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The Changing Solar Landscape: Drivers of
Growth and Their Impact

• Decreasing costs

• Increasing efficiencies

• Aggressive
decarbonization policies

Growth in Latin
America
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• Accelerated
growth

• Larger-scale
installations

• Geographic -

diversification

Africa: Gambia plans 150 MW solar project
with 20 MWh stora • e o tion
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Growth in Northern Regions: the US as a Case
Study

Cumulative U.S. Solar Installations by State
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Snow as a Factor in PV Performance the
Northern US

• Snow occurs in all 50 states.

• More than 30% of the US sees

significant snow.

• Extreme snow and hail events

common: Nov 2019 storm dumped

snow across the US: CA 49" (124cm);

CO 15" (38cm); MN 25" (63cm).
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Winter Storm Brings
Snow to at Least 30 States
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Record-Breaking Storm Dumps Four Feet
of Snow on Parts of Montana
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Record-breaking haiLstone in Colorado:
'Big haik like this can easily kill people'

Average Annual Snowfall in the Contiguous U.S.
rbased cm h10.44. NU! i9S1 - 2010 climate normals data)



Why Snow Has the Solar Industry's Attention

Deployment in Northern Regions is Increasing:
• Continued growth: capacity increase of 25% from

2018 to 2019 (2nd biggest year on record)
• New markets opening up: cost drop and solar-

friendly policies (GHE goals)
• More geographically distributed
• Impact of climate on performance and reliability

increasingly important

Snow Losses Are Significant:
• Snow losses can be large

(>90%/month; 2-5%/yr)
• Average irradiance levels

are low
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Reliability is Poorly Understood:
• Long-term impact of snow loading not known
• Global climate change = extreme weather: record-

breaking snow and hail storms

Bottom Line: LCOE calculations hard to calculate!
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Texas 6 2

Norlh Carolina 4 3

Florida 9 4

N evada

New York

5

12

5

7

8

New Jersey 10 1 1
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Massachusetts (119

State solar installation rankings 2018, SEIA

Some of some fastest solar growth is
in regions with heavy snow

Alaska has 2MW of solar
563kW in Fairbanks



Why Snow is Challenging

• Properties of ice are well-known; far less is known about snow.

• Also nothing about snow is constant: depth and density, reflect atmospheric variables and
change as snow accumulates and compacts over time.

• Snow can melt and partially reform; distinct layers can be identified.

• Crystalline structure is highly variable, impacting reflectivity and transmissivity.

• Albedo is also not constant.

• Snow predictions have large margin of error.

Alexey Kljatoy; NOAA



Sandia's Snow Research Portfolio
Started as a 3-year, DOE-funded, Sandia-led research project: "Snow as a Factor in PV
Performance and Reliability!' For more info, see energy.sandia.gov/snow

Objective:
To further the deployment and optimal operation of PV systems in northern regions by
measuring snow losses and demonstrating effective mitigation strategies

Five Field Sites:

Alaska (2)-

61.2 9 /64.82

Michigan (1) -- 472 Vermont (2) —

/ 43.92 / 44.42

• OutcloCor rine.arvi 1. Widow research site

Four-member project team:
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Average annual snowfall in the US
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Project Has a Multi-Pronged Value Proposition

Modeling of snow shedding

[
increases accuracy of solar-

generation forecasting and

reducing "ramp rate," i.e.,

dampens sudden oscillations

1.rResource
Availability

Systems that shed snow quickly

represent a more available

energy source; has implications

for extreme weather events

C—Systems designed for

5. Grid 2. Site performance in snowy

Stability Expanded Profitability climates will generate more

kWh and more revenue
Solar

Markets
= lower LCOE

Identification and mitigation of

design weaknesses specific to cold

and snowy climates (includes

coatings, frames, differential snow

)shedding) will lead to more robust

(and dependable) systems

1 4.Module
Reliability

3. System
Predict-
ability L 

Refined performance

models

= more accurate LCOE
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Four-Part Technical Approach

SNOW LOSSES
M ea5u red energy output

• Design (actors MK angle,
module choice)

• MIsmech [osseš
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RELIABILITY
• Extreme weather (cod. Snow.
• Temperature
• New technologie5
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Albedo
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• Orientation
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1. Snow Losses:
Utility-scale data analysis

Objective: to measure actual snow losses across the
northern US and identify contributing factors

• Data we are collecting:
-Inverter power data
-Plane of array (POA) irradiance
-Ambient air temperature, wind speed and
relative humidity; BOM temperature
-Images at 15' intervals to provide data on:

--Percentage of snow cover
--Percentage of energy loss attributable to snow cover

-System metadata

• Participation criteria:
-Onsite monitoring, including heated pyranometer and meteorological instrumentation
-O&M support
-Automated access to time-stamped data, including energy data
-Site metadata
-Willingness to forgo snow-clearing, if routinely done
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Partnerships with developers and asset owners
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• Concept is expandable; opportunities for machine learning



Example: Data from Massachusetts

Challenge: large variability in weather statewide.

Objective: improve predictive models to include
snow coverage losses; track actual snow losses.

