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ABSTRACT

A common problem in developing high-reliability systems is estimating the reliability for a
population of components that cannot be 100% tested. The radiation survivability of a
population of components is often estimated by testing a very small sample to some multiple
of the required specification level, known as an overtest. Given a successful test with a
sufficient overtest margin, the population of components is assumed to have the required
survivability or radiation reliability. However, no mathematical justification for such claims
has been crafted without making aggressive assumptions regarding the statistics of the
unknown distribution. Here we illustrate a new approach that leverages geometric bounding
arguments founded on relatively modest distribution assumptions to produce conservative
estimates of component reliability.
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EXECUTIVE SUMMARY

GTARS, the Geometric Tail Approximation for Reliability and Survivability is a data analysis
technique. It provides a mathematical basis for predicting reliability and confidence values for
components when using very small sample sizes and an overtest to some stress level in excess of the
requirement.

In the past, overtesting has found application in some areas of qualifying components for use in
weapons or on spacecraft. The most well-known example is radiation survivability testing, where it
is somewhat common practice to test samples as small as five components, but overtest them to
some higher radiation stress level, and then assert that the small sample passing the overtest suggests
that the population of components would pass the required stress with some unknown but high
probability. While this approach is attractive in some scenarios, there has been no mathematical
justification for such assertions.

GTARS was intended to solve the problem of predicting reliability and confidence when small
samples are subjected to an overtest. While GTARS cannot provide exact predictions for reliability
and confidence, it does provide a lower bounding value that can be mathematically justified. This
bounding value is a function of both the sample size and the overtest factor. In many instances,
overtest factors as small as two or three can result in high reliability estimates for a population of
components.

While GTARS was developed to address the topic of predicting population survivability for
radiation testing, the approach can be useful for any area of reliability testing where an overtest can
be employed with pass/fail critetia.



ACRONYMS AND DEFINITIONS

Abbreviation

Definition

CDF

Cumulative Density Function

GTARS Geometric Tail Approximation for Reliability and Survivability
PDF Probability Density Function

ELDRS Enhanced Low Dose Rate Sensitivity

HALT Highly Accelerated Lifecycle Testing




1. INTRODUCTION AND BACKGROUND

Assessing the reliability of components when the entire population can be tested to 100% of the
required operating environment is relatively simple, if time consuming. Unfortunately, when tests
are destructive in nature, testing the entire population is not possible. The more difficult problem is
to predict the reliability of a population of components from a small sample. In such cases,
predictions come with confidence intervals as one is, in effect, assessing the probability of the
reliability, or in more general terms, dealing with the probability of probabilities. In such cases,
interpretation of the data is more difficult, and any prediction of reliability comes with caveats.

When expensive components are in short supply, such as early in the development of a new system,
or when the tests in question are expensive, time consuming or otherwise difficult to perform, an
approach sometimes used is to test a very small quantity of components to a stress much greater
than required. Given that this very small sample passes this overest, the population is deemed to be
reliable or survivable at the lower, required stress. This approach is often pursued when testing
components for survivability in a radiation environment.

Opvertesting attempts to trade margin for the quantity of components tested. Overtesting is not an
uncommon practice in reliability qualification as certain well accepted test approaches, such as the
highly accelerated lifecycle testing (HALT) trades margin for time, but not margin for quantity. The
problem with testing a reduced quantity of components is that in the general case there has been no
mathematical justification for doing so. Asserting that a population will survive a required stress
simply because a sample survived when subjected to a significant stress above the requirement is not
technically defendable. It may look right. It may seem as if it should be true. But without making
significant assumptions regarding the parameters of the statistical distribution, such assertions have
lacked credible mathematical foundations.

This report introduces a new approach to overtesting, where mathematically defensible
approximations are used to produce an upper bound to the failure probability (or a lower bound to
the reliability) for a population. Similar to other statistical techniques, reliability predictions are
bound to confidence estimates, but with this new approach, very small sample sizes, when combined
with an overtest, can be used to predict the reliability or survivability of a larger population.

1.1. Binomial Estimates of Reliability

When attempting to predict the reliability for a population of components, where 100% testing is
not possible, a common approach is to test a small sample in a given environment and use the
results of these tests to predict the characteristics of the population. One approach would be to test
each component in the small sample to failure and then use the distribution of failures from the
sample to make a prediction regarding the distribution of failures for the population. A problem
with this approach is that it can be quite expensive, determining the exact failure threshold of each
part in every environment, and the statistics of the sample might be such that they incorrectly
predict an unacceptable fraction of the population would fail. This could easily result from small
samples having greater standard deviations than larger samples.

Another approach, and the one most often encountered, is to again test a small sample of
components, but only test them to the required survivability or reliability. Based on the number of



components in the sample, and the number of survivors and failures, binomial statistics' are used to
calculate a family of possible reliability values, with each such prediction being paired with an
associated confidence. The reliability is really a probability of survival or a probability of passing,
and the confidence is in effect a probability that the reliability value is equal to or greater than the
value chosen. Stated another way, reliability predictions are all about probabilities of probabilities.
There are no definitive answers without 100% testing.

When calculating reliability and confidence estimate pairs, one can either start with a reliability and
calculate the confidence or start with a desired confidence and calculate the associated reliability.
Either can be determined from the other, given the sample size and the number of successes or
failures in the test series. For a sample size, n, if the test series results in no failures, equations (1)
and (2) can be used to calculate either the reliability, r, or the confidence, c. When a test series
includes failures, a greater sample size, n, is required to achieve a given combination of reliability and
confidence, and the equations are more complex than those seen in (1) and (2).

c=1-1r" (1)

r="V1-c ©)

As an example, high reliability systems often seek a reliability value of r=0.97 (97%) or greater. This
can be achieved by testing 23 components with zero failures, provided a confidence value of ¢=0.5
(50%) 1s acceptable. Higher confidence values either require larger samples, or lower reliability
values. A more detailed discussion of binomial statistics and reliability predictions can be found in

Appendix A.

