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Entropy "Explanation"
L

We shall see that the mathematical definition of entropy is
relatively straightforward

Understanding what it means, including how and when to
apply the definition, is less straightforward

From Wikipedia
ln information theory, the entropy of a random variable is the
average level of "information", "surprise", or "uncertainty"
inherent in the variable's possible outcomes.
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Entropy - definitions
L  ,

Renyi Entropy

1
H, —   • lg

1 a

Collision Entropy
n 

a 
: ?,

)
7 H2 r;•,lg >_ 

i=-1

Shannon Entropy Min-Entropy
n

Hoo —lg( max (pi) )
i=1,...,nH1

i =

pi • lg(pt)
}
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Exercise Ig(x)

L

lg(x)
log(2) ln(2)

Find Ig(4) by using the log(.) key

log(x) ln(x)

0.60206 / 0.30103 = 2

Find Ig(4) by using the In(.) key

1.38629 / 0.693147 = 2

What is Ig(4)? What power of 2?
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Calculation fair coin flip

What is the Shannon entropy of a flip of a fair coin?

Shannon Entropy p1 = % 1 probability of getting a "head"
n p2 = % 1 probability of getting a "tail"

>_: pi ' lg(pi)
i=i

(Pi ' lg(p1) + P2 • lg(p2))

ki * 1g (0 + i * 1g (01

[ * (-1) + 

1 

* ( 1)1 = 

1 

+

1

H1

H1

1 (bit)
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Shannon Entropy
1

H1
i=1

pi • lg(pi)

Biased coin flip

What is the Shannon entropy of a biased coin flip?

p1 = 3/4 , probability of getting a "head"
p2 = 1/4 , probability of getting a "tail"

Hi
[3  ( 3 1  (1

[4 (ig ± 4 (ig

— — [0.75 • /g(0.75) + 0.25 • ( 2)]
log(x) 0.8113 (1 flip)lg(x) 
log(2)
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Min-Entropy
H,„ lg( max (pi) )

i=i,...,n,

HD° /g [M

r,_-,_, 0.415

Biased coin flip
L

What is the Min entropy of a biased coin flip?

p, = 3/4 , probability of getting a "head"
p2 = 1/4 , probability of getting a "tail"
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Calculation Uniform distributionL

.9

Uniform distribution, equal probability pi = 1/N
N = 2n (n bits)

Shannon Entropy
N

H1 pi • lg(pi)

Hi
N .1g (I)

1

i=i

—N •
N 

• lg (Kil)

lg(N) = lg(2n) = n

Min-Entropy
Hoc lg( max (pi) )

i=1,...ln

Hoc —lg( max(pi)))

lg(N) — lg(2n) = n
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Combination Lock
L

Combination lock — three numbers, all between 0 and 99

If chosen at random, 1003 = 1,000,000
H1 = 19.93

There are 15,222 six-letter words, currently
in the English language, April 2010

If a word is chosen at random (some might give the same
combination),
H1 = 13.9

Common six-letter words
1,500?

.10 H1 = 10.55 Sandia
National
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L
Calculation Passwords

Upper case letter, 26
Lower case letter, 26
Digits, 10
Special Characters, 10

Require 8 characters
no repetitions

H1 = 48.78 ( Ig(72.71.-65) )

Require 8 characters
no repetitions
at least 1 upper, 1 lower, 1 digit, 1 special

H1 = 47.67

• 11
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Calculation - Permutations
L

Permutation of N objects
N! possibilities, assume equally likely

What is the Shannon entropy?

N ! 
1 1

H1 
\

- >_ - * 1 g N!N! ( 
i,i

1 / 1 \
— N! •   • lg  

N! 01! i

lg(N!) rr N • lg(N) — lg(e) • N

N! lg(N!)
25! 83.682

29! 102.802

31! 112.663

35! 132.924

47! 197.365

58! 260.343

65! 302.018
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Ordering values a Permutation
L

Let n1, n2, ... , nN be nodes with values

Order the nodes

n37 < n6 < n24 < n13 < ni_ < no < ••• < n19

This is a permutation of n1, n2, ... , nN

If all permutations are equally likely, the entropy is
H1 = lg(N!)

