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Abstract Microstructure reconstruction is a long-standing problem in experimental and computational materials science, for which
5 numerous attempts have been made to solve. However, the majority of approaches often treats microstructure as discrete phases,

which in turn, reduces the quality of the resulting microstructures and limits its usage to the computational level of fidelity, but not
the experimental level of fidelity. In this work, we applied our previously proposed approach [U] to generate synthetic microstructure
images at the experimental level of fidelity for the UltraHigh Carbon Steel DataBase (UHCSDB) [13].

1 Introduction

10 Microstructures are a crucial link between process and property, encoding nearly all information related to the processes used to
manufacture the specimen. However, microstructures are naturally complicated to study due to its spatial stochasticity, which varies
from one location to another, within certain bounds, usually referred to as aleatory uncertainty. This, in turn, leads to the concept
of statistically equivalent microstructure, where the microstructure features are either deterministically or statistically measurable
by microstructure descriptors, which are the key enablers for microstructure reconstruction and generation problems. While most of

15 microstructure reconstruction and microstructure generation problems are already very well solved in the context of computational
materials science, only a few attempts to generate and reconstruct microstructures that are equivalent to experimental level, such as
images obtained from using scanning electron microscope, have been made.

Microstructure reconstruction and generation at the experimental level are high-fidelity, because images are represented in either
RGB or grayscale. It is fairly straightforward to threshold a RGB or grayscale image to produce a computational microstructure,

20 which is a usual representation of phase-based microstructures for integrated computational materials engineering (ICME) workflow.
However, it is nearly impossible to perform an inverse threshold to convert a binary or any phase-based microstructure back to a RGB
or grayscale image, which is often a product of scanning electron microscope (SEM) or transmission electron microscope (TEM).
The problem of microstructure reconstruction and microstructure generation at the level of experiment is mainly unsolved. However,
its importance is found due to the scarcity of experimental materials data, which is well-known to be resource-intensive, i.e. human

25 labor, time, and money [2].
There are mainly two approaches for this problem: the first one is based on machine learning (ML) / deep learning (DL) techniques,

whereas the second one is based on conventional image processing techniques, which does not employ DL. While DL has been
touted as a revolutionary technique to solve many problems, the lack of data repositories for experimental microstructures poses
a significant challenge towards the adoption and application of DL in materials science in general. Notably, convolutional neural

30 networks (CNN), including generative adversarial network (GAN) [Mt are among popular choices for DL.
For example, Bostanabad [5] adopted VGG19 [36] to reconstruct 3D microstructure from 2D images using transfer learning. Iyer

et at. [2A] employed an auxiliary classifier Wasserstein GAN with gradient penalty to generate microstructure from UHCSDB, which
is the same dataset considered in this work. Singh et al. [3il] used Wasserstein GAN to generate and reconstruct microstructure with
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binary phases. DeCost et al. [E12] applied VGG16 and t-SNE T51] to visualize microstructure on their latent manifold space.
35 DeCost et al. [riA applied a pre-trained VGG16 [Ri] for deep semantic segmentation in the same UHCSDB dataset. Ling et al. [291]

also used VGG16 to extract features for SEM images between different datasets in the hope of generalization and interpretation.
Li et al. [2s] employed an auto-encoder (AE) approach to generate microstructures. Chun et al. [1111] employed GAN to generate
microstructures and showed that GAN is able to generate better quality images compared to AE, which is a well-known problem in
computer vision. Mosser et al. [12] proposed a GAN to generate microstructure. Cang et al. [7, 8] employed deep belief network

40 in reconstructing binary microstructure. Bostanabad et al. [61] proposed a tree-based ML technique for 2D stochastic microstructure
reconstruction based on classification trees.

