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The Changing Solar Landscape: Drivers of
Growth and Their Impact

* Decreasing costs
Accelerated

* Increasing efficiencies growth

Larger-scale

° Aggressive installations

decarbonization policies

Geographic
diversification

Growth in Latin
America

Africa: Gambia plans 150 MW solar project Singapore: Floating PV
with 20 MWh storage option ' v
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Growth in Northern Regions: the US as a Case
Study

Cumulative U.S. Solar Installations by State

<50 MW =200 MW < 1,000 MW < 10,000 MW < 30,000 MW
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Snow as a Factor in PV Performance the
Northern US

Average Annual Snowfall in the Contiguous U.S. .
(based on NOAL NCEI 1981 - 2010 climate normals data) u

Snow occurs in all 50 states.

More than 30% of the US sees
significant snow.

Extreme snow and hail events
common: Nov 2019 storm dumped
snow across the US: CA 49” (124cm);
CO 15” (38cm); MIN 25” (63cm).
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Winter Storm Brings
Snow to at Least 30 States

SMAHTN Ews Keeping you current

Record-Breaking Storm Dumps Four Feet
of Snow on Parts of Montana

I September storm brole spowtall and temperatiure reconds scmss

severa] slnkes

Record-breaking hailstone in Colorado:
'Big hail like this can easily kill people’
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Why Snow Has the Solar Industry’s Attention

Deployment in Northern Regions is Increasing:

e Continued growth: capacity increase of 25% from
2018 to 2019 (2" biggest year on record)

 New markets opening up: cost drop and solar-
friendly policies (GHE goals)

* More geographically distributed

* Impact of climate on performance and reliability
increasingly important

Snow Losses Are Significant: cweewiesomesem e

v

* Snow losses can be large 27 MM
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(>90%/month; 2-5%/yr) = Y

* Average irradiance levels S L;‘{ ‘,‘ ) |
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Rank

State 2016 2017

Califomia 1 1 1
Texas 6 4 2
MNorth Carolina -4 2 3
Florida 9 3 4
Nevada 5 9 &
New York 12 12 G
New Jersey 10 11 (i
Minnesota 14 6 e
Arizona 7 7 9
Massachusetts 8 5

Reliability is Poorly Understood:

* Long-term impact of snow loading not known

* Global climate change = extreme weather: record-
breaking snow and hail storms

State solar installation rankings 2018, SEIA

Some of some fastest solar growth is
in regions with heavy snow

Bottom Line: LCOE calculations hard to calculate!

Alaska has 2MW of solar
563kW in Fairbanks



Why Snow is Challenging

* Properties of ice are well-known; far less is known about snow.

Also nothing about snow is constant: depth and density, reflect atmospheric variables and
change as snow accumulates and compacts over time.

* Snow can melt and partially reform; distinct layers can be identified.

Crystalline structure is highly variable, impacting reflectivity and transmissivity.

Albedo is also not constant.

Snow predictions have large margin of error.

Alexey Kljatov; NOAA




Sandia’s Snow Research Portfolio

Started as a 3-year, DOE-funded, Sandia-led research project: “Snow as a Factor in PV
Performance and Reliability.” For more info, see energy.sandia.gov/snow

Objective:
To further the deployment and optimal operation of PV systems in northern regions by
measuring snow losses and demonstrating effective mitigation strategies

Five Field Sites:

Michigan (1) -- 47°

Vermont (2) —
43.9° / 44.4°
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® Outdoor research site  # Indoor researchsite

Average annual snowfall in the US

Four-member project team:

Sondin Michigan ‘ UNIVERSITY OF
Technolo ical
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Project Has a Multi-Pronged Value Proposition

Systems that shed snow quickly
( Modeling of snow shedding N represent a more available
increases accuracy of solar- energy source; has implications
generation forecasting and for extreme weather events
reducing “ramp rate,” i
\dampens sudden osmllatlons)

L 2

a Systems designed for )
performance in snowy
climates will generate more

Expanded kWh and more revenue
Solar = lower LCOE
Markets \. - /

Identification and mitigation of
design weaknesses specific to cold
and snowy climates (includes
coatings, frames, differential snow
shedding) will lead to more robust
\ (and dependable) systems

Refined performance
models
= more accurate LCOE




Four-Part Technical Approach

L]
SNOW LOSSES RELIABILITY i al Sialaian b
+ Measured energy output + Extreme weather (cold, snow, hail | r;::g: ey | PERFORMANCE
+ Design factors (tilt angle, * Temperature swings ) SEame | OPTIMIZATION
maodule choice) _ .| " New technologies IR . ricrcation = :
+ Mismatch losses . X A =

/

Frameless Panels

= B Fearned Panals
Ciffering

Origntations

Bifacial Panals

Source: Sandia National Laboratories



1. Snow Losses:
Utility-scale data analysis

Objective: to measure actual snow losses across the d
northern US and identify contributing factors P
e Data we are collecting:
-Inverter power data
-Plane of array (POA) irradiance
-Ambient air temperature, wind speed and
relative humidity; BOM temperature
-Images at 15’ intervals to provide data on:
--Percentage of snow cover
--Percentage of energy loss attributable to snow cover
-System metadata

| Partnerships with developers and asset owners

* Participation criteria:
-Onsite monitoring, including heated pyranometer and meteorological instrumentation
-O&M support
-Automated access to time-stamped data, including energy data
-Site metadata
-Willingness to forgo snow-clearing, if routinely done

* Concept is expandable; opportunities for machine learning



Example: Data from Massachusetts

Challenge: large variability in weather

Objective: improve predictive models

snow coverage losses; track actual snow losses.

statewide.

to include

Potential vs. Actual Estimated Output from Behind-the-Meter Solar Power During 2017-2018 Cold Spell
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Monthly Soiling Loss Factors Per Site

A, T— e — — — .