• 13
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Permutations a caution
L

• For 1 < i < j < N define
• bi,i = 1 if ni < ni or bi,i = 0 if ni > ni

N(N-1) , N2
• There are , 7 bits defined this way

2

Can't we make a l\L
2 

bit key with l\L
2 

bits of entropy?
2 2

N lg(N!) /
25 83.7 3
35 132.9
65 302.0 12.

Sandia
National
Laboratories
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Data Representation

L

• Suppose A = {0,1,2, ... , 31}
• Suppose B = {(0,0,0,0,0), ... , (1,1,1,1,1)}

Is there a difference between the
two from an entropy standpoint?

• You must know the probability of each event.
• The way the data is represented does not

play a role in the entropy calculation

• However, in B there are other considerations

• 15
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Multi-dimensionsL J

n

H 1 (X,Y) pi (x) y)
i=1

• 16

• lg(pi(x, y))
H1(x) H1(Y)

\I ii

H1(X,Y)

How do you compute probability
in multiple dimensions?
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F Independence 1
If x and y are independent: pi(x, .Y) = Pa(x) • Pb(Y)  >

H1(X,Y)

nx

nx ny

Pa(X) • Pb(Y) • (lg(Pa(x)) + lg(pb(y))

a=1 b=1 ny

pa(x)lg(pa(x)) Pb(Y)

a=i
nx ny

pa(x) • (lg(pa(x)))
a=1

ny nx

pb(y)lg(pb(y))

Y_ Pb(Y) • (lg(pb(y)))
b=1

a=1

H1(Xliir.(Y)

F11(X,Y) HO) + H1(Y)

• 17 H1(X,Y)
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Independence

L

If X and Y are independent:

Hi(X,Y) = Hi(X) + Hi(Y)

H1(X4 H1(Y)
x

I I
T

H1(X,Y)

Compute entropy of each dimension, add the results

The same is true of Min entropy, (and the others)

• 18
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Independence

Compute Shannon entropy of 128 fair coin flips

one flip Ht
1 1 (
  lq     -1q   = 1 x 128 = 128 bits
_2 2 \2

Compute Shannon entropy of a three number combo
lock (0...99) viewed as three independent choices

one spin Hi = -lg 
(100) 

- 6.64386 x 3 = 19.9316 bits

Compute Shannon entropy of flipping 128 different coins
each with its own probability of success

128

H1 (C1, ..• C128) = 111 (CO

i=1

•19
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Independence
L

Compute Min entropy of 128 biased coin flips
p1 = 3/4 , probability of getting a "head"
p2 = 1/4 , probability of getting a "tail"

What is the most likely value? All heads: p = (3/4)128

HD, — —lg
(3\1281

4)

= — [128 • lg(0.75)] rr 53.1

•20
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Other Extreme —Fully Dependent

Hi(X,Y)
n

i =1

pi(x, y) • lg(pi(x, y))

If y is a function of x, pdx,y) = 0 unless y = f(x)
and then pdx,y) = pdx)

n

> H1(X,Y) >_.: pi(x, y) • lg(pi(x, y)) H(X,Y)

i=1

x.: pi(x, f (x)) • lg(pi(x, f (x)))

i=i
nx

• 21

>_:107(x)
i=1

- lg(pi(x)) H1(X)

Hi(X,Y) - Hi(X)

The same is true
of Min-entropy
(and the others)
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Fully Dependent

• Let X = [0,1, ...) 255} where each element is equally likely
• H1(X) = 8

• Let Y = {0,1, ..., 8} the set of Hamming weights of X

The joint space (X, Y) has a natural probability distribution
• With x E X, y E Y

• Pr(x, = Pr(x) if y = HW (x)
• Pr(x, = 0 if y HW (x)

• H1 (X, )7) = 8
8 

• H1 (7) = MY) = - pi • lg (pi) 2.5442

i=o

• flo„(Y) = I-100(Y) = -lg (70/256) 1.8707

HW Probability
0 1/256
1 8/256
2 28/256
3 56/256
4 70/256
5 56/256
6 28/256
7 8/256

8 1/256

• 22
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Not Independent or Dependent
L

Hi(X,Y)

n

pi , y) • lg(pi(x, y))

How do you determine probability of an event if the dimensions
are not independent?

How many measurements do you need to determine
if dimensions are independent?

This is where things can get difficult!

