H. Ltaief, Eds., vol. 12151. Springer, 2020, pp. 536-554. [Online].
Available: https://doi.org/10.1007/978-3-030-50743-5_27



