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2 | Another Look at Ethernet for Scientific Workloads

" 51% of current TOP500 systems run on Ethernet

Interconnect Family System Share

* Mellanox Ethernet revenues now exceed Infiniband Py
(Mellanox Corporate Update, March 2020) @ infiniband

Omnipath
@ Custom Interconnect
@ Proprietary Network
@ Myrinet

"HPE Cray Slingshot emphasizes Ethernet compatibility

" Storage, hyperscale and hyperconverged markets
overwhelmingly Ethernet-focused

top500.0rg

" Ethernet = risk mitigation?

=Sandia/CA unique procurement in 2017 to support network emulation
" Required high performance Ethernet to support existing tools

= See |. Floren et. al.,“A reference architecture for emulytics clusters,” in Sandia Report,
vol. SAND2009-5574,2017

"Can future procurements support both network emulation alongside other
scientific computing workloads with a single high speed network?



3 | Ethernet Performance Enhancements

adopted to IEEE 802.1Q standard in 201
" Priority Flow Control (PFC)

" Improvement to global flow control, supports near lossless Ethernet for selected traffic priorities

= Data center brid inglg)CB) features of Fotential interest for scientific computing were formally |
= Allows Fibre Channel over Ethernet, but also other lossless protocols |

= Remote Direct Memory Access (RDMA) is the defining feature of high performance networks
= Bypass OS kernel for high performance

= Typically requires lossless network — PFC for Ethernet

= RDMA over Converged Ethernet (RoCE) standard (IBTA) allows RDMA over Ethernet through the
encapsulation of Infiniband packets. I

= RoCE vl and v2 standards; v2 is routable; folklore of hardware with poor vl performance

sEnhanced Transmission Selection (ETYS)
" Increased interest in Quality of Service (QoS) for optimizing performance in scientific computing installations

= ETS: weighted round-robin algorithm for Ethernet QoS



4 | Previous work

" Vienne et. al. -- comprehensive comparison of QDR/FDR Infiniband and 10/40 Gb/s RoCE, limited to
single switch

" {.Vienne et. al.,“Performance Analysis and Evaluation of InfiniBand FDR and 40GigE RoCE on HPC and Cloud Computing Systems,” in 2012
EEE 20th Annual Symposium on High-Performance Interconnects. [EEE, 2012, pp. 48-55.

= Mubarak et. al., Savoie et. al., and Wilke and Kenny -- simulations examining QoS for HPC workloads

= | .Savoie et.al.,“A Study of Network Quality of Service in Many-Core MPI Applications,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2018, pp. 1313—1322.

= M. Mubarak et al.,“Evaluating Quality of Service Traffic Classes on the Megafly Network,” 2019.

= |.J.Wilke and J. P. Kenny, “Opportunities and limitations of Quality-of-Service (QoS) in Message PassinééMPl) afglications on adaptively routed

ragonfly and Fat Tree networks,” in 2020 |EEE International Conference on Cluster Computing (CLUSTER),

= Significant previous work in these areas is outlined in full paper |
20, in press.

consider application level benchmarks
= D.Balla et. al.,“Bounded latency with RoCE,” in Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos, 2019, pp. 134—135.

" Our work is distinguished by
= |00G generation hardware

= Balla et. al. used QoS to reduce RoCE latencies in the presence of interfering traffic, but did not I
= Size of testbed (9 switches, 96 nodes) |



Mellanox 100Gb/s Ethernet Testbed

LI EEEERRRPRE 12| [18}f---------- 24| [25f---------- 36| |87 ---------- 48 |
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SN2100 (16-port) )

4x 100 Gb/s

SN2700 (32-port)
4x 100 Gb/s

(SN2100 (16-port) (SN2100 (16-port) ) (SN2100 (16-port) )  (SN2100 (16- port) )
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=3:| tapering, should promote congestion

=Representative of typical of TOR leaf-spine designs (vs HPC)




6

=g

Benchmarks

= MPI point-to-point bandwidth/latency [MVAPICH2]
" Incast scanning up to |0 streams and up to 4 source nodes [custom script driving iperf3/ib_write_bw]

= Application Proxies
= Latency-sensitive: fast Fourier transform (FFT) [subcom3d-a2a from LLNL/Chatterbug]

= Bandwidth-sensitive: halo exchange (Halo3D) [halo3d-26 from SST/Ember]
= MPI Parallel: High Performance Linpack benchmark (HPL) [UT-ICL/netlib.org]