• 23
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Key Points
L

• If the probability distribution is known, we can
calculate the Entropy

• If you can mathematically model the thing or
process, you have an advantage

• If you are certain about independence (or know
the dependence), you have an advantage

• If your only option is to collect sparse data and
estimate, you are at a disadvantage

• 24
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Conditional Entropy

L

Given the joint distribution on (X, Y), conditional
entropy is defined

• H1 (X IY) = - ExEx,yEy p(x , y) 1 g (P p(x(y'Y)))

From this, a chain rule can be derived

• HIV I Y) = H1(X, Y) — H1(Y)

A Bayes type rule follows

• H1(YIX) = H1VIY) + H1(Y) 1/1(X)

• 25
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Independence

L

If X and Y are independent H1N

• H1 (X, Y) = H1 (X) + H1 (Y)

H1(Y)o

i r i

H1(X,Y)

The chain rule gives

• H1(X I Y) = H1(X, Y) H1(Y)
H1(X) + H1(Y) H1(Y) = H1(X)

When X and Y are independent, revealing Y does
not reveal information about X

• 26
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L
Fully Dependent

If Y depends on X

• H1(X,Y) = H1(X)

The chain rule gives
H1(X I Y) = H1 (X, Y) H1(Y) = 1/1 (X) H1(Y)

H(X,Y)

Revealing Y does reveal information about X.

• 27
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Hamming Weights
L

• Let X = {0,1, ..., 255} where each element is equally likely
• Let Y = [0,1, ... , 8} the set of Hamming weights of X

Recall that H1(Y) e-z,- 2.5442

The chain rule gives
H1(XIY) = 8 2.5442 = 5.4558

Revealing the HW of a byte reveals about 2.54 bits
of information. (This leaves about 5.46 bits)

• 28
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Hamming Weights

HW

0
1
2
3
4
5
6
7
8

Probability

1/256
8/256
28/256
56/256
70/256
56/256
28/256
8/256
1/256

Revealed
I nformation

8.0
5.0
3.19
2.19
1.87
2.19
3.19
5.0
8.0

H1 = weighted average = 2.54

Num
bytes
1
8
28
56
70
56
28
8
1

Hidden Info
lg(#bytes)

0.0
3.0
4.81
5.81
6.13
5.81
4.81
3.0
0.0

[total

8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0

• 29
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Larger Hamming Weights

L

1 1
H 1 

2 
+
2 

• l g (ir • e • n)

H1 (8 bits) 2.54 bits revealed information

H1 (16 bits) 3.05 bits revealed information

H1 (32 bits) 3.55 bits revealed information

H1 (64 bits) 4.05 bits revealed information

H1 (128 bits) 4.55 bits revealed information
• 30
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Error Correction Codes
L

Suppose that we have a systematic Error Correction
Code

• A message M (k bits in length)

• Checkbits E = ECC(M) (e checkbits)

• Codeword C = MI lE (n = k + e bits in length)

This is the case of full dependence so

• 1-11(MIE) = H1(M) - Ha) 0
• E depends on the messages so H1(4) I11(E)

For any good code that corrects a lot of errors e > k
• H1(m) = Ha) is likely

• 111(MIE) = 0 is likely

•31
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Entropy per point
L

-p Ig(p)

0.5

0.4

0.3

0.2

0.1

• 33
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F.--- Entropy per point 1
-p Ig(p)

0.5

0.4

• 34

p = .4
H.4 = .53 (bits)

P = .3
H.3 = .52 (bits)

1
p = .2
H 2 = .46 (bits)

1
p = .1
H.1 = .33 (bits)

I I 
0.2 0.4 0.6

Htotal = 1.85

0.8 1.0 P
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More Uniform > More Entropy

—p Ig(p)

0.5

0.4

0.3

0.2

0.1

'35

p1 p2'

0.2 0.4

p2

0.6

keep the sum of the
two probabilities the same

131 + P2 0-7 + I3/2

0.8 1.o
National

rldia

1.1 Laboratories
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Collisions > Less Entropy
L

"bytes"000 . f HW
1/8

H1

• 36

001

010

011
= 3

100

101

.
1/8

1/8

1/8

• 0
1/8

• 1
3/8

• 2
3/8

• 3
1/8

I

H1 1.8

new prob. distribution Sandia
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Collisions > Less Entropy
L

—p Ig(p)

