
Polymer compatibility in high pressure
static and cycling hydrogen for hydrogen
infrastructure applications

45th Polymeric Materials, Adhesives and

Composites Meeting

October 26-29, 2020 0 Sandia National Laboratories

t 1
SM

Hydrogen
Materials
Compatibility
Consortium

PRESENTED BY
Pacific Northwest

NATIONAL LABORATORY

PAK RIDGE
-7_ National Laboratory

Nalini Menon, Jeff Campbell, April Nissen, ALISRNL
p11111=11111111111

MEM Wan
Sandia National Laboratories is a multirnission
Laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
international inc., for the U.S. Department of

Energy's National Nuclear Security
Adrninistration under contract DE-NA0003525.

Fitzjames Ryan, Bernice Mills

Sandia National Laboratories, CA

SAND2020-10889C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Sandia National Laboratories FCHydrogen and Fuel Cells Program

Polymers in the hydrogen infrastructure

Distribution and Delivery (Piping and Pipelines)

Storage and Transportation

Fueling/dispensing stations

Vehicle fuel Systems

Present as liners and sheath materials for storage
tanks and pipelines, as flexible hoses, as O-rings,
gaskets in pistons, regulators and other fittings

[ 

Thermoplastics 

HDPE , Polybutene, Nylon,

PEEK, PEKK, PET, PEI, PVDF,

Teflon, PCTFE, POM 

ONO

•

Elastomers 

EPDM, NBR, HNBR

EVM, Silicone, Viton,

Neoprene

Conditions of high pressures (875 bar/-13,000 psi) and
rapid cycling of temperatures (-40°C to +85°C) possible
during service
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CRITICAL GAPS

Task P1

Mechanisms of
hydrogen-induced
degradation of

polymers

Task P2

Computational
multiscale
modeling

Task P3

Hyd rogen-
resista nt

polymeric
formulations

Degradation failure modes
Explosive decompression
Transport properties Friction
and wear
Fracture and fatigue

VARIABLES
Polymer sources
Polymer types
Composition (additives)
Compounding methods
Environments (cycling)

Sum • high pressure hydrogen exposures •Hardness

•Modulus

• Polymers were exposed to high pressure hydrogen under *Volume

static and cycling conditions cycling H2 changes

1 . one week-long exposure to static high pressure (100 MPa)
Density DMTA

@ ambient temperature
2. 100 cycles, 86 MPa to 17 MPa and back, ambient

Nanoindent
ation

Mechanical
Test

temperature, rate of pressurization = 13.79 MPa/min; rate
of depressurization = 2.29 MPa/min

Ex-situ characterization of polymer physical and chemical
properties

NMR

ATR-FTIR

XRD

Micro CT
Polymer microstructural changes to "hydrogen effects" and
modes of failure, degradation analyses and lifetime prediction •Chemical

structure in bulk

Ex-situ characterization methods •Chemical changes
on the surface

MODELING
Atomistic scale
Micro scale
Phase Field
Modeling
Continuum scale

•Glass transition
temperature

•Storage and
loss moduli

•Tensile
strength

• Expansion of free
volume space

• Changing orientation
of polymer chains

•Presence of cracks
and voids
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Comoatibilitv of elastomers
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PNNL EPDM formulatlons

effect of H2 exposure (RndS) and H2 cycling (Rndll) on compression set

Compressed to 75% for 22 hours at 110T, recovered 30 minutes

• Before Exposure After H2 Exposure Rnd5 After H2 Cycling Rndll

E1

No filler

No plastidzer

E2

No filler

Plasticizer

PNNL EPDM Formulations, effect of H2 exposu

(Rnd 11) on modulus

DMTA, 1 Hz, 5°C/min, average of two specimens
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H2 MAT Round 11, Takaishi EPDM, change in density after 100 cycles

average of 2 specime
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Permeation
Diffusion
Solubility
effects

Fillers
Plasticizer
effects

Polymer
microstructure

Crosslink
density
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changes
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changes
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Nanoindentation

PNNL NBR N5

Before H2

After H2 cyclic

After H2 static

Av• Friction

0.53±0.043

0.81 ±0.095

0.81 ±0.101

PNNL EPDM E5 Avg Friction

Before H2

After H2 cyclic

After H2 static

0.41 ±0.091

0.49± 0.094

0.63±0.095

FTIR of NBR showing chemical changes

Small peaks
gained
between 1100
and 1400 cm-1

AI\ ".^-,

• Compression set increase indicates
plasticization and softening of matrix

• Significant decrease in storage modulus
and hardness indicates plasticization of
matrix

• Filler-containing formulations show
maximum change indicating interaction
of carbon and silica with H2
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Compatibility of EPDM and NBR with H2 environments
EPDM no filler
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• Micro CT comparisons show differences in behavior of the two elastomers in H2
• Polymer compositions matter to H2-resisitance
• Fillers mitigate H2 effects in both elastomers
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Compatibility of thermoplastics: Change in mechanical properties

Elastic Modulus before and after 100 cycles H2
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HDPE Nylon 6,6 PEEK POM PTFE

H2 MAT Round 10, Nylon-11, 100 H2 cycles

DMTA Rectangular Torsion, 0.03% strain, 1 Hz,

5°C/min heating
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Tg changes due to H2 exposure - 46% increase for Nylon 11
Tensile strength does not change for PTFE and HDPE
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NMR Analyses of thermoplastics for H2 environments (4142F1RST
Solid State 1H MAS NMR of thermoplastics:

100 cycles of H2

14 13 12 11 10 $ t 7 6 6 3 2 1 D -1 .3 -3 mon

• 1H NMR chemical shifts experimentally observed

for these materials have resonances consistent

with the H in the different materials

• There is a minor resonance at 6 = 4.3 ppm that

grows in with exposure in the PTFE.

Solid state 13C CPMAS NMR of PTFE

PTFE

136 136 126 1 26 114

13C (ppm)

114 144 mai

PEEK

Solid state 13C CPMAS NMR of polymers
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• The PEEK and Nylon-6,6 polymers revealed no
differences due to exposure.

• Both the POM and PTFE polymers revealed a minor
decrease in the line width (most notably in the PTFE)
suggesting an increase in the mobile (amorphous fraction)
for those polymers.

• The HDPE polymer also revealed some variation following
exposure demonstrating small changes in the chain
conformations for this polymer with exposure.

• All these changes are considered minor but may show up
in subtle changes of the DMA analysis.

andia National Laboratories EL Hydrogen Fueling !nfrastructure Research Station Technology



Compatibility of thermoplastics in H2 environments
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FTIR analyses after H2
PTFE Side 1 FTIR
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Optical microscopy

PTFE in normally
open valves
before hydrogen

PTFE in normally
open valves after
hydrogen
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Conclusions —1111111.11.-
• 1W

• Elastomers and thermoplastics subjected to high pressure cycling H2 behave
differently

• For elastomers, a highly cross-linked tight polymer network with limited free volume
and the presence of fillers and plasticizers play a significant role in providing H2
resistance

• Plasticization of the matrix can be a possible mechanism for H2 attack while filler-
containing formulations show maximum change, indicating interaction of carbon and
silica with H2

• The six thermoplastics tested (POM, PTFE, HDPE, PEEK, Nylon-6,6 and Nylon-11)
for different physical, chemical and mechanical properties do not show substantial
changes; however,
• Onset of chemical changes was identified for H2 cycled polymers
• Chemical changes were seen best with Fourier Transform Infrared Spectroscopy

(FTIR), Solid state 1 H MAS NMR and X-ray Diffraction (XRD)
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