Table I presents some of the possible combinations of reliability and confidence that may be derived
from testing 23 components with zero failures. With this sample size, one can be almost completely
certain that the population reliability is at least 80%, or, one could be 91% certain that the
population reliability is at least 90%. The choice of 50% certainty that the reliability is at least 97%
might leave room for some anxiety regarding the actual reliability. This is a choice both for those
who are designing and for those who will be operating the system.

' When testing without replacement, technically one should use hypergeometric statistics as binomial statistics
assume replacement. However, given a sufficiently large population and a relatively small sample size, the
differences are minor and binomial statistics are used as their mathematical form is more easily employed.

10



Table I. Statistics for 23/0 Pass/Fail Testing

Reliability (%) Confidence (%)
97 50.4
95 69.3
93 81.2
90 91.1
85 97.6
80 99.4

Rather than arbitrarily selecting a reliability and accepting the calculated confidence, one might ask
what the most probable reliability is, given the results of pass/fail testing of the small sample. A
mathematical approach to selecting a reliability is to use Laplace’s Rule of Succession [1]. This rule
is most useful in situations where a modest number of components have been tested but no failures
have been observed. In the absence of failures, it leaves one to ponder what the probability is that
the next component tested will result in a success or a failure. Laplace rigorously demonstrated that
in the case of n successes with zero failures, the probability that the next component tested will pass
(probability of next success, pns) is given by the simple formula found in equation (3).

pns = — €)

For the present example, with 23 successes and zero failures, equation (3) gives a probability (or
most probable reliability) of 96% which would then have a confidence of 60.9%, calculated from
equation (1).

1.2 Traditional Overtest Approach

When components are expensive or in short supply, or when the tests themselves are difficult,
expensive, or excessively time consuming, destructively testing even a small sample of 23
components is a difficult choice. An approach sometimes encountered is to overtest a much smaller
sample. Then if all components from this much smaller sample pass when subjected to a multiple
of the required environment, the argument made is that this clearly demonstrates that the population
of components would pass the much less demanding required environmental stress with a high

probability.

As an example, total dose radiation testing of electronic components used in satellites or nuclear
weapons is by its nature, a destructive test. Frequently, some of the components will be very
expensive and in limited supply as it is difficult to make radiation hardened components. How then
should test engineers certify that the population of components would survive a specified radiation
dose, s?

An approach that has been used frequently in the radiation effects community is to overtest a very
small sample of, for example, five parts. The magnitude of the overtest depends on the
components, the radiation environment, and the system the parts will be used in, but overtest
factors ranging from two to ten are not uncommon. For those who are unfamiliar with overtesting
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in radiation environments, the approach is often used at Sandia National Laboratories, NASA, the
USAF, and some of their supporting contractors.

For the purposes of this report, when overtesting, sample sizes of five and seven are emphasized,
but sample sizes as small as four are sometimes encountered in the literature. If the specified
survivability stress is, s, and an overtest factor of, k, is used, then the actual environmental stress

applied to the components will be, g, as given in equation (4).
q=rk=*s “)

For values of k in the range of two to ten (or greater), the assumption is that if the small sample of
components survive an overtest with zero failures, then the remaining population of components
would certainly survive the required stress, s. One could also assume that the greater the overtest,
the more likely the population is to survive the required stress. This is shown graphically in Figure
1. While this seems reasonable and the approach appears to be an attractive option for reliability
testing, there exists no rigorous mathematical basis for making this assessment. It is simply an
unsupportable assumption. Stated another way, the assumption is nothing more than a guess.

. Assume 5/0
£ overtest overtest
S demonstrates
e .
> req_uwe.d.
= survivability
0
s at stress=s
o
o
Environmental Stress 1
s g=k*s
Figure 1. Overtest scheme using five parts.
1.3. The Power of Belief in Mathematical Discourse

It may be difficult to accept that a methodology developed to qualify components for high-
consequence systems could have weak mathematical foundations. However, human beings have a
substantial capacity for pattern-matching biases that drive them to create and build attachments to
hypotheses absent any proof. The following vignettes from the history of mathematics demonstrate
key principles informing the development of a sensible approach for interpreting overtest results.
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In approximately the year, 1637, Pierre de Fermat, a French jurist and amateur mathematician wrote
a note (one of many) in the margin of his copy of Bachet's translation of Diophantus's Arithmetica:

Cubum antem in duos cubos, ant quadratoquadratum in dunos quadratoquadratos et generaliter
nullam in infinitum unltra quadratum potestatem in duos ejusdem nominis fas est dividere: cujus rei
demonstrationem mirabilem sane detexi. Hanc marginis exignitas non caperet.

An approximate translation of this note is:

The equation x"+y"=2" has no integral solutions when n>2. I have discovered a
perfectly marvelous proof, but this margin is not big enough to hold it.

This note went on to become known as Fermat’s Last Theorem. Essentially all the notes Fermat
left in his book were eventually proven correct or false, save his last claim, which is more propetly
identified as a conjecture rather than a theorem, since Fermat left no proof of his claim. Fermat’s
note was published by his son in 1670. Over the intervening decades, even centuries, most of the
best mathematicians in the world attempted to prove the conjecture. Much progress was made on
the proof of special cases, but a general and complete proof was elusive.

Fermat’s Last Theorem was interesting because it was so simple to state and remained interesting
because it was so difficult to prove. The attempts to prove the conjecture resulted in the discovery
and development of significant volumes of new math, but all without a solution to the conjecture
itself. For hundreds of years, everyone knew Fermat’s Last Theorem was correct. Based on the
work of hundreds of mathematicians and countless attempts to find a counterexample, it just
seemed to be right, but no one could prove it to be correct until 1994, when Andrew Wiles
published his proof for a special case of the Taniyama-Shimura conjecture, thus completing the
missing link in a long line of proofs that together demonstrated Fermat’s Last Theorem to be
correct[2-4].

