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Entropy Outline

Motivation and Different Entropy Measures
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Entropy — “Explanation”

We shall see that the mathematical definition of entropy is
relatively straightforward

Understanding what it means, including how and when to
apply the definition, is less straightforward

From Wikipedia
In information theory, the entropy of a random variable is the

average level of "information”, "surprise”, or "uncertainty”
inherent in the variable’s possible outcomes.
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Entropy - definitions

Rényi Entropy

e

Shannon Entropy

Y.

=—> p;i-lg(p;)
1=1

~

Collision Entropy

Hy = —lg <Z Pf)
i=1

2N )
Min-Entropy

Hoo = —lg( Z:”faxn(Pz) )
- _J




Exercise — Ig(x) ‘

log(x)
log(2)
Find Ig(4) by using the log(.)

Ig(x) =

0.60206/ 0.30103 =

In(x)
In(2)

Key

2

Find Ig(4) by using the In(.) key

1.38629 / 0.693147 =

2

Whatis Ig(4)? What power of 27




~ Calculation - fair coin flip

What is the Shannon entropy of a flip of a fair coin?

Shannon Entropy p, = Y2, probability of getting a “head”
e p, = 72, probability of getting a “tail”
Hy = — ZPZ' -lg(p;)
i=1

Hi = —(p, - lg(py) + P2 - lg(p3))

e
—— |3 (D45 (-D| = 3+ 5 =1 (i




Biased coin flip ‘

What is the Shannon entropy of a biased coin flip?

p, = 3/4 , probability of getting a "head”
Shannon Entropy p, = 1/4 , probability of getting a “tail”

Hy = —ijlpi lg(p;)
(@) ()

H1
= —[0.75-1g(0.75) + 0.25 - (—2)]
19(x) = log(x) — 0.8113 (1 fip)




Biased coin flip

What is the Min entropy of a biased coin flip?

p, = 3/4 , probability of getting a "head”
_ p, = 1/4 , probability of getting a “tail”
Min-Entropy

Hoo = —lg( max (p;) )

S )
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’ Calculation — Uniform distribution

Uniform distribution, equal probability p, = 1/N

N =2" (n bits)
Shannon Entropy Min-Entropy
Hoo = —Ig( i:”faxn(Pz‘) )

N
Hi == p;-lg(p)
1=1
N
1 I
2NN

1 1
— N -—.lg| =
v o ()

= lg(N) =1g(2")

n




Combination Lock

Combination lock — three numbers, all between 0 and 99

If chosen at random, 1003 = 1,000,000
H, =19.93

There are 15,222 six-letter words, currently
in the English language, April 2010

If a word is chosen at random (some might give the same
combination),
H,=13.9

Common six-letter words
1,5007
.o Hy=10.55
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Calculation — Passwords

Upper case letter, 26 Require 8 characters

Lower case letter, 26 no repetitions

Digits, 10

Special Characters, 10 H,=48.78 (I1g(72:71---65) )

Require 8 characters

no repetitions
at least 1 upper, 1 lower, 1 digit, 1 special

H, = 47.67
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Calculation - Permutations ‘

Permutation of N objects

N! possibilities, assume equally likely
What is the Shannon entropy? N! | lg(N!)
i 25! | 83.682
s 4 L | | 102.802

Hi=—) — .lg <_) 28 | 102,

; i 311 | 112.663
Y 1 I <i) 35! | 132.924
N N! 47! | 197.365
=Ilg(N!) ~ N -lg(N) —lg(e)- N 58! | 260.343
65! | 302.018

®12
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‘ Ordering values—a Permutation

®13

Let n,,n,, ..., ny be nodes with values

Order the nodes
This is a permutation of n, n,, ..., ny

If all permutations are equally likely, the entropy is
H, = 1g(N!)
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Permutations—a caution

*14

 Forl1<i<j< N define
bi,j =1ifnl-<nj or bi,j =Oifnl->nj

N
e There are x

(N-1)

~ L bits defined this way

Can’'t we make a N; bit key with N; bits of entropy?

N | lg(N!)
25 83.7
35 | 132.9
65 | 302.0
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Data Representation

Suppose 4 = {0,1,2, ..., 31}
Suppose B = {(0,0,0,0,0), ...,(1,1,1,1,1)}

Is there a difference between the
two from an entropy standpoint?

