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2 Another Look at Ethernet for Scientific Workloads

• 51% of current TOP500 systems run on Ethernet

• Mellanox Ethernet revenues now exceed lnfiniband
(Mellanox Corporate Update, March 2020)

•HPE Cray Slingshot emphasizes Ethernet compatibility

• Storage, hyperscale and hyperconverged markets
overwhelmingly Ethernet-focused

• Ethernet = risk mitigation?

Interconnect Family System Share

• Gigabit Ethernet

• lnfiniband

• Omnipath

• Custom Interconnect

• Proprietary Network

• Myrinet

top500.org

•Sandia/CA unique procurement in 2017 to support network emulation
• Required high performance Ethernet to support existing tools

• See J. Floren et. al.,"A reference architecture for emulytics clusters," in Sandia Report,
vol. SAND2009-5574, 20 l 7

•Can future procurements support both network emulation alongside other
scientific computing workloads with a single high speed network?
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3 Ethernet Performance Enhancements

• Data center briclgjng (PCB) features of potential interest for scientific computing were formally
adopted to IEEE 8-02.1Q standard in 201 1

• Priority Flow Control (PFC)
• Improvement to global flow control, supports near lossless Ethernet for selected traffic priorities
• Allows Fibre Channel over Ethernet, but also other lossless protocols

• Remote Direct Memory Access (RDMA) is the defining feature of high performance networks
• Bypass OS kernel for high performance
• Typically requires lossless networl< — PFC for Ethernet
• RDMA over Converged Ethernet (RoCE) standard (IBTA) allows RDMA over Ethernet through the

encapsulation of lnfiniband pacl<ets.
• RoCE v I and v2 standards; v2 is routable; foll<lore of hardware with poor v I performance

•Enhanced Transmission Selection (ETS)
• Increased interest in Quality of Service (QoS) for optimizing performance in scientific computing installations
• ETS: weighted round-robin algorithm for Ethernet QoS



4 Previous work

• Significant previous work in these areas is outlined in full paper

• Vienne et. al. -- comprehensive comparison of QDR/FDR lnfiniband and 10/40 Gb/s RoCE, limited to
single switch

• J.Vienne et. al.,"Performance Analysis and Evaluation of InfiniBand FDR and 40GigE RoCE on HPC and Cloud Computing Systems," in 2012
-IEEE 20th Annual Symposium on High-Performance Interconnects. IEEE, 2012, pp. 48-55.

• Mubarak et. al., Savoie et. al., and Wilke and Kenny -- simulations examining QoS for HPC workloads
• L.Savoie et. al.,"A Study of Network Quality of Service in Many-Core MPI Applications," in 2018 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), 2018, pp. 1313-1322.

• M. Mubarak et al.,"Evaluating Quality of Service Traffic Classes on the Megafly Network," 2019.

• t J.Wilke and J. P. Kenny,"Opportunities and limitations of Quality-of-Service (QoS) in Message Passing fMPI) applications on adaptively routed
Dragonfly and Fat Tree networks," in 2020 IEEE International Conference on Cluster Computing (CLUSTER), 2020, in press.

• Balla et. al. used QoS to reduce RoCE latencies in the presence of interfering traffic, but did not
consider application level benchmarks

• D.Balla et. al.,"Bounded latency with RoCE," in Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos, 2019, pp. 134-135.

• Our work is distinguished by

• 100G generation hardware

• Size of testbed (9 switches, 96 nodes)

A



5 Mellanox I 00G b/s Ethernet Testbed
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•3: I tapering, should promote congestion

•Representative of typical of TOR leaf-spine designs (vs HPC)



6 Benchmarks

•Single Switch Bandwidth/Latency
• MPI point-to-point bandwidth/latency [MVAPICH2]

• lncast scanning up to I 0 streams and up to 4 source nodes [custom script driving iperf3/ib_write_bw]

•Application Proxies
• Latency-sensitive: fast Fourier transform (FFT) [subcom3d-a2a from LLNL/Chatterbug]