=Single Switch Bandwidth/Latency I

®QoS Case Study

= FFT running with interference from Halo3D background traffic

=MPI applications run with Open MPI 4.0.4

= Easy to swap network transports and select RoCE service level

= Additional software/hardware details available in full paper and reproducibility artifact
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8 | MPI Point-to-Point Bandwidth/Latency

MPI Large Message Bandwidths MPI Small Message Latencies
1 97.6 97.3 15 - 14.44
100 13.72
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9 | Small/Medium Message Incast
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Large Message Incast
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12 | Latency Sensitive: FFT

e FFT Average Iteration Times
0.41 0.37 0.37

o _ Rx Pause Duration | Tx Pause Duration
E .
g TCP-PFC 0 0
F 0.2 RoCE 0 0

0.11 0.07

0.0 -

TCP

TCP-PFC RoCE

* No congestion, RoCE latency is a big win




Bandwidth Sensitive: Halo Exchange

Halo3D Average Iteration Times

4.70 _ Rx Pause Duration | Tx Pause Duration

TCP-PFC 6602760
RoCE 120121 0

0.88

TCP TCP-PFC RoCE

"Congestion limited to ejection link (leaf to node)
"RoCE kernel bypass improves message handling

"PFC improves TCP performance




14 | MPI Parallel: HPL

100 High Performance Linpack Performance

_ Rx Pause Duration | Tx Pause Duration

801 . TCP-PFC 241264 174764

63.9

RoCE 6929284 9404312

60 -

40 -

Percent Peak FLOP/s

20

TCP TCP-PFC RoCE

"Congestion spread throughout network
"RoCE increases congestion (unlike Halo3D)

"Many TCP streams effectively use available bandwidth
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16 1 Enhanced Transmission Selection

Shargdoguffer - - - - . . - | Buffero - - - Output

All Traffic Shares Priority Level

L3 - - - Output
Buffer1 -

T [0 [o][o][o] [o] [0]

Traffic on Differentiated Priority Levels

- Bandwidth Consumer Packet

| ! sency Secsitue Peoiel *QoS provides dedicated buffer resources and differentiated service

»Bandwidth shaping/guarantees appropriate for relatively static workloads
(commercial datacenters — storage, streaming multimedia, etc.)

"ETS provides weighted round-robin arbitration, better for dynamic
scientific applications (no hard limits, maximal bandwidth utilization)

)




17 I Bandwidth Consumers vs Latency-Sensitive Traffic

FFT Execution Times

BN FFT
7 6.64 B FFT (Halo3D Background)

"Halo3D increases FFT network delay

5.9g 6.12

5.46
"L atency bottleneck shifts to switches

(9]
1

"RoCE kernel bypass benefit much reduced

Execution Time (s)
S

w
1

"ETS moves FFT traffic to “front of the line”

TCP TCP-PFC RoCE RoCE-QoS




18 | FFT Per-Node Iteration Times (TCP)
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"Halo3D traffic throttled by protocol

*Network not stressed enough to adversely affect FFT




19 | FFT Per-Node Iteration Times (RoCE)
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0.0010

"ETS largely recovers FFT performance
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20 | FFT/Halo3D Pause Counters

"PFC standard clearly “allows link flow control to be performed on a
per-priority basis”

_ Rx0 Pause Packets Rx0 Pause Duration | Rx1 Pause Packets Rx1 Pause Duration

TCP-PFC 1580102 11477936 1581330 11488489
RoCE 14312 64272 14312 64270
RoCE-QoS 23750 126279 23750 126279

"Priority | reports pauses even without QoS enabled
"Priority | and 2 pauses are nearly identical

s Attribute QoS performance to arbitration/forwarding priority,
not differentiated pause behavior
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In Conclusion




22 | Conclusions

» RoCE bandwidth and latency can be competitive with modern high performance networks

" For some workloads performance benefits vs TCP are substantial

" QoS is getting more attention in scientific computing for good reason... Ethernet can do that
" RoCE is more challenging to configure than HPC networks (but not as hard to tune as TCP!)
" |s the ecosystem mature enough!?

" High-end Ethernet hardware is probably not a cost savings

Where particular device support or user demands shift requirements,
Ethernet seems viable for new general purpose scientific computing clusters.



23 | Thank You

Thank you to the organizers, my co-authors and the audience.