You must know the probability of each event.
 The way the data is represented does not
play a role in the entropy calculation

However, in B there are other considerations

ndia
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Multi-dimensions

H1(X\Y) = sz x,y) - lg(p;(x, y))

1=1 H4(X) H,(Y)

N

Y
H,(X)Y)

How do you compute probability
In multiple dimensions?

Sandia
®*16 National
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Independence

If x and y are independent: p;(x,y) = pa(x) - py(y) =

Ne Ny

Hi(XY) == > p,(x) ) - (1g(pa(x)) + Lg(py(y))

a=1 b=1 Ty

:—Zpa Ng(p,(x Zpb Zpb )lg(py(y Zpa X)
—Zpa - (lg(p,(x Zpb (lg(pp(¥)))

Hi(X) H;‘(Y)
Hi(X)Y) = H1(X) 4+ H1(Y) “

7 Hy(X.Y) ) e,




Independence
If X and Y are independent: ~ ™* ()
Hi(X,Y) = H(X) + H(Y) “

H,(XY)

Compute entropy of each dimension, add the results

The same is true of Min entropy, (and the others)

Sandia
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Independence

Compute Shannon entropy of 128 fair coin flips

one flip H, — — B g (g) Fielg @] ~1  x128 =128 bits

Compute Shannon entropy of a three number combo
lock (0...99) viewed as three independent choices

one spin H, — _1g4 (Wlo) _6.6438  x3=19.9316 bits

Compute Shannon entropy of flipping 128 different coins
each with its own probability of success

128

H1(C1; ---»C128) — Z H1(Ci)
i=1

Sandia
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Independence ‘

Compute Min entropy of 128 biased coin flips

p, = 3/4 , probability of getting a "head”
p, = 1/4 , probability of getting a “tail”

What is the most likely value?

®20

Hoo

(

3

4

All heads: p =(3/4)728

) 128

— —[128 - 1g(0.75)] ~ 53.1
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Other Extreme —Fully Dependent

HE)
H1(X.Y) sz x,y) - lg(pi(x,y))

=1

If y is a function of x, p,(x,y) = 0 unless y = f(x)
and then p;(x,y) = P,(X)

ACY)

\ J
|

= Hi(X)Y) = sz x,y) - lg(p(x,y))

B ;pZ(X’ F(x)) - 1g(pi(x, £(x))) The same is true

‘nw of Min-entropy
_ Z p.(x) - 1g(p;(x)) = Hi(X) (and the others)

Sandia
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Fully Dependent ‘

 LetX ={0,1,...,255} where each element is equally likely

« Hi(X)=28
- LetY ={0,1,.

.,8)

the set of Hamming weights of X

The joint space (X,Y) has a natural probability distribution
« WithxeX,yeY
 Pr(x,y) =Pr(x)ify =HW(x)
e Pr(x,y)=0ify+ HW(x)

- H,(X,Y)=8

« Hi(Y) =

* Ho(Y) =

®22

8
Hy(V) = =) pi-lg () ~ 2.5442
i=0

Hy(Y) = —lg (70/256) ~ 1.8707

HW Probability
1/256
8/256
28/256
56/256
70/256
56/256
28/256
8/256
1/256

OO LA~ WNPEFELO
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‘ Not Independent or Dependent »

H1(XY) = sz x,y) - lg(pi(x,y))

How do you determine probability of an event if the dimensions
are not independent?

How many measurements do you need to determine
if dimensions are independent?