In 1769, the legendary Swiss mathematician, Leonard Euler, proposed what has come to be known
as, BEuler’s Sum of Powers Conjecture. Euler was generalizing Fermat’s Last Theorem to higher
powers and a greater number of terms. Stated simply, Euler proposed that for any prime integer, k,
it would require at least k integers raised to the k™ power to sum to another integer raised to the k*
power. In mathematical terms, for all integers n and k greater than 1, if the sum of n, k* powers of
positive integers is itself a k™ power, then n is greater than or equal to k:

ak + ak + a¥ + -+ ak = p¥ (5)

forn = k.

As an example, for k=5, it would require at least 5 integers raised to the k™ power to sum to another
integer raised to the k™ power, as
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al+a3+a3+al+a=>0b° (6)

Similar to Fermat’s Theorem, the Euler Sum of Powers conjecture attracted the attention of many
mathematicians. None were able to prove the conjecture, but over time, everyone came to believe it
was correct. Based on experience, it just seemed to be right. Eulet’s conjecture remained proven
until 1966 when L. J. Lander and T. R. Parkin published a counter example [5].

275 + 845 + 110° + 133° = 144° @)

Everyone knew Euler’s Sum of Powers conjecture was correct, until they found out it wasn’t. The
practice of using an overtest on a small sample to demonstrate the reliability of a population should
not be assumed to be correct, until it is proven so. Just because it seems to be correct, it feels right,
and it is economically advantageous, does not mean that the assumption is correct.

When a mathematical problem proves difficult, or even intractable, one approach towards a solution
is to work on a related problem that if proven correct, would help to bound or in some way limit the
original problem. An example is the harmonic series. Consider a series of integers, H, defined as

H, =X1 8)

Sk

. 1 . . . . .
Equation (H, = X} - (8) defines what is known as a harmonic series. The n" term in the series can

be expressed as,
T4o4idodgs ©
2 3 n

As n becomes infinite, does the series converge towards a finite value, or does it diverge towards
infinity? As defined, the series passes the convergence test, but this does not mean that it converges
(a common misunderstanding of the convergence test). The answer is not obvious and either way,
this is difficult to prove. However, it is relatively easy to bound the harmonic series with another
series where the terms are always less than or equal to those of the harmonic series. This alternate
series can easily be shown to expand towards infinity, thereby implying that the harmonic series is
also unbounded.

Rewriting (9) to include more terms, note that the series in (11) is, term by term, always less than or
equal to the series in (10).

1+1+1+l+1+1+1+1+1... (10)
2 3 4 5 6 7 8 9
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T4 iyl ip 2 (11)
2 4 4 8 8 8 8 16

Next note that

1 1 1

raia 12
N T (13)
8 8 8 8 2

Sttt —t—t—+—F—=2 (14)
16 16 16 16 16 16 16 16 2
and thus, the series in (11) can be expressed as
T4o4-+-.. (15)
2 2 2

which is clearly infinite. While it is difficult to prove the harmonic series itself is infinite, it is easy to
prove that the bounding series seen in (11) is infinite, thus confirming the harmonic series to be
infinite.

The foregoing historical vignettes clearly demonstrate two key principles:
1. An idea may be attractive and widely accepted, yet nevertheless be flatly wrong.

2. Bounding approximations may be very useful when exact determinations cannot be made.
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2, GEOMETRIC TAIL APPROXIMATION FOR RELIABILITY AND
SURVIVABILITY (GTARS)

The mathematical sidebar in the previous section is interesting by itself, but it helps to illustrate two
important points regarding the efficacy of the overtest approach for predicting reliability for a
population of components from a small sample. First, even though the approach seems to be
correct, it is not possible to state that it is correct without proof. Second, while it is impossible to
prove the correctness of results from the overtest approach, it might be possible to prove the
correctness of an approach that provides an upper limit, bounding the value for the probability of
failure, and therefore, also provides a lower limit, bounding the value for the reliability.

When one tests a very small random sample of components, n, and zero failures are observed, all
that can be said about the population is that a random sample of n components were tested to some
stress level and they all passed. It is not possible to make any statements regarding the population
distribution itself. Based on binomial statistics, one can use the sample size to calculate a family of
reliability and confidence pairs. As an example, for a sample size of five components, if tested to
stress level q=k*s with zero failures (noted as a 5/0 test), survivability and confidence estimates are
shown in Table II. (Note that the terms survivability and reliability are used interchangeably in this

paper.)

Table Il. Statistics for 5/0 Pass/Fail Overtest at Stress Level q=k*s

Survivability (%) | Confidence (%)
97 14.1
95 22.6
93 30.4
90 41.0
85 55.6
80 67.2

The available reliability (survivability) and confidence estimates shown in Table II are rather
unattractive for those attempting to develop high reliability systems. It is, however, critical to note
that the reliability (survivability) calculated for the sample of n components, is useful only for
predicting the reliability (survivability) at the stress level used for the test. If the parts are overtested
by some factor, k, then the reliability predictions are for that stress level, q=k*s, and, this point being
critical to understand, no information regarding the reliability of the population at the required stress
level, s, is known or can be directly determined.

To find an upper bound for the probability of failure for the population when exposed to the
required stress level, s, an approach known as the Geometric Tail Approximation for Reliability and
Survivability (GTARS) is developed here. For many applications, the only assumption required for
GTARS is that the distribution of failure thresholds for the population can be described as being
normal life. This simply means that the distribution has a single mode (hump), and no values less
than or equal to zero, except at zero environmental stress. The height and width of the distribution
are unknown. While many systems or components will have failure distributions for some applied
stress that are normal like, this is not a hard requirement for using the GTARS approach. Variations
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of GTARS are available that should be useful regardless of the actual shape of the population failure
distribution. Appendix B presents details for normal-like distributions, while Appendix C deals with
distributions that are uniform, or box-like on their left extreme. For failure distributions that
decrease with increasing stress, Appendix D discusses exponential decay functions while Appendix
E presents an approach for distributions better described as a decreasing triangle or wedge. Without
loss of generality, in this section, only #ormal-like distributions are considered.