0.5-

0.4

0.3

0.2

0.1

'37

pl p2

0.2

pl +p2

Old Entropy contribution

— 131 ' lg (PO — p2 • lg (p2)

New Entropy contribution

—(131 + P2) • lg (131 + P2)

0.4 0.6 0.8 1.0 P
Sandia
National
Laboratories



r

Example - Random Function

5

4
1 <= x <= 128 = 27

x, uniform distribution

7 =

7 = H1

0
0 20 40 60 80 100 120

index Sandia
National
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Random Function
L

II
• 39

1 111
1

1

f(x)

1

1 <= x <= 27

II
40 60

index

Ili

6.01247 = H1

4.67807 = H,

111
I

11
100

1
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Hash Function Collisions
L

Number of Times Selected

4
f: {0,1}n —> 

{0,1 

}"

littilimm

111

1
Only one point per value in the range, — of total

e

0

1
No points map to here, — of total

e

1 1
— > —
e 3

' 40
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Hash Function Collisions
L

f: {0,1}n —> {0,1}n

Assume uniform distribution to start, H1 = n

What is the entropy after hashing once?

n - 0.827245

What is the entropy after hashing a million times?
- n - 20

What is the entropy after hashing many times?

- n/2

•41
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Iterated Hashes
L

H1 init = 28

25

>, 20o_
2
la'
wc 15
o
c
c
ou
-c 10
(J)

5

{0,1}28 —> {0,1}28

0 
0

H1 final = 14.439
23,902 iterations

8 - c

1
18.4234

Steady state:
9 cycles

total number of cycle points = 27239

26 
.E3

Number of Hashes

210 212 214

• 42
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Iterated Hashes

43
Sandia
National
Laboratories



r 1

Iterated Hashes
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Iterated Hashes
IM-
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Iterated Hashes
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Iterated Hashes
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Iterated Hashes
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Iterated Hashes
L

Iterated Hash Entropy Loss

# hashes H1 H„

1 27.1728 24.5406
2 26.6544 23.7521
22 25.9748 22.5737
23 25.1674 21.8503
24 24.2745 20.8503
25 23.3304 19.7379
26 22.359 19.2789
27 21.3705 18.0871
28 20.3812 17.4454
29 19.3984 16.6381
210 18.4221 15.8068
211 17.4881 15.2744
212 16.5071 14.7777
213 15.5954 14.1331
214 14.7788 13.4554
214+ 14.4390 13.3646

{0,1}28-> {0,1}28

9 cycles
shortest = 3
longest = 12602

Number of cycle points =
27239

Sandia
National
Laboratories
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Collisions
L

No function of a distribution
can increase its entropy!

• 50
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Entropy Outline
L

Motivation and Different Entropy Measures

Collisions & Entropy — Random Functions

Yes/No Questions

Min-Entropy, Guessing Entropy

Mutual Information

Entropy for keys

PUF Discussion

Fuzzy Extraction

•51
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Yes/No Questions
L

Suppose N = 2n possible choices, with one correct answer

Q1 : "Is the answer in the first half of the list?"

Q2 : "Is the answer in the first half of the reduced list?"
•••

Qn : "Is the answer the first of the two choices?" *

Number of questions = n •
7 H1 = n

* If the answer was always "No", might want to verify the last possibility

Expected number of sequential guesses cz-- L2 = 12 • 2111

' 52
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M.-

L
Hamming weights

Huffman Algorithm for HWs

0,1 ,2,6„8

0.1796875

0.10937

0,1 ,7,8

0.0390625

0.03125

0.0078125

0.00390625

0

0,1 ,2,4,6,7,8

0.2890625

0 109375

0,1 ,2,7,8

0.0703125

0,1 ,8

0,8

0 03125

0 00390625

8

6

0,1 ,2,3,4,5,6,7,8

0.5625

0.2734375

0.4375

3

• 53
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HW Yes/No Questions
L

0,1 ,2,6,7,8

0.1796875

0.10937

0,1 ,7,8

0.0390625

0.03125

0.0078125

0.00390625

0

0,1 ,2,4,6,7,8
o

0.2890625

0 109375

0,1 ,2,7,8
6

0.0703125

0,1 ,8

0,8

0 03125

0.00390625

8

0,1 ,2,3,4,5,6,7,8

3

Number of Questions =
2
+ 0.2890625 • 1
+ 0.1796875 • 1
+ 0.0703125 • 1
+ 0.0390625 • 1
+ 0.0078125 • 1