This is where things can get difficult!
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Key Points

If the probability distribution is known, we can
calculate the Entropy

If you can mathematically model the thing or
process, you have an advantage

If you are certain about independence (or know
the dependence), you have an advantage

If your only option is to collect sparse data and
estimate, you are at a disadvantage

ndia
) e
aboratories
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Conditional Entropy

Given the joint distribution on (X, Y), conditional
entropy is defined

(x,y)
* H;(X[Y) = _ZxEX,yEY p(x, y)lg(pp?;; )

From this, a chain rule can be derived
* Hi(X|Y) = Hi(X,Y) — Hy(Y)

A Bayes type rule follows
* Hy(Y|X) = H (X|Y) + H (Y) — H (X)




Independence
If X and Y are independent "X Hiy(Y)
* Hi(X,Y) = Hi(X) + Hi(Y) “

H,(X)Y)

The chain rule gives

* H(X|Y)=H;(X,Y) — Hy(Y)
= H,(X) + H;(Y) — H;(Y) = H (X)

When X and Y are independent, revealing Y does
not reveal information about X

Sandia
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Fully Dependent

H(

If Y depends on X
* Hl(XJ Y) — Hl(X)

(Y)

. . H(X,Y)
The chain rule gives

Hi(X|Y) = H1(X,Y) — H;(Y) = H;(X) — H;(Y)

Revealing Y does reveal information about X.

Sandia
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Hamming Weights

 LetX ={0,1,...,255} where each element is equally likely
« LetY ={0,1,...,8} the set of Hamming weights of X

Recall that H,(Y) = 2.5442

The chain rule gives
H,(X|Y) =8 — 2.5442 = 5.4558

Revealing the HW of a byte reveals about 2.54 bits
of information. (This leaves about 5.46 bits)




Hamming Weights ‘

HW Probability

O ~NOYOT B~ W DN BHEHEO

1/256
8/256
28 /256
56/256
70/256
56/256
28 /256
8/256
1/256

Revealed
Information
8.0
5.0
3.19
2.19
1.87
2.19
3.19
5.0
8.0

H, = weighted average = 2.54

*29

Num Hidden Info

bytes
1
8
28
56
70
56
28
8
1

lg(#bytes)
0.0
3.0
4.81
5.81
6.13
5.81
4.81
3.0
0.0

Htotal

3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
8.0

Sandia
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Larger Hamming Weights

Hlﬁ— —+

1
2

H, (8 bits)
H, (16 bits)
H, (32 bits)
H, (64 bits)

H. (128 bits)

1

—_— e l 7“' . 6 o n

> g( )

2.54 bits revealed information
3.05 bits revealed information
3.55 bits revealed information

4.05 bits revealed information

4 .55 bits revealed information
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Error Correction Codes

Suppose that we have a systematic Error Correction
Code

« A message M (k bits in length)
 Checkbits E = ECC(M) (e checkbits)
« Codeword C = M||E (n = k + e bits in length)

This is the case of full dependence so
* H(M|E) =H,(M)—-H,(E) =0
E depends on the messages so H,(M) > H,(E)
For any good code that corrects a lot of errors e > k
e H,(M)=H{(E)is likely
« H,(M|E)=0 s likely
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"1 National

Laboratories




Entropy Outline
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Motivation and Different Entropy Measures
Collisions & Entropy — Random Functions
Yes/No Questions

Min-Entropy, Guessing Entropy
Mutual Information

Entropy for keys

5
1<=x<=27
4
& f(x)
N3
2
3
| ) } o \ 1o ] COINm 8
- \UJ L/ IOUUOVOIV 52
I . P’ . i f, [l N . 1
% 20 4 60

6.01247 = H, 1
467807 =H,. '
120
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Entropy per point

—p lg(p)

0.5}
0.4
0.3}
0.2;

0.1;

°8

®33




Entropy per point

* 34

-p Ig(p)

0.5}

p=.4
H, = .53 (bits)

H

=1.85

total —

0.4/

p=.3
03| H , = .52 (bits)

i

- = .2
' , = 46 (bits)

|
0.1]

33 (bits)

080 '0.2‘I'0.4"'o.'6' “o08  10P
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More Uniform —> More Entropy

¢35

-p lg(p)

05
0.4
03
02

0.1

keep the sum of the
two probabilities the same

p; +py = 0.7=p] + p5

0.8 0P

Sandia
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Collisions —> Less Entropy

‘bytes’ 555 . — f HW
1/8
—> o O
001 .1/\ 1/
010 ;- L.