Zichenko [54] proposed an isotropic algorithm for random close packing of equisized spheres with periodic boundary conditions.
Groeber et al. [23, 2E, gg] proposed an automatic statistical framework to characterize [2E] and to create statistically equivalent
synthetic microstructures [22]. Fullwood et al. [13, LB] proposed a phase-recovery algorithm based on two-point correlation statistics

45 to reconstruct the microstructure. Latief et al. [25] suggested a stochastic geometrical modeling approach to generate a it-CT images
of Fontainebleau sandstone. Staraselski et al. [B] demonstrated the application of two-point correlation function in constructing 3D
representative volume element. Feng et al. [i 7] proposed a stochastic microstructure reconstruction for two-phase composite materials
based on nonlinear transformation of Gaussian random fields that matches the marginal probability distribution function and the
two-point correlation function. Chen et al. [9] employed simulated annealing method to reconstruct 3D multiphase microstructure

50 and demonstrated with 2D and 3D reconstruction with three-phase sandstone. Xu et al. [52, 53] proposed a descriptor-based
methodology using multiple microstructure descriptors as evaluation criteria to reconstruct 3D microstructure. Chen et al. [1 01
proposed a multiscale computational scheme to stochastically reconstruct the 3D heterogeneous polycrystalline microstructure from
a single 2D electron back-scattered diffraction (EBSD) micrograph. Li et al. [27, ri.:1] conducted a comparison study on the effects of
multiple objectives in the microstructure reconstruction problem.

55 In this paper, we adopt our previous approach [43], which is extended based on Newson et al. [I3_41], using non-local patch-based
image inpainting to produce texturally coherent microstructures and demonstrate its usage on UHCSDB [i3]. The remaining of
the paper is organized as follows. Section g presents the image inpainting methodology that is extensively used as a basic tool in
this work. Section presents the numerical demonstration on the publicly available UHCSDB dataset [13]. Section 4 discusses and
concludes the paper.

oo 2 Image inpainting

The algorithm for image inpainting is described in details from our previous work
[43], where we augment the algorithm from Newson et al. [Eg] for solving mi-
crostructure inpainting problems. For the sake of completeness, we briefly sum-
marize the algorithm here. This line of research has been gradually developed and

65 improved over years F13, IL, ER, where the PatchMatch algorithm [3] was employed
to accelerate the nearest neighbor search. Figure shows a schematic of the image
inpainting problem, where image patches are denoted as gray squares, 14 is the
occluded region to be inpainted, and D is the unoccluded region.

In patch-based inpainting approach, we fill in the missing region patch-by-patch
70 by looking for well-matching replacement patches in the unoccluded part of the

image and copying them to corresponding locations. In other words, let u be the
image content and IflIp be the image patch at position p, we find the map 0 that
locates its nearest neighbor Wp_Fcb(p), i.e., image patch in D that is most similar to
I/17p . We need to do this for every position p in therefore, the image reconstruction

75 problem involves minimizing

E(u, 0) = E d2(Wp,Wp+O(p)).
p ET(

Here, d is a distance function formalizing the similarity between patches, [N, M]. Unfortunately, ®) is an nonconvex, NP-hard
optimization problem. To overcome this challenge, we adopt an iterated alternating approach. Specifically, we break the minimization
of (1) into two separate minimization problems with respect to the shift map 0 and the image content u, which are solved alternatively

Fig. 1: Schematic of image inpainting problem,
where the patches can be unoccluded, partially
or completely occluded. Reprinted with per-
mission from [43].

(1)



2D microstructure reconstruction for SEM via non-local patch-based image inpainting 3

in iterations (see Algorithm 1). These two problems correspond to a nearest neighbor search and an image reconstruction process
80 accordingly.

For the nearest neighbor search, as in [M], only approxi-
mate, instead of exact, nearest neighbors (NN) are computed,
due to the demanding cost of the later one. We use PatchMatch
algorithm by Barnes et al. [3] for this goal. The process is ini-

85 tialized by randomly assigning each occluded pixel a candidate
nearest neighbor in the unoccluded region. Then, for each it-
eration, each pixel is visited in lexicography order (on even
iterations) and in inverse lexicography order (on odd iterations).
At each pixel, we perform two operations for improving the shift

90 map 0. First, we check the nearest neighbors of the adjacent pix-

Algorithm 1 Minimization of E(u, 0) via iterated alternating approach.
Reprinted with permission from M.