A normal-like distribution, while not needing to be strictly normal, must be somewhat similar to a
normal distribution. Specifically, the left tail of the distribution must not extend to stress values less
than zero. Second, the left tail must start from zero and then curve upwards. The behavior of the
distribution towards the right tail is of no concern, but the left tail needs to be as described here.
These characteristics are shown in Figure 2. A multitude of probability distribution functions satisfy
these requirements, including the normal distribution (provided it is clipped at and below zero), the
log normal distribution, variants of the Weibull, Poisson, Chi Square and Gamma distributions as
well as a myriad of others not mentioned here.

f(x)
A
O e —
"&)' No values below
= environmental
8 stress =0
>
-y~
=
3
° £(x)2 0 \
S
o
|

Environmental Stress

Figure 2. Key characteristics of a Normal-like distribution.

Starting from the 5/0 overtest, the atea in the left tail of the distribution can be found from Table 11
(with failure percentage being 100 — Survivability percentage), or from equation (2). The area in the
left tail is the probability of failure which is 1-r. With the area of the left tail known, a triangle is laid
over the distribution such that this triangle starts from zero stress and zero probability density on
the left, and extends to the right to a stress of q=k*s. The triangle height is adjusted so that the
triangle’s area is equal to the area in the left tail of the probability distribution. This is explored in
detail in Appendix B but can also be seen in Figure 3.
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Figure 3. GTARS triangle approximation for Normal-like distribution.

Graphically, starting from a stress of zero and moving to the right, it is clear that the area in the
triangle to the left of any stress less than k*s, is always larger than the area in the left tail of the
distribution until the right end of the triangle where the stress is equal to k*s and the area of the
triangle is equal to the area of the left tail. Because this is true, for any stress less than k*s, the area
in the triangle is an upper bound on the failure probability. If the area in the left tail of the
probability distribution is, f, then for some stress, s, the area, e, in the triangle is given as e=f/k>
For a 5/0 overtest to some multiple, k, of the required stress, for a confidence of ¢=0.537, the
resulting reliability, calculated as h=1-e, for several overtest factors, k, is shown in Table III.

Table Ill. Survival of Components Calculated from a 5/0 Overtest.

Survivability at
Overtest Factor Spec (%) Confidence (%)
2 96.43 53.7
3 98.41 53.7
5 99.43 53.7
10 99.86 53.7

Appendix F presents tables with final reliability (survivability) values for 5/0 and 7/0 sampling using
overtest factors ranging from two to ten.

In some circumstances the assumptions necessary to the triangle approximation may not be met.
The assumption of a positive second derivative for the probability density may be false for a normal-
like distribution if the overtest level exceeds the inflection point on the PDF. This will readily occur
if the distribution is highly disperse. Many real failure probability density functions do not have a
finite density at zero stress; however, the exponential distribution has a constant hazard rate and is
often used in survival analysis. The exponential might be applicable or represent a contributing
mechanism if there were a background failure mode that was roughly constant any time the
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component was in operation. Regardless of the rationale, the more conservative uniform
approximation may be used when the triangle approximation is untenable, or when the analyst
prefers a lower-risk estimate.

f(x)
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ﬁ No values below

c environmental

8 stress =0

>

=

=

©

Q0

(o)

S

o

>

: i Environmental Stress X
) [}
s q

Figure 4. GTARS uniform approximation for Normal-like distribution.

Unlike the triangle approximation, the uniform approximation does not require £f(0)=0, nor does it
require £7(x)20. Instead, it requires £'(x)20, which is met for a Normal-like distribution up to the
mode, beyond which testing will generally be inappropriate. In correspondence with the triangle
approximation the area for the uniform approximation is given as e=f/k. The reliability estimate of
h=1-e will be smaller for the uniform approximation, but it will also tend to be more conservative.
This is discussed in greater detail in Appendix C.

Regardless of the GTARS approximation used, it is worth noting that if a small sample of
components are intended for an overtest of, k=10, and parts begin to experience failures at some k
factor less than k=10, it is not immediately necessary to test more parts. One might simply accept a
lower overtest factor, where all parts passed, and use that to calculate the probability of failure and
associated reliability at stress level, s. If for example, a small sample of parts survive to k=9 times
the required environment but fail at k=10 times that which is required, then for the triangle
approximation one simply has an upper bound on the failure rate of £/81 rather than £/100. Or, for
the uniform approximation, an upper bound of f/9 instead of £/10. This of course results in a
slightly lower reliability than would have been achieved with a k=10 overtest.

2.1. Other Considerations

Any component will experience failure in a given environment if subjected to a sufficiently large
stress. A population of such components will have a probability density function (PDF) describing
the specific stress at which individual components fail. This PDF exists independent of whether or
not any components are tested. Other than the small effects resulting from sampling without
replacement, the population PDF remains unchanged by the testing. The purpose of pass/fail
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testing on small samples from the population is to collect data to support estimates for the
percentage of the population that will fail above, or below the test threshold.

Components fail when physical parameters change as a result of an applied stress. Stresses can vary
in nature from simple aging with time to harsh external environments such as temperature extremes
or the presence of radiation. The functional dependence of the component parameter shift leading
to failure may be known, partially known, or possibly unknown. When the functional dependence is
known, it can be exploited to design more specific tests, but for complex components, many
parameters may be changing at once and the exact cause of failure may vary somewhat from part to
part.

Consider a component with critical operating parameter, m. The value of this parameter as a
function of stress, x, has the form

m;(x) = d; * f(x) (16)

where m; is the shift in parameter m, for the i" component, d; is the sensitivity of the i" component
to the specific applied stress, f(x) is the functional relationship, and x is the magnitude of the applied
stress. Clearly, the collection of d values for the entire population will form a sensitivity distribution.
For some value of m at which component failure is declared, equation (16) can be solved to find the
failure stress for the i component.

Megy = m(x;) = d; * f(x;) (17)

Rearranging equation (17), the failure threshold for the i component is given as
—1 (Msail
xi = 71 (H) (18)

The collection of failure x; values for the population is, by definition, the distribution of failure
thresholds mentioned throughout this paper.