Potential ea. Actual Eallmoloct Output from Bohind,thia,Maler Solar Poorer Durrng 2017-205a Cold Spa

asK

:LC

(LK

1 

1:11 x111.111.1

,,,,, ,' 11 
ri 

P A ;11 ji 1! i

9 r 9 11 1' 11 r 11 11 r._

il l il ii ii iL i ,i 1= FL
: i 1 F i
• ! ! i Ei ! L Ei Ei ! '

D.Ls ,
1 I 

I, 1 
E 1 

ME 4. ii i 1 i H .. ri.,d. t ii• : : !: :. : •...
..s 4.4 ieeee,o,overe,,,,, 4••• .- 1.• -,.. D.- ...• v- 1.- tr.

.," d.- ,,,,, dr, ,., f , if i i. f i ,
Representative snow losses over two-week period

**LIR .DIAZ4 .1.141.01.d MPAMICA

aamplpoor acrualmir roarker.

Wel

"%mini+ Pe sildallyed01 Waft

Trivr&aliwarliwi,po ikrauers

ft. rem. OSA.

emprettr

Irrociaw.
• • •

paSPnlial

Csilrnaiodautpvi

15.01

Monthly SOill ng Loss Factors Per Site

r- pj p

Inconsistent loss factors 11

Jan. 1 Feb. Mar, Apr. May June July Aug. Sep. Oa Nov. Dec.

32.6% 1 16.1% 1 0.5% 0.5% 0.5% 0.5% _ 0.5''. D.5% 0.5%  0.5% 0.5% 13.5%

Jan, Mor. Apy

20 81/, Et B%

M ay

11.5%

Arne

0 23%

Aug. Sep. Oct Nov. Dec.

C.5% CI.5% 0.V4 0.5% 5.9%

Snow losses significant

and hard to predict

Array soiling losses, two consecutive years



2. Reliability Challenges:
Short and Long-Term Stressors

Thermo-mechanical Loading

Objective: measure mechanical loads (module displacement) under different meteorological conditions.

Long-Term Cold Exposure (need for longitudinal studies)

Framed

bifacial
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Frameless 44:10

bifacial 2og

Objective: correlate patterns of cell cracking with snow load,

module and cell technologies over time

o

Schneller et al show less force is needed to
induce cell cracking as temperatures drop

Extreme Weather

Objective: Track in situ crack formation; mitigation strategies



Funded by:

3. Performance Modeling:
Impact of frame on snow-shedding

Framed modules on the left; frameless on the right.

• Images taken at 15' intervals from adjacent CIGS
arrays, one framed, one frameless

• Image analysis showed frameless modules generally
shed snow 50% more quickly than framed modules

• Energy gains from frameless—relative to framed—
were 13% in December, 2018.

• Height of the array needs to be considered to
prevent build-up of snow on the ground. 0
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D. Riley, L. Burnham, B. Walker and J. Pearce, "Differences in Snow Shedding in Photovoltaic

Systems with Framed and Frameless Modules," Proc.IEEE PVSC-46, 2020, 4pp.



3. Performance Modeling:
Albedo

Objectives:

1) Rethink modeling assumptions: does snow really have an albedo of —.8?

2) Quantify seasonal and diurnal variation, as a function of:
• Irradiance
• Angle-of-incidence
• Spectral variation
• Age of snow
• Depth of snow

3) Refine bifacial performance model to
include albedo of snow



4. Performance Optimization:
Strategies to accelerate snow-shedding

Passive strategies:

• Tilt angle

• Presence of frame

• Module orientation
(sliding distance relative to frame)

• Module surface (friction coefficient)

• Edge gap

• Module clips

• Module technology (bifacial)

Active strategies:

• Snow removal (rake, blower)

• Adjustable tilt angle

• Reverse-current injection
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Edge Effect
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L. Burnham, D. Riley, J. Braid, "Design considerations for photovoltaic systems deployed in snowy climates," Proc. EU PVSEC, 2020, 51Pp.



Design Optimization: Module Orientation

Portrait

Landscape

Adjacent arrays in Bradford, VT
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J. Braid, D. Riley, J. Pearce and L. Burnham, "Image analysis method for quantifying snow losses

on PV systems," Proc. IEEE PVSC-47, 2020, 7pp.



11. Bifacial Performance

Albedo measurements
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Seasonal and diurnal
variation:
• Irradiance
• Angle-of-incidence
• Spectral variation
• Age of snow
• Depth of snow

Bifacial Dual-Axis Tracker Systems
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Tracker bifacials outperform

tracker monofacials by 14%
Tracker bifacials outperform

fixed-tilt bifacials by 41%
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L. Burnham, D. Riley, B. Walker, and J. Pearce,. "Performance of Bifacial Photovoltaic

Modules on a Dual-Axis Tracker in a High-Latitude, High-Albedo Environment," Proc. IEEE

PVSC-46, Chicago, IL, 8pp, (2019) 17
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Design Optimization: Snow-phobic Coatings N

• Two proof-of-concept coatings selected
based on transmissivity and functional
characteristics

• Applied to fielded modules in MI, VT and
AK

• Time-series data collected on percent of
column covered in snow

• Results are promising; will be repeated in
winter of 2021
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Summary

• Solar is expanding rapidly across northern regions

• Deployment is outpacing our knowledge of snow losses and reliability
issues

• Project hypothesis: significant increases in system efficiency are possible
through design optimization

• Specific opportunities for cold-climate optimization include:

• Frame architectures

• Module and cell technologies

• Racking and mounting designs

• Module and frame coatings

• Our research on all of the above is continuing



Thank you!

Laurie Burnham

Iburnha@sandia.gov

505-845-7354