• 54 H 1 = 2.5442 = 2.58294 Sandia
National
Laboratories



Entropy Outline

Motivation

Different Entropy Measures

Collisions & Entropy Random Functions

Yes/No Questions

Min-Entropy, Guessing Entropy

Mutual Information -p Ig(p)

05

Entropy for keys 04

PUF Discussion 
03

02

Fuzzy Extraction 01

• 55
Sandia
National
Laboratories



r

Partial Knowledge
L

Example
Have 256 bits, but (each bit) only known to probability p

Guess most likely possibilities first
Expected number of guesses to get correct answer

N(k)

>_ Pj • i

j=1

E[guesses] (efficient exhaustive search)

probabilities, pj are decreasing

' 56
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Bit Probability Uncertainty
L

Bit probability effective strength (bits)

256-bit key 0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
0.99
0.999

255.000
253.041
249.537
244.188
236.660
226.483
212.907
194.618
168.957
128.819
62.287
18.447

' 57
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Bit Probability Uncertainty
L

why is entropy lo

H„ (min Entropy)

Work that the adversary
must do

Adversary is constrained by more than just En
0.5 0.6 0.7 0.8

Prob. of Known bits

0.9 1.0

' 58
Sandia
National
Laboratories



r

Why Min-Entropy?
L

' 59

Suppose a non-uniform probability distribution, with

2425 possible outcomes (keys)

0.40 probability for one outcome (most likely)

2425 - 1 remaining possibilities, p ,e-:, 0.6 / 2425

H 1 = 255.9+

Expected number of guesses > 2423

"Here is a system with almost 256 bits of entropy; on average,
it will take the bad guy more guesses as there are atoms
in the universe to get the key!"

"By the way, there's a 40% chance that hell get
the CPI with one guess..." Sandia

National
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Why Min-Entropy?

L

Scenario continued: adversary has 10 parts,

• only needs to defeat one to get the key

• all the keys are different and independent from
part-to-part

0.40 probability = most likely key, known to adversary

Strategy : guess most likely key, if wrong, take next part

p = 99.4% that key will be recovered within 10 guesses!

• 60
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Min-Entropy

Min-Entropy helps to characterize the worst case

'61
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Entropy Outline
L

Motivation and Different Entropy Measures

Collisions & Entropy Random Functions

Yes/No Questions

Min-Entropy, Guessing Entropy

Mutual Information

Entropy for keys

PUF Discussion

Fuzzy Extraction
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Mutual Information I(X;Y)

L

H(X) H(Y)

\ Olirr 11111ilk

H(XIY) I(X;Y) H(YIX)

71 I(X;Y) 0

For two variables H(X,Y)

mutual information > 0
• 63
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Perfect Secrecy Theorem (proof)
L

P
PT

l(P;C) = 0
(desired outcome)

H(P I C,K) = 0

o

b>a

a

-a

o

c>a

H(K) (c - a) + b b H(P) kKey

C
CT

l(P;K) b 0
1(K;C) c 0

(always true for 2 variables)

H(K I P,C) 0
(always true)

Sandia
National
Laboratories
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AES Results

L

Using this technique

Assumption: Given a pt in P,
given a fixed P, _, C has the distribution
EK(P) acts as a random of the range of a
function on K (keyspace) random function

H(K l P,C)

E r'- 0.827

less than 1 bit remaining average entropy in key!

• 6 5
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Entropy Outline

Motivation and Different Entropy Measures

Collisions & Entropy Random Functions

Yes/No Questions

Min-Entropy, Guessing Entropy

Mutual Information

Entropy for keys -p Ig(p)

0 5

PUr Discussion 0 4

Fuzzy Extraction 
0 3

0.2

0.1

• 66
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Hash function?
L

Suppose some initial amount of entropy
Hash the input?

