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Abstract Process-structure linkage is one of the most important topics in materials science due to the fact that
virtually all information related to the materials, including manufacturing processes, lies in the microstructure itself.
Therefore, to learn more about the process, one must start by thoroughly examining the microstructure. This gives rise
to inverse problems in the context of process-structure linkages, which attempt to identify the processes that were used
to manufacturing the given microstructure. In this work, we present an inverse problem for structure-process linkages
which we solve using asynchronous parallel Bayesian optimization which exploits parallel computing resources. We
demonstrate the effectiveness of the method using kinetic Monte Carlo model for grain growth simulation.

1 Introduction

Process-structure-property linkages are the hallmarks of materials science, to which numerous efforts in experiments,
theoretical models, computational simulations, and machine learning have been made to establish the relationship N.
Since the Materials Genome Initiative [M] has been introduced to reduce the development time for new materials,

5 machine learning has emerged as one of the most potential solutions to reduce experimental and computational
efforts. Many integrated computational materials engineering (ICME) models and simulations 4, E111, EIA have been
introduced and developed to simulate experiments as forward prediction computational toolboxes, the materials
design should be addressed from the inverse problem perspective [21, EL, 1131. In this regard, microstructure is often
bypassed, and the process-structure-property is then shortened to process-property linkage by ignoring the materials
microstructure. However, it is often considered that microstructure is the great source of information, containing
most, if not all, process-related information. Here, we applied our previous framework in solving inverse problem of
structure-process linkages using asynchronous parallel Bayesian optimization (BO) on high-performance computing
(HPC) platform. The problem statement can be succinctly described as follows. Given a microstructure and a
predictive ICME model which allows simulations of the process-structure linkage, determine the process(es) and

15 the associated processing parameters that were used to produce the given microstructure. We also assume that the
manufacturing processes are parameterizable using continuous, discrete, and random variables.
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Numerous studies have been conducted to optimize one or multiple materials properties, which are directly related
to materials performance. Typical approaches often treat materials properties as scalar outputs, where manufacturing
processes can be parameterized by either discrete or continuous variables. Recent advanced studies also include

20 random variables to incorporate uncertainty quantification (UQ). Most commonly used methods are bio-inspired
heuristic optimization methods, such as genetic algorithms, particle swarm optimization algorithms, and surrogate-
based optimization methods, such as Bayesian optimization algorithms [WE, 132] , which is based on Gaussian process
regression (GPR). In our previous work [Z7], we proposed asynchronous parallel BO, which is adopted to solve the
grain growth problem in this paper.

25 While BO has been extensively used in literature, our approach [21] significantly leverages the computational
effort in minimizing the wall-clock time deployment for computationally expensive simulations, by smartly submit-
ting and retrieving results in an asynchronous manner, where the number of simulations queried is user-defined. For
those with large computational resources, this framework allows one to run more simulations with different inputs
and converge quicker with at least a factor of V7B speedup, where B is the batch size. In this BO framework, the

30 single-objective is scalarized from multiple objectives, where each objective measures the deterministic or statistical
difference between the candidate and target microstructures. To measure the difference, we employ a number of
microstructure descriptors, where the majority are statistical microstructure descriptors, such as grain size distribu-
tion, chord-length distribution, etc. The objective function can be regarded as the statistical metrics between two
probability density functions (pdfs) of the same microstructure descriptors, applied on the target and candidate

35 microstructures, respectively.

2 Methodology

In the context of process-structure-property linkages in materials science, process is usually referred to manufacturing
process(es) and is often characterized by an exhaustive description to elaborate the procedure to produce a specific
material, which in turns can be parameterized using continuous and discrete variables. In this regard, it is conventional

40 to treat manufacturing process as deterministic variables, as they exhibit some sort of controllable behaviors that
can use to reproduce the same materials. Structure, which is usually referred to microstructures, which is well-known
to exhibit inherent randomness, for example, spatial variation on the same specimen. As such, it is conventional to
characterize microstructure using an exhaustive set of microstructure descriptors to rigorously quantify the bound
of these random behaviors. To this end, it is reasonable to treat microstructure descriptors as either deterministic or

45 statistical variables.