The easiest situation occurs when the functional form is linear in the applied stress, x, such as

fO) = x (19)

but much more complex forms are possible, and highly likely. No matter what the form of equation
(19), the distribution of failure x; values for the population forms the failure PDF for the particular
stress being considered. When dealing with more complex forms of equation (19), it is important to
test using the environmental stress as specified and not change it into some equivalent form. As an
example, some components might be susceptible to mechanical damage specified as being able to
survive a drop from a given height onto a hard surface. The height corresponds to an impact
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velocity, but overtesting with a higher velocity is not the same as overtesting with a greater energy
unless the exact functional form of equation (19) is known. While kinetic energy and velocity are
functionally related, switching from one to another will necessarily change the shape of the
component failure PDF. Unless this is identified and accounted for, the GTARS correction factors
may overestimate or underestimate the failure probability for the population at the specified
reliability stress, s. It is, in general, easiest to test to either the specification as written, or some
multiple of it to achieve an overtest.

In many situations, reliability testing requires some form of temporal compression. For example, it
is not possible to test components required to survive 30 years sitting on the shelf without either
conducting a 30-year long test or designing some type of test that simulates 30 years of aging over a
much shorter period of time. One such approach is known as Highly Accelerated Lifetime Testing
(HALT) which relies on increased temperature to simulate the migration of contaminants that would
occur over many years at normal temperatures. While aging is a complex process, the basic physics
of many aging related failures is understood, thereby allowing tests with such temporal compression.

Because the functional relationship between stress and failure are understood, some types of HALT
testing may benefit from an overtest and use of the GTARS approach to predict population
reliability using very small sample sizes. For example, some aging-related failures in microelectronic
components results from the time-dependent migration of contaminants, the physics of which are
described by Fick’s second law, sometimes referred to as the heat transport equation. Solutions of
this equation differ based on initial boundary conditions, but a known solution form is

£ = e(Z—ﬁt) (20)

where c is the concentration of contaminant, y is position, D is diffusivity and t, is time. The
diffusivity has a temperature dependence, given as

D =D, * e(¥) 21)

where D, is the initial concentration, w is a collection of physical constants, and T is the
temperature. For a test to compress time, the terms D*t in equation (20) must remain constant. For
shorter times, this requires the diffusivity to increase, which, according to equation (21), requires an
increase in temperature.

Dnominal * tspec = Dincreased * treduced (22)

The same approach can be used to provide an overtest in time, by increasing the final time by an
overtest factor of, k.
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Dnominal * ke ox tspec = Dnew * treduced (23)

There are situations where temporal compression does not work without difficulty. For example,
where more than one Arrhenius coefficient impacts reliability. In such cases, it does not matter if
one is trying to use the more traditional reliability testing approach, where a sample is tested to spec,
or if one is trying to use an overtest with the GTARS correction. The same problems with temporal
compression that impact one test will impact the other. An example of such a situation is
sometimes encountered with testing of bipolar electronic components in an ionizing radiation
environment. The effect seen is that at very low dose rates, component parameter shifts are greatly
enhanced as when compared to testing at the relatively high dose rates required for temporal
compression. This effect is known as Enhanced Low Dose Rate Sensitivity (ELDRS).

As an example, consider a bipolar transistor that will operate on a spacecraft in low earth orbit.
Perhaps for this component, the estimated accumulated dose over a ten-year mission will be 100,000
rads. This corresponds to a mission dose rate of approximately 3.17E-4 rads per second. As it is
not practical to test components over a ten-year period, a test engineer might increase the dose rate
to 9.26 rads per second, thereby completing the test in only 3 hours. Experiments on certain bipolar
components show a substantially greater deterioration in performance for dose accumulated at the
estimated mission rate when compared to the test dose rate. It is easy to see that if an overtest with
a factor of k=3 was to be performed; this would extend the test to 9 hours, but the dose rate would
remain unchanged. Cleatrly, the effect of ELDRS is present whether the test engineer was pursuing a
test at 100,000 rads, or an overtest at 300,000 rads. The ELDRS problem is not related to the
GTARS approach of predicting reliability from sparse overtest data.

In the case of components that exhibit ELDRS, the test engineer can still use GTARS with an
overtest, but it will be necessary to characterize and understand the impact of the low dose rate
sensitivity. For other situations where temporal compression exhibits nonlinearities, the test
engineer will need to find ways to characterize the effect and compensate whether using GTARS or
not.

GTARS can be a useful tool for providing mathematically sound estimates of reliability from
pass/fail tests combining very small sample sizes with an overtest, or a test to some stress level in
excess of that required. As mentioned above, overtesting allows the test engineer to trade test
margin for sample size. GTARS provides the mathematical justification for the resulting reliability
predictions. Appendix G presents information to aid engineers in designing reliability tests that take
advantage of the GTARS approach.
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3. NUMERICAL SIMULATIONS

In the straightforward case of a normal-like failure PDF with the mode several standard deviations
from zero the application of the GTARS triangular (wedge) approximation yields a conservative
estimate of reliability at the specification stress level. In general, however, for circumstances where
the GTARS approach is of value, the shape of the distribution is unknown. Even if a Normal
distribution can be safely assumed, the mode and dispersion are unknown. Consequently, the
assumptions of the triangular approximation may not be satisfied at the overtest level.

Consider the visualizations of Normal probability density vs. standard deviation in Figure 5 below.
The mode has been normalized to unity; therefore, the overtest level may be contemplated as a
fraction of unity, or as a percentage of the mode. At 100% of the mode — in this case equivalent to
the median — the overtest level would comprise half of the failure PDF and reliability would not be
expected. In realistic use-cases for product development the specification and overtest levels will be
well below the failure distribution median.

It is important to keep in mind that the visualization in Figure 5 is for the overtest level, not the
overtest factor. Also, in general, the relative magnitudes of the specification and the failure PDF
median are unknown.

i —Normal SD0p1
4 i — Normal SD0p2
— Normal SD0p4
— Normal SD0p6
—Normal SDOp8

Normal Probability Density
N

i
0 0.2 0.4 0.6 0.8 Mode 1.2 14 1.6 1.8 2
X

Figure 5. Normal probability density versus dispersion.