• Bandwidth-sensitive: halo exchange (Halo3D) [halo3d-26 from SST/Ember]

• MPI Parallel: High Performance Linpack benchmark (HPL) [UT-ICL/netlib.org]

•QoS Case Study
• FFT running with interference from Halo3D background traffic

•MPI applications run with Open MPI 4.0.4
• Easy to swap network transports and select RoCE service level

•Additional software/hardware details available in full paper and reproducibility artifact

A



Bandwidth and Latency Tests
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8 MPI Point-to-Point Bandwidth/Latency
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9 I Small/Medium Message Incast
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10 Large Message Incast
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Application Proxy Performance
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12 Latency Sensitive: FFT
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13 Bandwidth Sensitive: Halo Exchange
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•Congestion limited to ejection link (leaf to node)

•RoCE kernel bypass improves message handling

•PFC improves TCP performance
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14 MPI Parallel: HPL
P
e
r
c
e
n
t
 P
e
a
k
 F
L
O
P
/
s
 

100

80

60

High Performance Linpack Performance

40 -

20 -

63.9 63.9

71.2

TCP TCP-PFC RoCE

Rx Pause Duration Tx Pause Duration

TCP-PFC

RoCE

241264

6929284

174764

9404312

•Congestion spread throughout network

•RoCE increases congestion (unlike Halo3D)

•ManyTCP streams effectively use available bandwidth
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Managing Interference with ETS



1 6 Enhanced Transmission Selection

Shared Buffer
Pool o o o  H Buffer()

All Traffic Shares Priority Level

Shared Buffer
Pool o

h Output
IP▪ P
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Traffic on Differentiated Priority Levels

Bandwidth Consumer Packet

Latency-Sensitive Packet
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•QoS provides dedicated buffer resources and differentiated service

•Bandwidth shaping/guarantees appropriate for relatively static workloads
(commercial datacenters — storage, streaming multimedia, etc.)

•ETS provides weighted round-robin arbitration, better for dynamic
scientific applications (no hard limits, maximal bandwidth utilization)



17 Bandwidth Consumers vs Latency-Sensitive Traffic

FFT Execution Times
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•Halo3D increases FFT network delay

•Latency bottleneck shifts to switches

•RoCE kernel bypass benefit much reduced

•ETS moves FFT traffic to "front of the line"
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18 I FFT Per-Node Iteration Times (TCP)
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•Halo3D traffic throttled by protocol

•Network not stressed enough to adversely affect FFT
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19 I FFT Per-Node Iteration Times (RoCE)
RoCE
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•Halo3D traffic increases spread in FFT
iteration times

•ETS largely recovers FFT performance

■Intermittent slow down of small node
subset



20 FFT/Halo3D Pause Counters

•PFC standard clearly"allows link flow control to be performed on a
per-priority basis"

Rx0 Pause Packets Rx0 Pause Duration Rxl Pause Packets Rxl Pause Duration

TCP-PFC

RoCE

RoCE-QoS

1580102
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1581330
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23750

11488489

64270

126279

•Priority I reports pauses even without QoS enabled

•Priority I and 2 pauses are nearly identical

•Attribute QoS performance to arbitration/forwarding priority,
not differentiated pause behavior



In Conclusion
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22 Conclusions

• RoCE bandwidth and latency can be competitive with modern high performance networks

• For some workloads performance benefits vs TCP are substantial

• QoS is getting more attention in scientific computing for good reason... Ethernet can do that

• RoCE is more challenging to configure than HPC networks (but not as hard to tune as TCP!)

• Is the ecosystem mature enough?

• High-end Ethernet hardware is probably not a cost savings

Where particular device support or user demands shift requirements,
Ethernet seems viable for new general purpose scientific computing clusters.
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23 I ThankYou

Thank you to the organizers, my co-authors and the audience.

Craig, Joe, Gavin and Jerry )1)