2.1 Problem formulation

In the asynchronous parallel BO workflow for process-structure linkage, the inputs are the parameterized processing
parameters, and the output is the scalarized single-objective in solving the multi-objective optimization problem. For
each proposed candidate microstructure, which is the output of the predictive ICME model coupling process-structure

50 linkage that corresponds to the proposed input parameter, we applied the conditional microstructure descriptors
on the target and candidate microstructures, respectively, to produce a set of probability density functions (pdfs)
of conditional microstructure descriptors. We then use statistical functions to numerically measure the difference
between two pdfs, which represents an objective in the multi-objective optimization problem. Multiple objectives
can then be scalarized using the augmented Tchebycheff function. Each of the following subsections describes a key

55 component of this BO workflow.



Bayesian optimization for inverse structure-process linkages 3

2.2 Materials characterization by microstructure descriptors

Microstructure are inherently random, varying spatially from one location to another on the same specimen. The
usage of microstructure descriptors on a sufficiently large microstructure to reduce bias is a well-known technique for
computational characterization of microstructure. There are two types of microstructure descriptors: deterministic

60 and statistical. Deterministic microstructure descriptors includes, but are not limited to, volume fraction, total surface
area, number of cluster, number of grains, etc. Statistical microstructure descriptors are more commonly used and
represented in the form of probability density function, which includes, but are not limited to, equivalent radius
distribution, compactness distribution, aspect ratio distribution, etc.

To compare between two microstructures quantitatively and measure how far they are away from each, one
65 needs to impose many microstructure descriptors, including both statistical and deterministic. The microstructure

descriptors must be able to distinguish one microstructure from another, quantitatively. Because of the stochastic
nature of microstructure, the statistical microstructure descriptors are used more often than the deterministic ones.
Suppose that there are s microstructure descriptors, denoted as {c/i}:=1. Given a microstructure, one can collect a
population of grains, and subsequently build a statistics on the grain population with a probability density function

70 representation. For example, one can (i) compute the grain area for each grain in the microstructure, (ii) collect
all the observations, and (iii) approximate the probability density function of the observational grain areas of the
microstructure.

2.3 Measures of differences between microstructures via microstructure descriptors

While both deterministic and statistical microstructure descriptors are very useful in characterize materials, they
75 could be numerically ill-conditioned. In other words, to compare microstructures, one may impose other conditions to

highlight the difference between target and candidate microstructures. If applied, such conditions would leverage the
typical microstructure descriptors to the conditional microstructure descriptors, which only compare the difference
between two microstructures if the condition is satisfied. For example, if the dominant grain population is very small,
one may need to ignore the small grain population and compare only the larger grain population, which can be easily

80 applied by thresholding. Such problems are fairly common in practice, such as in additive manufacturing via powder
bed fusion.

If the microstructure descriptor is statistical and can be represented as a probability density function, some
statistical metrics and divergences, for example, Wasserstein distance and Kullback-Leibler divergence, can be utilized
to measure the difference between probability density functions. A list of statistical metrics is briefly discussed in [3,
T7I, [61]. We note that using statistical moments to characterize a probability density function is a poor approach due
to numerically ill-conditioned of moments [CIA] . In particular, if the Kullback-Leibler divergence is utilized to measure
the statistical difference SO, then the statistical difference between microstructures for a specific microstructure is
computed as

S (dlcandidateMs) , pp(dItargetMs)) = KL (dItargetMs) p (dlcandidateMs)

= f r (dltargetMs) log (  
PD(dItargetMs)  ) ad , (1)

PD(ClIcandidateMs)

where KL(.) denotes the Kullback-Leibler divergence and d is the microstructure descriptor.
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2.4 Objective functions

The differences between these microstructure descriptors are then considered as the objective functions, i.e.

yi = sa (pD, (di ItargetMs), p IcandidateMs)), i = s where the goal is to minimize s objectives, {m}:=1,

simultaneously. It is noteworthy that these objective functions are typically noisy due to the fact that the microstruc-
ture considered is within finite domain, thus bias can be reduced but cannot be eliminated. As a result, one can
regard that our framework [Z71] formulates the inverse problems in structure-property as a multi-objective optimiza-
tion problem, where BO is used.