Assuming a normal-like but unknown failure threshold distribution, passing an over-test yields:

e Calculated component reliability at spec*k
e Calculated confidence in calculated reliability

e Projected component reliability at spec
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But should we believe the calculated confidence applies to projected component reliability at spec?
Simulations were performed for a broad range of distribution parameters to explore the robustness
of the projected reliability to changes in the shape of the distribution.

The credibility of the projected component reliability over a range of distribution parameters is
shown in Figure 6. This visualization was generated from numerical simulations with 50,000
repetitions for each point on the graphic. The main simulation was performed in the Julia
programming language, and the outputs were visualized using SAS JMP Pro, Version 14. Details are
provided in Appendix H.

For the visualization in Figure 6, the passing rate vs. overtest level is given for various sample sizes.
The passing rate is the probability that a given overtest will produce zero component failures.
Overtests performed at a particular sample size and overtest level will have a probability of passing
based on the cumulative density function (CDF) up to that level. The simulated reliability for a
sample size and overtest level is estimated as the passing rate for all individual components in the
simulation vs. the specification level regardless of whether they belong to a passing or failing sample
at overtest.

The visualization in Figure 6 shows that depending on the sample size and the dispersion of the
failure PDF (the SD) there is a range of circumstances where the component reliability estimate
obtained using the GTARS approach will be optimistic. Without further information about the
distribution it is not possible to know how the overtest level compares with the median nor how the
dispersion compares with the median level. The probability of getting a passing result in a region
where the estimated reliability will be optimistic is substantial.

Notably, these problematic regions are consistent with operating parameters in severe violation of
the assumptions necessary to the wedge approximation. For SD 20.4 the PDF is clearly non-zero at
the origin, and the second derivative of the PDF is negative at all overtest levels. The GTARS
wedge approximation is robust to minor violations of its underlying assumptions but thorough
disregard for those assumptions invalidates the approach.

If the uniform approximation is used instead, as shown in Figure 7, then the requisite assumption of
a non-negative slope is met at all overtest levels and the GTARS method yields optimistic estimates
only at very high levels of dispersion. If the analyst using the method has good reason to believe
that the distribution is not so dispersed (flat) then it might be reasonable to use the uniform
approximation when conservative reliability estimates are required.

Another consideration that should be kept in mind is that the truncated Normal distribution was
only used in the examples above for ease of explanation. The Normal is rarely used in survival
analysis because it describes the failure behavior of few real components. Philosophically, the
Normal is based on the summation of small random fluctuations approximating a random walk.
Component failure is typically more related to the compounding of accumulated damages. The
compounding of small fluctuations leads to the LogNormal distribution[6], which is widely observed
in nature([7].

The LogNormal distribution is shown in Figure 8. For small values of sigma in comparison with the
median, the distribution appears very similar to the Normal. With increasing sigma, the distribution
demonstrates an initial rapid rise followed by a more gradually decreasing tail. Unlike the truncated
Normal, the LogNormal always satisfies the assumption of zero value at the origin as required for
the wedge approximation. As highlighted in Figure 9, the second derivative is always positive
starting from the origin, but only for a narrow range as sigma is increased.
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LogNormal Probability Density

LogNormal Probability Density
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Figure 8. LogNormal probability density versus sigma.
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Figure 9. LogNormal probability density near zero.
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As shown in Figure 10, the wedge approximation may be satisfactory if the dispersion of the
distribution is known to be modest. Otherwise, as shown in Figure 11, the uniform (or box)
approximation may be used with very little risk of producing an optimistic reliability estimate
because the test will rarely pass in the region where an optimistic estimate would be generated.

The foregoing rationale all depends on assumptions about the failure distribution that may not be
fully satistied. The LogNormal is a typical failure distribution but without further evidence it
amounts to a reasonable starting point. The analyst need not fully establish the distribution in order
to use GTARS, but the method will be more valuable, and the estimates will be more credible if the
characteristics of the distribution are qualitatively or semi-quantitatively understood.
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Figure 10. Credibility of reliability estimates for LogNormal PDF with wedge approximation.
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Figure 11. Credibility of reliability estimates for LogNormal PDF with uniform approximation.
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4, SUMMARY

The GTARS approach provides a mathematically defensible method for bounding reliability
predictions resulting from small sample testing to some stress level in excess of that required for the
system. With the proper selection of an overtest factor, reliability values well in excess of 90% with
confidence in excess of 50% can be obtained, rivaling the results of a 23/0 test that only stresses
components to their required environmental stress.

Success with GTARS hinges on appropriately conservative assumptions about the left “tail” of the
failure probability density. More aggressive assumptions enable higher reliability estimates, but the
choice of assumptions depends on the sound judgment of the analyst: when little is known or may
be reasonably inferred about the distribution, more conservative assumptions should be applied.
However, unlike the typical overtest approach where reliability is simply asserted, with GTARS the
estimates are grounded in a known construct that makes the analyst’s assumptions explicit. Cleanly
stated assumptions may be professionally reviewed and revisited in light of new evidence in ways
that unvalidated assertions cannot. When using GTARS, reliability estimates are traceable.

The GTARS approach was developed for radiation testing and to produce defensible survivability
estimates of a population, relying on small sample testing. It is possible this approach might be
applied to other types of reliability estimates for components, but no specific cases have been
extensively explored at this time.
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APPENDIX A. BINOMIAL STATISTICS AND RELIABILITY PREDICTIONS

When it is not possible to directly measure the reliability of a population, the alternative is to predict
the reliability, relying on results of tests on small samples drawn from the population. Often, a small
sample of n components will be tested to some stress threshold, s, with the results recorded as the
number of parts passing and the number failing. Ideally, a test would result in zero failures. This is
abbreviated as an n/0 test. Test seties that expetience failures can be acceptable but require a larger
number of parts be tested. Without loss of generality, here only tests with zero failures are
considered.