3/8
011 *— _
° = 2

101 '1/8

e 3
110 ‘1/8 1/s
111 T

.35 1/8 new prob. distribution i S
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Collisions —> Less Entropy

*37

—p lg(p)
0.5? I
|
|
| |
0.4 -
I |
|
l
0,35 | Old Entropy contribution
I —py - 19 (P1) — P2 - lg (P2)
» :
0'25 :
: New Entropy contribution
0.1 E —(p1 +P2) - 1g (p1 + P2)
| l
: 1+p2
1 P1+P ‘ . ‘
0'8.0 0.2 0.4 0.6 0.8

h

1.0P
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National
Laboratories



‘ Example - Random Function »

®38

probability- 277

)
1<=x<=128= 2’
4_
X, uniform distribution

3 7 = H,
7 = H1

2_

0 20 40 60 80

index

Sandia
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‘ Random Function '

®39

probability- 277
]

W

f(x)

§ e

index

6.01247 = H;
4.67807 = H,,

100

120
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‘ Hash Function Collisions »

Number of Times Selected

f: {0,1}" — {0,1}n

Only one point per value in the range, — of total

®40

4

e

1
No points map to here, — of total

e

Sandia
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Hash Function Collisions

f: {0,1} — {0,1}"
Assume uniform distribution to start, H, = n

What is the entropy after hashing once?
n—0.827245

What is the entropy after hashing a million times?
~n—20

What is the entropy after hashing many times?
~n/2

®41
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lterated Hashes

H, init = 28
250 H, final = 14.439
23,902 iterations
28 - €
2 20
p?
|
c 15¢
£ 18.4234
C
c 10+
7))
Steady state:
9 cycles
S total number of cycle points = 27239 |
{0,1}%8 — {0,1}8
% 2 24 26 28 210 212 214

42

Number of Hashes

Sandia
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Iterated Hashes
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Iterated Hashes
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Iterated Hashes




Iterated Hashes




Iterated Hashes

9

Sandi
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Iterated Hashes

48

9




‘ lterated Hashes

49

Iterated Hash Entropy Loss

# hashes H,q Hoo
1 27.1728 | 24.5406
2 26.6544 | 23.7521
22 25.9748 | 22.5737
93 25.1674 | 21.8503
Vi 24.2745 | 20.8503
25 23.3304 | 19.7379
95 22.359 | 19.2789
27 21.3705 | 18.0871
28 20.3812 | 17.4454
29 19.3984 | 16.6381
510 18.4221 | 15.8068
211 17.4881 | 15.2744
912 16.5071 | 14.7777
913 15.5954 | 14.1331
214 14.7788 | 13.4554
914+ 14.4390 | 13.3646

{0,1}28 -> {0’1}28

9 cycles
shortest = 3
longest = 12602

Number of cycle points =
27239

Sandia
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Collisions

No function of a distribution
can increase its entropy!
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Entropy Outline
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Motivation and Different Entropy Measures
Collisions & Entropy — Random Functions
Yes/No Questions

Min-Entropy, Guessing Entropy

Mutual Information
Entropy for keys
PUF Discussion
Fuzzy Extraction
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Yes/No Questions

Suppose N = 2" possible choices, with one correct answer
Q, : “Is the answer in the first half of the list?”
Q, : “Is the answer in the first half of the reduced list?”

Q, : “Is the answer the first of the two choices?” "

Number of questions =n ; H, =n

" If the answer was always “No”, might want to verify the last possibility

Expected number of sequential guesses =

Sandia
* 52 "1 National

Laboratories
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Hamming weights

Huffman Algorithm for HWs

0,1,2,3,4,5,6,7,8
0’1 !2’416,7,8
0,1,2,6,7,8 0.5625 0.4375
0.2890625 3,5
0.2734375 0.21875
0.1796875 P—
5
0.10937 0,1,2,7,8 6 4 0.21875
2 0.0703125
0,1,7,8 3
0.03125
0.0390625
0.03125 0,1,8 7
1 0.0078125
0,8
0.00390625 0.00390625
0 8

Sandia
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HW Yes/No Questions

0,1,2,3,4,5,6,7,8
0,1,2,4,6,7,8
012678 T 0.4375
0.2890625 3,5
0.2734375 0.21875
0.1796875 i
9
0.10937¢ 012,78 6 4 021875
5 0.0703125
0,17.8 3
0.03125 .
0.0390625 Number of Questions =
0.03125 0,1,8 7 2
’ 1 + 0.2890625 - 1
A +0.1796875 - 1
0.00390625 __0.00390625 + 0.0703125 - 1
0 8 + 0.0390625 - 1
+ 0.0078125 - 1