90 2.5 Asynchronous parallel Bayesian optimization framework

In our previous work, we have extended the traditional Bayesian optimization framework into synchronously batch-
sequential parallel Bayesian optimization [28] for constrained optimization problems, called pB0-2GP-3B, where
the constraints are generalized to cover a broad spectrum of applications by considering both known and unknown
constraints. We deployed a further improved implementation of pB0-2GP-3B, called aphBO-2GP-3B [213], to asyn-

95 chronously parallelize on the high-performance computing environment with multiple acquisition functions consid-
ered. A brief description of BO is provided in the remainder of this section. Interested readers are further referred
to our BO previous work [2g, &I, 215].

Assume that f is a function of x, where x E X is a d-dimensional input, and y is the observation. Let the dataset
D = (xi, yi)21, where n is the number of observations. A GP regression assumes that f = fi,„ is jointly Gaussian,

100 and the observation y is normally distributed given f ,

flx ylf,a2 —Ar(f,0-2-1), (2)

where 772, := p(xj) and K 7, := k(x, , x 3). The covariance kernel K is a choice of modeling covariance between inputs.
At an unknown sampling location x, the predicted response is described by a posterior Gaussian distribution, where
the posterior mean is

and the posterior variance is

An(X) = PO* k(x)T + 0-2 1)-1 (3)

= k(x, x) — k(x)T (K + cr2 1)-1 k(x), (4)

105 where k(x) is the covariance vector between the query point x and xl.n. The classical GP formulation assumes
stationary covariance matrix, which only depends on the distance r = 11X — 11. While numerous kernels have been
used in the literature, we focus on squared exponential kernel in this work. Optimizing the log-likelihood function
yields the hyper-parameter B at the computational cost of 0(n3) due to the cost to compute the inverse of the
covariance matrix.

110 The acquisition function for probability of improvement (PI) [®] is defined as

api (x; fx, 0) = 0(7(x)), (5)

where 7(x) indicates the deviation away from the best sample. The acquisition function for expected improvement
(EI) scheme [I1 11, 12, 2, 221 is defined as

aEI(x; {xi, yi}li\r=1, 0) = f(x; {x yi}li\r=1, 0) • (7 (x).1'(- Y (x)) + 0(7 (00)

The acquisition function for the upper-confidence bounds (UCB) scheme [23, 2A is defined as

(6)
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aUCB(ge; faCi, yi LI:v-1, 0) = 12(x; {xi, 8) + Kci-(x; {xi, yjn, 0), (7)

where lc is a hyper-parameter describing the acquisition exploitation-exploration balance.
115 Multi-objective optimization problems are typically solved by converting a multi-objective problem to a single-

objective problem, where the single objective is a weighted sum of multiple objectives [A. While there is no re-
striction on the optimization method that can be used to minimize the difference between the candidate and the
target microstructures, in this work, we use the aphBO-2GP-3B BO framework, which is an asynchronously parallel
constrained multi-acquisition BO algorithm to further improve its efficiency on HPC platforms. The aphBO-2GP-3B

120 subdivides the computational budget into three batches, supported by two GPRs. One GPR is used to model the
objective function, whereas another GPR is used as a probabilistic binary classifier for hidden constraints. The first
batch focuses on optimizing the objective functions by sampling at the locations where the acquisition function value
of the Bayesian optimization is maximized. The second batch focuses on the exploration, by sampling at the locations
where the posterior variance is maximized. The third batch focuses on the feasibility classification to learn hidden

125 constraints from the optimization problem. The acquisition function is sampled with probabilities exponentially
scaled with rewards, in the same manner with GP-Hedge algorithm [7].