The problem with an n/0 test is that after the test, all that is known is that n components passed
with zero failures. No other information is known. The basic shape of the distribution, such as
normal-like, uniform, or decreasing exponential, might be reasonably assumed from past experience
and other knowledge related to the components. However, important parameters such as the mean,
standard deviation, and the percentage of the population that would fail at or below the stress level
used for the test, are unknown. One then might ask, what good is the n/0 test?

For the moment, without loss of generality, assume that the distribution of failure thresholds for a
population of components is normal-like, meaning that it has most of the characteristics of a normal
distribution but with no negative or zero failure values. There are variants of the Weibull, log
normal, Poisson, Chi Square and Gamma distributions that have normal-like characteristics. A
normal-like distribution will have a mean and standard deviation and will more or less look like a
traditional bell-shaped curve.

For an n/0 test to some stress level, s, any of the normal-like distributions shown in Figure A- 1
could represent the failure distribution of the population. The range of possible distributions is in
fact, infinite. The choice of the distribution relative to the stress level, s, determines the reliability of
the population. As all distributions are possible, how does one make a reliability estimate, and of
what value is it? The answer is that why all distributions are possible, some are more probable than
others and each reliability estimate comes with an associated probability of being correct, also
known as a confidence estimate.

Possible PDF Shapes

Lt

Stress level, s

Figure A- 1. Four possible normal-like distributions for n/0 test at stress level s.
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For a 23/0 test, a plot of possible reliability values with their calculated confidence levels is shown in
figure A2. The sample size of 23 was selected as that gives, with zero failures, 97% reliability with
50% confidence. As seen in figure A2, a myriad of reliability and confidence combinations are
possible. At this point, three questions emerge. First, how are the values plotted in figure A2
calculated. Second, what is the proper interpretation of any pair of values — what do they mean.
Finally, what is the most probable value for the reliability with any n/0 test.

Confidence VS Reliability for 23/0 Test
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Figure A- 2. Plot of confidence VS reliability for 23/0 test.

Given an n/0 test seties, to calculate the confidence for an assumed reliability, one uses equation
(A1). When failures occur, a more complicated version of equation (A1) is necessary.

c=1-1r" (A1)

Then as an example, using equation (A1), if the assumed reliability is, r=0.97, then the confidence is
calculated to be ¢=0.504, or essentially 50%. For convenience, this pair will be referred to as
coordinates in the Cartesian format, (0.97, 0.5). The confidence value is actually a probability
expressing how likely it is that the actual reliability is equal to or greater than the assumed value. For
the (0.97, 0.5) combination, one should interpret the values as though there is a 50% chance the
population reliability is at least 97%. There is, however, also a 50% chance that the population
reliability is less than 97%, but given the fact that the test series had 23 successes with zero failures,
checking other reliability and confidence coordinate pairs suggests the reliability of the population is
still quite high for the stress level, s, used for the 23/0 test. This can easily be seen in figure A2.

Finally, there is the question regarding the most probable value of reliability. Stated another way,
given a test series of 23 events with zero failures, what is the probability that testing a 24th part
would again result in a success. The answer to this question comes from Laplace’s rule of
succession. Laplace was theorizing on the morning sunrise. Given that the sun had risen every
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morning for some extremely long period of time, if sunrise was a probabilistic rather than
deterministic event, what would be the probability of the sun rising the next day. The answer
requites a careful mathematical analysis, but the result is surprisingly simple. For a 23/0 test, the
most likely probability that the 24th event would also result in a success is pns=0.96. This is found
from equation (A2), where pns is the probability of the next success.

pns = nte (A2)
Equation (A2) does not provide any information on what the actual population reliability at stress
level, s, will be, it only calculates the most likely reliability which, in turn, can be used to calculate a
confidence value. For a 23/0 test, the most likely reliability is r=0.96 with an associated confidence
value of ¢=0.609.

There exists a Wikipedia article suggests that Laplace’s rule of succession does not apply for
situations with zero failures or zero successes, but the mathematical analysis followed by Laplace and
reproduced by others contains no such limitations. Also, Laplace himself developed the approach
for an n/0 series of events. There are mathematical developments for n/m series where m failures
are included with the n successes (n>m) and some of these developments do not generalize to an
n/0 seties, but Laplace’s rule of succession, as represented in equation (A2) is correct.

For situations where very small samples are overtested by a factor of, k, to some stress level, q=k*s,
the analysis presented above remains correct, but much lower values of confidence will be calculated
for each estimate of reliability. Examples of a 5/0 and 7/0 test seties are plotted in figures A3 and
A4. What is critical to remember is that when using an overtest approach on very small samples, the
initial calculated confidence for an estimated reliability (or survivability) is for the higher stress level
of q=k*s, and the estimated reliability and confidence do not directly apply to the larger population.

Confidence VS Reliability for 5/0 Test
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Figure A- 3. Plot of confidence VS reliability for 5/0 test.
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Confidence VS Reliability for 7/0 Test
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Figure A- 4. Plot of confidence VS reliability for 7/0 test.
For clarity, when discussing the required reliability, the symbol, r, should be used. When discussing
a calculated reliability resulting from testing a sample to some stress level, s, the mathematical

notation should be, rs, and when discussing a calculated reliability resulting from testing a sample to
some stress level, q=k*s, the mathematical notation, rq, should be used.
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APPENDIX B. GTARS APPLIED TO NORMAL-LIKE DISTRIBUTION

Many probability distribution functions will have characteristics similar to a normal distribution.
These are referred to as normal-like distributions. They need not be ideally normal as they cannot
have probability for zero or negative values, but for the most part, they appear somewhat bell-
shaped. Probability distribution functions that have these characteristics include variants of the
Weibull, log normal, Chi Square, Poisson and Gamma. For a normal-like PDF, the GTARS
approach can be used to predict the reliability of a population from a small sample size.