.54 H, = 2.5442 = 2.58294 ) iz,
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Entropy Outline

*55

Motivation

Different Entropy Measures
Collisions & Entropy — Random Functions

Yes/No Questions

Min-Entropy, Guessing Entropy

Mutual Information
Entropy for keys
PUF Discussion
Fuzzy Extraction

PPPPPPP

/

h
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‘ Partial Knowledge '

Example
Have 256 bits, but (each bit) only known to probability p

Guess most likely possibilities first
Expected number of guesses to get correct answer =

E|guesses| = Z p;-j  (efficient exhaustive search)

probabilities, p; are decreasing

Sandi
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Bit Probability Uncertainty

Bit probability

effective strength (bits)

256-bit key 0.50

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
0.99
0.999

® 57

255.000
253.041
249.537
244.188
236.660
226.483
212.907
194.618
168.957
128.819

62.287

18.447

Sandia
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Bit Probability Uncertainty

Effective Strength in bits

®58

250°F

100

an
o

why is entropy o

Adversary IS constra/ned by more than just En

Work that the adversary
must do

/

H, (Shannon Entropy)

er than strength?

H_ (min Entropy)

0.5

06

0.7 08 09 1.0

Prob. of Known bits

Sandia
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Why Min-Entropy?

Suppose a non-uniform probability distribution, with
2425 possible outcomes (keys)
0.40 probability for one outcome (most likely)
2425 - 1 remaining possibilities, p ~ 0.6 / 242>

H, = 255.9*

Expected number of guesses > 2423

“Here is a system with almost 256 bits of entropy; on average,
it will take the bad guy more guesses as there are atoms
In the universe to get the key!”

“By the way, there’s a 40% chance that he’ll get
the CPI with one guess...” 3 i

National _
Laboratories
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Why Min-Entropy?

Scenario continued: adversary has 10 parts,
* only needs to defeat one to get the key

« all the keys are different and independent from
part-to-part

0.40 probability = most likely key, known to adversary

Strategy : guess most likely key, if wrong, take next part

p = 99.4% that key will be recovered within 10 guesses!

Sandia
®*60 ﬂ'l National
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Min-Entropy

Min-Entropy helps to characterize the worst case
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Entropy Outline
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Motivation and Different Entropy Measures
Collisions & Entropy — Random Functions
Yes/No Questions

Min-Entropy, Guessing Entropy

Mutual Information
Entropy for keys
PUF Discussion
Fuzzy Extraction
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Mutual Information I(X;Y)

H(X) H(Y)

I(X;Y) > 0

\ J

For two variables  H%Y)
mutual information = 0

Sandia
*63 National
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Perfect Secrecy Theorem (proof)

P C
PT CT
(P;K)=b>0
.C) = I(K;C)=c>0
(dle(sli:r)e,(?o)utcor?e) (always true for 2 variables)
HP| CK)=0

HK|PC)>0

(always true)

key

H(K) = (c-a) + b >b = H(P) K

Sandia
A | Netionai
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AES Results

Using this technique

Assumption: Given a ptin P,

given a fixed P, _, C has the distribution
E(P) acts as a random of the range of a

function on K (keyspace) random function

£ ~ 0.827

HIK|PC)=¢

less than 1 bit remaining average entropy in key!




Entropy Outline
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Motivation and Different Entropy Measures
Collisions & Entropy — Random Functions
Yes/No Questions

Min-Entropy, Guessing Entropy
Mutual Information

Entropy for keys
PUF Discussion : A
Fuzzy Extraction
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Hash function?

Suppose some Iinitial amount of entropy
Hash the input?

A function of a distribution
never increases the entropy




‘ Example - Random Function »

S
lemope= 8= &

4+
- X, uniform distribution
1
o 2 E=H,
&
o 7.=Hj
o
©
Q
2 2
o

0

0 20 40 60 80 100 120
°58 index ) Netora
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‘ Random Function »

w

probability- 27

N

*69

f(x)

f wfies F

40

index

6.01247 = H,
467807 =H,

100

120

Sandia
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‘ Random Function '

probability- 277

N

*70

W

f(x)

1 <=X<=

Starting space
twice as large

index

6.46996 = H,
3:-19265= H,.