A function of a distribution
never increases the entropy
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Example - Random Function

5

1 <= x <= 128 = 27

x, uniform distribution

7. = H,

7. = Hj

J11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
20 40 60 80 100 120

index Sandia
National
Laboratories



Random Function

• 69

111

f(x)

i

1 <= x <= 27

6.01247 = H1

4.67807 =

io
20 40 60 80 100
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Random Function
L

5

4

1

0

• 70

II 1iIjIII II 1

f(x)

111

1 <= x <=

i

1 il V

I

1

Starting space
twice as large

1

6.46996 = H1

5.19265 = Ho3

III
40 60 80
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1mli 1 111 1
120
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Random Function
L

5

4

•71

f(x)

6.956= Hi

1 <= x <= 211 6.0458=HG,
Starting space
16x as large

1111112111111I 1
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Random Function
L

5

a 6-

1 <= x <= 214

Hoo initial = 14

6.99477 = H1

6.7616 = H,

111111111111111111111111111111111111111111011111111111111111111111101111110111111111
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Random Function
L

• 73

5

4

0
0 20 40 60 80 100 120

index

1 <= x <= 221

Hoo initial = 21

f(x)

6.99995 = H1

6.97089 = H„

11111111111111111111111111111111111 ..l....101111111111111111111111111111110101101101 .......T.II
Sandia
National
Laboratories



r

Statistical Distance

Let X and Y be two random variables
with range U. Then the statistical distance
between X and Y is defined as

A(X , Y) = 
1

P[X = u] P[Y = u]
2
uEU

For > 0 we define
X Y <=> A(X , Y) <

For example, we might want f(X) Uniform({0,1}128)
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Leftover Hash Lemma
L

Let H„(X) > k , Fix € > 0
Let 91 be a universal hash family of size 2d

)
with output length m = k 2 • lg

le 

Define Ext (x , h) = h(x)

Then Ext is a strong (k , ) extractor
with seed length d and output length m

m= 256 bits, E= 1/2256 k= 3.256 = 768 bits
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Random Function
L

5

4

1 < = x < = 2 2 1

Hoo initial = 21

f(x)

6.99995 = H1

6.97089 = H„

Distance from Uniform — .446.2-7
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(magnified jitter)
1.08

1.06

1 04
N

2 1.02
ci 

1.00

1 <= x <= 221

Ho° initial = 21

f(x)

6.99995 = H1

6.97089 = HG,

Distance from Uniform — .446.2-7

C .981 1 1 11 1 111 11
1

1 1
0 20 40 60 80 100 120
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(magnified jitter)

1.08

1.06

1.00

0.98-

1 <= x < 228

Ho. initial = 28

f(x)

001

7. = H1

6.99783 = Ho,

• • • _

0
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Entropy Outline

L
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PUF Discussion 0.4

Fuzzy Extraction 
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Computing Shannon Entropy

L

• The Shannon entropy is defined as

H1 pi • lg(pi)

• The pi's must be known for every event

• The summands must be computed

• The sum must then be evaluated

• 80
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Computing Shannon Entropy
L

• Suppose all the information is available

Index Value Prob -Ig(Prob) Product

0 A .1 3.32 0.332

1 B .05 4.32 0.216

2 C .3 1.74 0.522

3 D .2 2.32 0.464

4 E .2 2.32 0.464

5 F .15 2.74 0.411

H1 2.409

• Evaluating the sum is straight forward in this case
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Computing Shannon Entropy
L

• Suppose all the information is available

Index Prob -Ig(Prob) Product

0 .1 3.32 0.332

1 .05 4.32 0.216

2 .3 1.74 0.522

2128 — 2 .2 2.32 0.464
2128 — 1 .15 2.74 0.411

The moon has on the
order of 2128 atoms

H1 777
. Evaluating the sum is NOT straight forward in this case

• 2128 Probabilities must be stored

• 2128 _lg(Prob)'s and Products must be computed

• 2128 things must be added together

This is not computationally feasible
• 82
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How Many Devices
L

• Device with three binary PUFs: X1, X2, X3. The 8
outputs may be viewed as:

• Vectors (0,0,0), (0,0,1), ..., (1,1,1)

• Integers (000), (001), ..., (111)

• The events do not matter. It is the probability of the
events that determine the entropy

• How many devices do you need to confidently
determine the probability distribution?

• Coupon Collector (CC) says nlg (n) to see all values
• 8 • 3 = 24

• CC is not enough to determine the distribution

• n2 = 64? Or n3 = 512?