Inconsistent loss factors 11
Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec. Snow losses significant
32.6% | 16.1% | 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 05% | 13.5% .
~ and hard to predict
Jan, Feb. Mar. Apr. May June July Aug. Sep. Oct, Nov. Dec.
20.8% 9.8% 0.5% 0.5% 0.5% 0.5%. 0.5% 0.5% 0.5% 0.5% 0.5% 5.9% /

Array soiling losses, two consecutive years



2. Reliability Challenges:

Short and Long-Term Stressors

Thermo-mechanical Loading
T

Objective: measure mechanical loads (module displacement) under different meteorological conditions.

Long-Term Cold Exposure (need for longitudinal studies) 1000 7

g 600 m
Framed Frameless £ a0 ;ﬂ
bifacial bifacial & 200 : =

3 . - IMI -10C -20C -30 C -40 C
Objective: correlate patterns of cell cracking with snow load,

. i Schneller et al show Iess force is needed to
module and cell technologies over time

induce cell cracking as temperatures drop

Extreme Weather

Objective: Track in situ crack formation; mitigation strategies

12




3. Performance Modeling:
Impact of frame on snow-shedding

Framed modules on the left; frameless on the right.
e Images taken at 15’ intervals from adjacent CIGS
arrays, one framed, one frameless

* Image analysis showed frameless modules generally
shed snow 50% more quickly than framed modules

* Energy gains from frameless—relative to framed—
were ~ 13% in December, 2018.

* Height of the array needs to be considered to
prevent build-up of snow on the ground.

Funded by:
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D. Riley, L. Burnham, B. Walker and J. Pearce, “Differences in Snow Shedding in Photovoltaic

Systems with Framed and Frameless Modules,” Proc.IEEE PVSC-46, 2020, 4pp.



3. Performance Modeling:
Albedo

Objectives:
1) Rethink modeling assumptions: does snow really have an albedo of ~.8?

2) Quantify seasonal and diurnal variation, as a function of:
* Irradiance "
* Angle-of-incidence
e Spectral variation
e Age of snow
* Depth of snow

3) Refine bifacial performance model to
include albedo of snow




4. Performance Optimization:
Strategies to accelerate snow-shedding

Pally Energy Lﬂust_luaiuSnw.W R‘I‘F )
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* Module orientation ' V

-5 degres modubs |
(sliding distance relative to frame) Nov 21, 2017 '”“,;f,',f” Jan 16,2018

Clip Effect
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Passive strategies:
* Tilt angle Tilt Angle

* Presence of frame
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* Module surface (friction coefficient)

* Edge gap

* Module clips

* Module technology (bifacial)
Active strategies:

* Snow removal (rake, blower)
* Adjustable tilt angle

* Reverse-current injection

5
L. Burnham, D. Riley, J. Braid, “Design considerations for photovoltaic systems deployed in snowy climates,” Proc. EU PVSEC, 2020, 51pp.
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Design Optimization: Module Orientation

Adjacent arrays in Bradford, VT

Modsle 17 - Portrait Bettom Non-Edge
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Methodology for image extraction

Orientation  Energy Time Time 1o Time Time 1o
vie bl o sttt produce o M%  finish
(%) shed pOWer power shed
(min} (min} (min) {min)
Landscape 593 47.5 65 30 30
Portrait 7.5 30 55 185 212.5

Time-series metrics
based on image analysis

J. Braid, D. Riley, J. Pearce and L. Burnham, “Image analysis method for quantifying snow lasses

Energy-yield metrics

on PV systems,” Proc. IEEE PVSC-47, 2020, 7pp.




Bifacial Performance

Albedo measurements

Seasonal and diurnal
variation:
* Irradiance
* Angle-of-incidence
* Spectral variation
* Age of snow
* Depth of snow
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Bifacial Gain

Tracker bifacials outperform Tracker bifacials outperform
tracker monofacials by 14% fixed-tilt bifacials by 41%

Bifscial Tracker vi. Bacial Fied
o N Tk

o ; L __L ]

. [
L a1 35 Degres WMo
AR VT CHNPNT e JOUR AR JDOE G4 AR 06 JDW S 2T

[ [ e VR

Yy pereraied

EWhH gt-n‘ap,ﬂ" [ nll'i"

I v W0 s Moo )
I et 3 Crvgreee Ao 4
= ' ' h H

{m t'ﬁ .\9.. _3,'-.“ r_-..u" i 1% ':m v,'..;s
'Hf-.w-‘ ""ﬂ' i g e - -f-w*
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L. Burnham, D. Riley, B. Walker, and J. Pearce,. “Performance of Bifacial Photovoltaic
Modules on a Dual-Axis Tracker in a High-Latitude, High-Albedo Environment,” Proc. IEEE
PVSC-46, Chicago, IL, 8pp, (2019) v
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Desigh Optimization: Shnow-phobic Coatings @

Two proof-of-concept coatings selected
based on transmissivity and functional
characteristics

Applied to fielded modules in Ml, VT and
AK

Time-series data collected on percent of
column covered in snow

Results are promising; will be repeated in
winter of 2021
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Summary

* Solar is expanding rapidly across northern regions

* Deployment is outpacing our knowledge of snow losses and reliability
issues

* Project hypothesis: significant increases in system efficiency are possible
through design optimization
* Specific opportunities for cold-climate optimization include:
* Frame architectures
* Module and cell technologies
* Racking and mounting designs
* Module and frame coatings

* Our research on all of the above is continuing



Thank you!

Laurie Burnham
lburnha@sandia.gov
505-845-7354
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