80 100

120

Sandia
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‘ Random Function '

probability- 277

N

*71

W

20

f(x)

{ o= goe= B

40

6.956 = H,

6.0458 = H,,
Starting space

16x as large

60 80 100 120
index

Sandia
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‘ Random Function

probability- 277

N

*72

W

20

| = = 214

H., initial = 14

f(x)

40

60
index

6.99477 = H,
G.Fe1E=H.

80 100 120

Sandia
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‘ Random Function

*73

probability- 277

N

w2

20

f(x)

] a= = 221

H.. initial = 21

40

60
index

6.99995 = H;
6.97089=H.,

80 100

120
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Statistical Distance

Let X and Y be two random variables
with range U. Then the statistical distance
between X and Y is defined as

A(X,Y) = % S|P = - Py =4

uelU

For ¢ > 0 we define
X~ Y& AXY)<e

For example, we might want f(X) ~. Uniform({0,1}128)

) 7 4 m nloll?a

EEY



Leftover Hash Lemma

Let Hoo(X) >k, Fix e > 0
Let H be a universal hash family of size 2¢

1
with output length m =k —2-lg (—)

€
Define Ext(x,h) = h(x)
Then Ext is a strong (k, 5) extractor

with seed length d and output length m

m = 256 bits, ¢ = 1/2%°% = k= 3-256 = 768 bits
*75 | Natona

EEY
=3




‘ Random Function '

*76

probability- 277

w2

N

20

1 &= Ne= 221

H.. initial = 21

f(x)

6.99995 = H,
G708 =H.,

Distance from Uniform ~ .446-2°/

40

60

index

80

100
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(magpnified jitter) *

1.08
6.99905 = H,
21
1.061 el B 6.97089=H,,
H_ initial = 21
~ 1.04 f(x) _ _
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Entropy Outline
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Motivation and Different Entropy Measures
Collisions & Entropy — Random Functions
Yes/No Questions

Min-Entropy, Guessing Entropy
Mutual Information

Entropy for keys
PUF Discussion : A
Fuzzy Extraction
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Computing Shannon Entropy

The Shannon entropy is defined as
n—1
Hy== ) pilgp)
i=0

The p;’s must be known for every event
ne summands must be computed
The sum must then be evaluated

—]




Computing Shannon Entropy ‘
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« Suppose all the information is available

Index Value Prob -lg(Prob) Product

0 A A 3.32
1 B .05 4.32
2 C 3 1.74
3 D o 2.32
4 E 2 2.32
5 F .15 2.74
H,

« Evaluating the sum is straight forward in this case

0.332
0.216
0.522
0.464
0.464
0.411

2.409
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Computing Shannon Entropy

Suppose all the information is available

Index Prob -lg(Prob) Product
0 1 332 0332 The moon has on the
1 05 4.32 0.216 128
2 3 174 052 order of 2*4° atoms
.5128 -2 2 ;.32 .(-)..464
2128 _1 15 274 0.411

H, 7

Evaluating the sum is NOT straight forward in this case
« 2128 Probabilities must be stored
« 2128 _|g(Prob)’s and Products must be computed
« 2128 things must be added together

This is not computationally feasible
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How Many Devices

Device with three binary PUFs: X;,X,,X5. The 8
outputs may be viewed as:
 Vectors (0,0,0),(0,0,1),...,(1,1,1)
« Integers (000),(001),...,(111)
 The events do not matter. It is the probability of the
events that determine the entropy
How many devices do you need to confidently
determine the probability distribution?
* Coupon Collector (CC) says nlg(n) to see all values
« 8.3=24
« CC is not enough to determine the distribution
« n?=64? Orn3®=512?
* Enough to do rudimentary Hypothesis Testing?
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How Many Devices are Needed

Device with 128 binary PUFs: X4, ..., X;g.
« Outputs may be viewed as: Vectors or Integers
« There are up to 2148 possible states
 This many devices does not physically exist