• Enough to do rudimentary Hypothesis Testing?
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How Many Devices are Needed
L

• Device with 128 binary PUFs: X1, ...,X128.
• Outputs may be viewed as: Vectors or Integers

• There are up to 2128 possible states

• This many devices does not physically exist

• Device with 32 PUFs: X1, ...,X32. Each PUF
outputs a four bit value

• There are also up to 2128 possible states

• Device with 8 PUFs: X1, ...,X8. Each PUF
outputs a 16 bit value

How do you estimate the probability
distribution from insufficient data?
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As Hard as Brute Force
L
• Even if every probability is known, computing the

Shannon entropy for a cryptographically relevant
situation is as hard brute forcing the key

• The list of probabilities is the same size as the key
space

• If the probabilities fall into a well known distribution
where an entropy formula exists, the formula can be
used in place of evaluating the sum

• Acquiring the probabilities for the set of events is as
hard as brute forcing the key

• If these are PUF outputs, you must access more
devices than there are keys to determine the
probabilities

Assumptions and Simplifications must
be made so that estimation can follow
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Independence
L

• If X1, ... , X128 are independent, then computing
H1 of the joint distribution is straightforward.

• The entropy of each component is required

• Data requirements (sample device numbers)
are manageable

• Computational requirements are trivial

128

1/1 (X1, ..• , X128) = 1 111 (Xi)

i=1

• 86
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Independence
L

• Independence is a common first assumption
• It is also almost always false

• How does one prove or disprove
independence of PUFs in a physical system?
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Multi-dimensions Correlation
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Multi-dimensions Correlation
L
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Large Dimensional Spaces

L

80 ring oscillators
each has 10 possible values
p(x1, x2, ..., x80) is over 1080 e__2, 2266 possible values

How do we calculate H1?

Active area of research!

15

x1

x4
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Dodis, Fuzzy Extraction Scheme
L

• 92

• A device uses PUFs to hide a secret seed

• Ingredients
• Secret seed that is k bits in length

• ECC, an (n, k) error correction code

• n total bits, k data bits

• m = n — k error correction bits called

• A codeword = 11 , which is n bits

• Secret PUF response p, which is n bits

• Helper data w = ED p, which may be
published

The secret may be a key or a seed for a KDF Sandia
National
Laboratories
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Dodis

• During operation
• Device queries its PUFs to obtain 13
• Computes = w El) 13

• Error corrects to obtain ( = sl le)
• Uses to recover

• If El) p= has small Hamming weight
. e = w ED =wED ED = ED
• 0 = ( El) is correctible by the ECC to recover
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Reveal the Helper Data
L

• Let
• P be the set of all n-bit PUF values

• S be the set of all k bit seeds

• C be the set of all codewords

• W be the set of all possible n-bit helper data

• Assume that H1 (S) = k , that is, the seeds are
drawn uniformly from S

• If the helper data is public, what is the
remaining entropy in the system?

What is Hi (C ) P IM)?
• 94

Sandia
National
Laboratories



r
What is H1 (CI ) PIW)?

L

W is fully dependent on (C , P)
• H1(C , P , W) = H1(C , P)

C and P are independent
• MC, P) = 111(C) + H1(P)

We have H1(C) = H1 (S)

So

It can be shown that
H1(W) H1(P)

H1(C , P 1W) = H1(C , P , W) I I 1 (W)
111(S) [111(W) — 1-11(P)]
k [H1(W) — 1-11(P)]

< k
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A Few Cases

L

Suppose H1(P) = n
. n H1(W) H1(P) n

• So H1(W) - H1(P) = 0

• H1 (C , Pl147) = k which is the entropy in the seed
space

If the PUFs have full entropy, no information about
the seed is given away by revealing the helper data

If H1(P) < n, then it may be that 6 = H1(W) — H1(13) > 0

• I11(C , P 1W) = k — 6 < k

The value of 6 is tied strongly to the interplay
between the PUFs and the error correction code
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Dodis Lower Bound

L

Suppose H1 (P) = n — pt We have that
• H, (C , P II/V) = k - [H1(W) - n + ii] k - pi

This is a lower bound on the system's entropy

Details matter, however...

For a wide variety of PUF distributions and Error Correction
Codes the assumption that H1(W) /ez-- n is reasonably close. If
so and k > pt , we have

H1(C , P 1W) = k — pt

Any deficiency of entropy in P translates to a reduction of
entropy in system.
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