Input: Initial guess up and tolerance T > 0
Output: Inpainted image uk+1
1: repeat
2: Oic arg min E(uk , 0)

0
3: uk +1 arg min E(u, 0k)

4: k k + 1
5: until 11(.4+1 — uk 11 < T

// Nearest neighbor search

// Image reconstruction

els for better candidate nearest neighbor of the current pixel; and
second, we look for better nearest neighbor at random in an increasingly small window around the current nearest neighbor. For more
details, the readers are referred to the seminal work on PatchMatch algorithm [3]. The PatchMatch pseudo-code for minimization
with respect to 0 is given in Algorithm g and can also be found in [3, U].

For the image reconstruction, we reconstruct each pixel in the occluded area using a weighted mean scheme, initially proposed
by Wexler et al. Mt In particular, given fixed shift map 0, the pixel at position p E 14 is assigned the color value

u 
Eq€N„ squ(P + 0(0) 

(p) = , V p E 
q Sil';

95 where Np is the patch neighborhood of p and the weight sPq is indicated by the ANN of Wq, sPq = exp(—d2(Wq, Wq+04))/(2cr2)).
Finally, since microstructure images often have structures of different sizes, ranging from large objects to fine scale textures and

details, our microstructure reconstruction problem is inherently multiscale. We finish the patch-based inpainting with a multiscale
scheme, [51, Ell IA M]. Here, we sequentially apply the inpainting scheme on an image pyramid, starting at the coarsest scale.
The result at each scale is upsampled and used as initialization for the next finer scale. We adopt the algorithm of Newson et al.

100 [i4], which upsamples the shift map rather than the image content, and tunes the pyramid level according to the patch size and the
occlusion size. For more details, we refer the interested reader to [LE, 431].

3 Applications on UHCSDB database

(2)

In this section, we demonstrate the application of our aforementioned method to the UHCSDB [13]. Scikit-image Python package
[®] is used to create a series of occlusion images, in concert with the inpainting implementation from Newson et al. PA to solve

105 the original image inpainting. We note that the current implementation is limited to execute sequentially on one processor, thus
hindering the possibility of parallelism on high-performance computing platforms. The patch size parameter is also noted to have a
strong effect on the computational time; that is, larger patch is associated with longer computational time. The culprit of the patch
size parameter is described in lines 12, 15, and 16 in Algorithm 2, mainly due to the computation of patch distance, d(•, .), which
compares the values of pixels to pixels. Because the patch area scales as the square of the patch size parameter, the computational

110 cost grows at least quadratically, which suggests a trade-off between efficiency and effectiveness in using inpainting method. To
pre-process UHCSDB, original micrographs are cropped to eliminate the annotations, legends, as well as other metadata information,
while retaining only the pure images. After cropping, the dimension of each micrograph is 484 pixel x645 pixel. The dimension is
consistent across the whole dataset after the pre-process.

To rigorously quantify the effectiveness of the inpainting algorithm, the occluded regions 14 are randomly created with as
115 an ellipse with random major and minor dimensions, as well as orientation, which are shown as green ellipses. Figure g shows

the comparison between original (left column) and reconstructed (right column) microstructures, respectively, for microstructures
#35, #1098, #1294, and #1633. Figure shows the comparison between original (left column) and reconstructed (right column)
microstructures, respectively, for microstructures #1718, #1561, #1457, and #36. The texture in reconstructed microstructure is
continuous between the occluded D and unoccluded regions 1-t. The difference within the occluded regions between original and

120 reconstructed microstructures is obvious when comparison is shown. Without the comparison, it is visually indistinguishable and
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(a) Orig. #35.

(c) Orig. #1098.

(e) Orig. #1294.
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(g) Orig. #1633.
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(b) Recon. #35.

(d) Recon. #1098.

(f) Recon. #1294.
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Fig. 2: Image inpainting for microstructure reconstruction. The difference is the region highlighted by the green border. Patch size
of 7 pixel is used in this figure.
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(a) Orig. #1718.

(c) Orig. #1561.

(e) Orig. #1457.

(g) Orig. #36.
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(b) Recon. #1718.

(d) Recon. #1561.

(f) Recon. #1457.

• _.- -- - **. - f...., 1...P .V. T" -- 7 ?
..„......,...k.,_ AN, ,

1_7 ' -. C '"1-- ' i------44,- ' ' -. r  • ..,

-71
Recon. #36.