3 Case study: kinetic Monte Carlo simulation

In this section, we demonstrate the applicability of asynchronous parallel BO in solving the inverse problem in
process-structure linkages using kinetic Monte Carlo with numerical temperatures. Similar to the second case studies

130 in our previous work [21, in this example, we set a different numerical temperature with kBT, = 0.85.

3.1 Kinetic Monte Carlo simulation

The details of temperature-dependent kMC simulation for grain growth and its implementation in Sandia/SP-
PARKS [1151, EL6] is described in Garcia et al [5], and is summarized here for the sake of completeness. In the grain
growth simulation, the Potts model [33] is used to simulate curvature-driven grain growth. The Arrhenius equation

135 describes the relationship between grain boundary mobility and temperature and the Metropolis algorithm is used
to determine the probability of successful change in grain site orientation as

P = 
lexp (—k:TE) , if .i.E > 0,

(8)
11, if .AE < 0,

where E is the total grain boundary energy calculated by summing all the neighbor interaction energies, ..E can be
regarded as the activation, and T., is the simulation temperature.

3.2 Statistical microstructure descriptors as outputs

140 Figure shows the effect of kBT, on different grain growth microstructure. In particular, larger kBT, is associated
with microstructures with smaller grain size for (nearly) the same amount of time. This suggests that the grain size
distribution may be a good microstructure descriptor to describe and distinguish one microstructure from another.
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(a) Effects of the numerical temperature kBTs in the kMC grain
growth problem. Reprinted with permission from [21.

Fig. 1: Grain growth and its dependence on temperature
pairwise correlations (Figure lb).

051

(b) Pair plot between microstructure descriptors: major dimen-
sions of best-fit ellipse, minor dimensions of best-fit ellipse, and
grain area.

(Figure la). Statistical microstructure descriptors and their

In this case study, the distribution of grain area is used as the microstructure descriptor, where the Kullback-
Leibler divergence measuring the difference between candidate and target microstructures is used as an output, where

145 kBT, is the numerical input describing simulation temperature. Because the number of grains are fairly small (few
thousands), no filter is imposed on the statistical microstructure descriptors. In the target microstructure, kBT, is set
as 0.70, where the range of candidate microstructures is [0.25, 0.95]. The size of the simulation domain is 1024 x1024,
which takes about 300s with 18 processors 1.5 CPU hours).

3.3 Numerical results

150 In this example, kBT, is set at 0.85. A computational domain of 1024 pixel x 1024 pixel is used to set up the
numerical experiment. For consistency, all calculations are performed on Sandia's Blake cluster consisting of dual-
socket Intel(R) Xeon(R) (Platinum) 8160 CPU with 24 cores per node.The upper and lower bounds of objectives for
three optimization runs are plotted as blue envelope in Figure 2a. Two sampling points at kBTS E {0.25, 0.95} are
initialized. Here, one iteration corresponds to a single kMC simulation with different parameters. The single-objective

155 y starts at 0.27194599 for iteration 0, 0.01099406 for iteration 1, and 0.00322190 for iteration 12. The optimal input
parameter kBT, is 0.85720249, which agrees very well with the target input parameter kBT, of 0.85. Figure
presents the state of specific workers, i.e. whether they are idle (green) or busy (blue, pink, yellow, or orange), which
we refer to as the schedule. Furthermore, one can see what acquisition is being queried at specific time with the
schedule. The optimization run ends when workers finish their last job.

160 4 Conclusions

In this paper, we applied our previous framework [V] to solve the inverse problem in process-structure linkages,
where microstructure descriptors are used to characterize the microstructure on-the-fly. Statistical divergence, i.e.
Kullback-Leibler divergence is then applied to measure the differences between candidate and target microstructure,
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Fig. 2: Convergence plot (Figure 2a) and scheduler (Figure
framework. Readers are referred to online color version.

(b) Scheduler for asynchronous parallel Bayesian optimization.

2b) for the asynchronous parallel aphBO-2GP-3B

respectively. To that end, an asynchronous parallel BO framework is applied to minimize their numerical differences.
165 We demonstrate its application using kinetic Monte Carlo examples, where the numerical temperature is successfully

recovered for our case study.
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