Device with 32 PUFs: X, ..., X5,. Each PUF
outputs a four bit value
« There are also up to 2128 possible states

Device with 8 PUFs: X4, ..., Xg. Each PUF
outputs a 16 bit value

How do you estimate the probability
distribution from insufficient data?
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As Hard as Brute Force

Even if every probability is known, computing the
Shannon entropy for a cryptographically relevant
situation is as hard brute forcing the key

« The list of probabilities is the same size as the key
space

« |f the probabilities fall into a well known distribution
where an entropy formula exists, the formula can be
used in place of evaluating the sum

Acquiring the probabilities for the set of events is as

hard as brute forcing the key

« |f these are PUF outputs, you must access more
devices than there are keys to determine the
probabilities

Assumptions and Simplifications must
be made so that estimation can follow
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Independence

« If X;,...,X1,4 are independent, then computing
H, of the joint distribution is straightforward.
 The entropy of each component is required

« Data requirements (sample device numbers)
are manageable

« Computational requirements are trivial

128
H1(X1» ---'X128) — z H1(Xi)
i=1
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Independence

* Independence is a common first assumption
* |tis also almost always false

 How does one prove or disprove
independence of PUFs in a physical system?
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Multi-dimensions Correlation
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Multi-dimensions Correlation
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‘ Large Dimensional Spaces

80 ring oscillators
each has 10 possible values
P(Xq, Xy, ..., Xgq) IS OVer 1080 ~ 2266 possible values

How do we calculate H,?

Active area of research!
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Entropy Outline
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Motivation and Different Entropy Measures
Collisions & Entropy — Random Functions
Yes/No Questions

Min-Entropy, Guessing Entropy
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Dodis, Fuzzy Extraction Scheme

« A device uses PUFs to hide a secret seed
* Ingredients

« Secret seed s that is k bits in length

« ECC, an (n, k) error correction code

* n total bits, k data bits

« m =n — k error correction bits called e
A codeword ¢ = s||e, which is n bits
« Secret PUF response p, which is n bits

 Helper dataw = ¢ @ p, which may be
published

- The secret s may be a key or a seed for a KDF
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* During operation
* Device queries its PUFs to obtain p
« Computesc=w@Pp
« Error corrects ¢ toobtainc (¢ = sl|e)
« Uses c torecover s

 Ifp @ p =5 has small Hamming weight
s (=wPBr=whBpPd=cPhd

« (=@ 6 is correctible by the ECC to recover ¢
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Reveal the Helper Data

Let
P be the set of all n-bit PUF values

S be the set of all k bit seeds

C be the set of all codewords

W be the set of all possible n-bit helper data

Assume that H,(S) = k, that is, the seeds are
drawn uniformly from §

If the helper data is public, what is the
remaining entropy in the system?

What is Hy(C, P|[W)?
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What is H,(C, P|W)?

W is fully dependent on (C, P)
H,(C,P,W) = H,(C, P)

C and P are independent
H,(C,P) = H,(C) + H,(P)

We have H,(C) = H{(S)

So

It can be shown that
H,(W) = H,(P)

Hl(C,P|W) — Hl(C,P, W) _ Hl(W)
= Hy(S) — [H(W) — H,(P)]

=k —[H(W) — H.(P)]
<k
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A Few Cases

Suppose H{(P) =n
n=>HW)>=H,(P)=n
SoH(W)—H{(P)=0
H,(C,P|W) = k which is the entropy in the seed
space

If the PUFs have full entropy, no information about
the seed is given away by revealing the helper data

If H;(P) < n, then it may be that 6§ = H,(W) — H,(P) > 0
H(C,PIW)=k—-6<k

The value of ¢ is tied strongly to the interplay

between the PUFs and the error correction code
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Dodis Lower Bound

Suppose H,;(P) = n — u We have that
H(C,PIWW)=k—[HW)—-n+ul=k—pu
This is a lower bound on the system’s entropy

Details matter, however...

For a wide variety of PUF distributions and Error Correction
Codes the assumption that H; (W) = n is reasonably close. If
soand k = u , we have

Hi(C,P|W) =k —u
Any deficiency of entropy in P translates to a reduction of
entropy in system.
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