Fig. 3: Image inpainting for microstructure reconstruction. The difference is the region highlighted by the green border. Patch size
of 3 pixel is used in this figure.
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difficult to classify if the microstructures are indeed real or fake, even for human experts. This highlights the impact of our inpainting
algorithm to generate synthetic microstructures. Besides GAN, which is known to generate high-quality synthetic microstructure,
our method provides an alternative option, without resorting to DL techniques.

4 Discussion and Conclusion

125 In this paper, a microstructure recon-
struction framework is applied based
on our previous work [43] and the im-
age inpainting algorithm of Newson
et al. [4], which extensively uses the

120 PatchMatch algorithm from Barnes
et al [3]. It is noteworthy that our ap-
proach does not suffer from the lack
of data, which is a common problem
in experiments, particularly for ex-

135 perimental materials science. flow-
ever, this does not mean to compete
with and to be viewed as alterna-
tives for ML/DL approaches, such
as GAN and AE, for microstructure 13:

140 generation and reconstruction prob- 14:

lems. Rather, we would like to view it 15:
as a complementary approach, which 16:

can further make it easier to apply
ML/DL to bridge the gap between

145 small and big data, as ML/DL tech-
niques are well-known to be data-
hungry. Intuitively, it is equivalent to bootstrapping method in statistics, because the patches are drawn within the limited dataset D ,
thus samples and microstructure features are reused.

The inpainting algorithm plays an important role in generating statistically equivalent microstructures. To this end, UQ is utilized
150 in materials science [2] to ensure that both aleatory and epistemic uncertainty are rigorously quantified. While two-point statistics

and principal component analysis are among most popular choices for quantifying uncertainty associated with microstructures, it
is noted that other methods also exist, such as intervals [461, sparse grid [ Gaussian process regression [ „ , 411], with
applications to other ICME models and simulations. Inverse problems in process-structure [41] and structure-property linkages [47]
have also been explored for UQ where a single forward ICME model is considered. For multiple ICME models, multi-fidelity

155 approaches [35, 43] remain a viable option for coupling multi-physics ICME models which share some common entities.
For the microstructure reconstruction in this paper, we note that small patch size parameter is good at boundary refinement, which

in turn is used to ensure the microstructural continuity between the occluded and unoccluded regions. Large patch size parameter is
typically used for outpainting problems in order to avoid excessive repetition of patches. Within the scope of this study, large patch
size parameter is not considered.

160 Compared to prior works [23, II, 22], the image inpainting method in this paper can generate microstructures at the same fidelity
of the experiments, which are the state-of-the-art in microstructure reconstruction and generation, beside ML/DL approaches. It
should be also noted that there is a similar feature in the Adobe Photoshop commercial package, which is widely used in microscopy,
which allows image inpainting as well. This proprietary implementation of the PatchMatch algorithm is known as "content-aware
filr operation [4] in the Adobe Photoshop package. Due to the license constraint, we did not compare the performance between our

165 algorithm and the Adobe Photoshop package.

Algorithm 2 Approximate nearest neighbor (ANN) search using PatchMatch 13, Mt Reprinted with
permission from FM

Input: Current image u, occlusion 11, number of iteration J
Output: Shift map 0
1: <— randomly initialize the shift map
2: (pn), n = 1, <— lexicography ordering of the pixels in
3: for j = 1, . . J do
4: for n = 1, . . .,11-11 do
5: if j is even then
6:
7:
8:
9:
10:
11:
12:

P Pn // visit the occluded pixels by lexicography order
a p - (0, 1), b p - (1, 0) // check adjacent (up and left) pixels

else
P Prnl-n+1
a<—p+(0,1), b<—p+(1, 0) // check down

end if
q arg min d(Wp,Wp+O(r))

rE{p,a,b}

0(p) <— 0(q)
/ / Random search for better NNs around the current one
S <— Generate set of random 2D vectors around 0(p)
t arg min d(Wp, Wp+r)

rEsulcpil
17: 0(p) <— t
18: end for
19: end for

// visit the occluded pixels by inverse order
and right pixels

// update candidate for NNs of current pixel

!1:1 !El
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