For a component with a required reliability or survivability threshold of, s, an overtest by a factor of,
k, to a stress level of q=k*s, for n components with zero failures results in an assessed failure
fraction of, f, and a surviving fraction of g, such that f+g=1. As discussed previously, from
binomial statistics, there are multiple possible values of, f, each with a confidence, c. The goal of the
GTARS approach is to provide a mathematically derived value for the reliability of the population
when encountering an environment with an exposure or stress no greater than, s. The GTARS
approach for a normal-like PDF is shown in figure B1.

Probability Density

Environmental Stress

Figure B- 1. Normal-like probability distribution function.

The shaded area under the red line has an area equal to one and represents the PDF. The n parts
are tested to a stress of q=k*s. The failure fraction, f, for test level q=k*s, is graphically the area
under the red line and to the left of the vertical dashed line at k*s. This fraction, f, with an
associated confidence, ¢, can be calculated from binomial statistics for n parts with zero failures.

The desired information is the survivability fraction, for the population of components when
experiencing the required stress, s. The population failure fraction is referred to as area, e, and is the
area under the red line and to the left of the vertical dashed line at stress, s, seen shaded in the figure
B2. The population reliability or survivability is the area under the red line and to the right of the
vertical dashed line at stress, s. This area is given the symbol, h.
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Probability Density

S k*s
Environmental Stress

Figure B- 2
Figure B2. The shaded area is the population failure fraction, e. The

unshaded area represents the population survivability fraction, h.

The area, f, can be calculated from binomial statistics for an n/0 test, with an associated confidence,

c. Knowing only the overtest factor, k, and the estimated failure fraction, f, at the stress level of k*s,
one can calculate the estimated population failure fraction, e, and the population estimated reliability,
h, both with the same confidence, c.

To find a conservative estimate for the area, e, a triangle is fit to the left tail of the distribution
starting at zero and extending to the right to an environmental stress of k*s. The height of the
triangle is adjusted so that it has the same area as the failure fraction, f, as defined above. The
triangle, as described here, is easiest to visualize in figure B3.

Probability Density

5 k*s
Environmental Stress

Figure B- 3.
Figure B3. Triangle adjusted to equal the area under

the PDF to the left of environmental stress level k*s.
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An important point to grasp, is that starting from zero, the area of the triangle always exceeds the
cumulative area under the PDF up until a stress of k*s is reached, at which point the areas are equal.
This characteristic results from the nature of a normal-like PDF. The left tail of any normal-like
PDF is concave and curves upward. This can be confirmed by looking at the derivative of the
normal-like PDF. The equation for a normal distribution with mean, m, and variance, s2, is given as

PDF — 1 —(x—zu)2
~ovem’ ° B
and the first derivative is
d(PDF) _ —2(x—p) e'(’;—}“)z _ 2260 ppp (B2)
dx  o3\2m o o2

Since the PDF has only positive values, from equation (B2), one sees that for values of x<m, which
would be the left tail of the distribution, the derivative of the PDF is positive. The second derivative
of equation (B1) is

d?(pDF) _ (4(x-w?2-202) —-w? _ (4(x-w?-202)
Frcaa o e o2 = Y PDF (B3)

An analysis of equation (B3) indicates that for the left tail of the distribution, specifically, for stress
levels where (x — p) < %, the second derivative of the PDF is positive, indicating that it is concave

upward, thereby satisfying the conditions for the triangle shaped GTARS approximation always
having greater area, up until the point where the triangle and the tail have equal area at a stress level
of x=q=k*s.

For normal-like distributions, with an overtest factor of k, the area, e, being the estimated failure
probability for the population at stress level, s, is given as

e =ﬁ (B4)

h=1-L (B5)
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APPENDIX C. GTARS APPLIED TO DISTRIBUTION WITH BOX-LIKE TAIL

The left tail of some probability distribution functions can bear a strong resemblance to a box, or a
nearly uniform distribution. Certainly, a uniform PDF itself will appear box-like on the left tail, but
more complex distribution functions can still take on a box-like appearance on their left-most
extreme without being truly uniform in nature. For distributions with a box-like left tail, the
GTARS approach can be used to predict the reliability of a population from a small sample size.

The function, f(x) = Vx, where x is a real number greater than or equal to zero, rises sharply at
first, then more slowly as x gets larger. The integral of this function diverges, and it is therefore not
a good example of a PDF, but the concept of rising sharply at first, then flattening out is important.
A more complex function is required to fully illustrate the characteristic yet have the quality that the
integral from x=0 to infinity is equal to one.

Consider the function,

£(x) = 0.0817628 » ¥x * ¢~ (30) 1)

The integral of this function, from x=0 to infinity, is equal to one. A plot of f(x) over the domain of
x=0 to x=20 is shown in figure CI.
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Figure C1. Plot of f(x) = 0.0817628 * /x x ()

The plot shown in figure x, exhibits the expected characteristics. What is more interesting is to

consider a plot of this same function over the more restricted domain of x=0 to x=2, as shown in
tigure C2.
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Figure C2. Plot of f(x) = 0.0817628 * /x * e~ ()

Figure C2 shows that the function has the desired box-like characteristic on its left tail. The
function f(x) as defined in equation (C1) is not unique in having a box-like left tail. For example,
variations of the Weibull, Gamma, Chi Square, and Poisson distribution functions exhibit this same
characteristic.

For a component with a required reliability or survivability threshold of, s, an overtest by a factor of,
k, for n components with zero failures results in an assessed failure fraction of, f, and a surviving
fraction of g, such that f+g=1. As discussed previously, from binomial statistics, there are multiple
possible values of, f, each with a confidence, c. The goal of the GTARS approach is to provide a
mathematically derived value for the reliability of the population when encountering an environment
with an exposure or stress no greater than, s. The GTARS approach for either a uniform or box-/ike
tail PDF is shown in figure C3.

0.08
0.07
Z 006
e
S 005
a
2 0.04
® 003
el
o
£ 002
0.01 / /
0
o S k*S 4 6 8 10

X

Figure C3. Box-/ike tail probability distribution function
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The shaded area under the red line has an area equal to one and represents the PDF. The n parts
are tested to a stress of k*s. The failure fraction, f, for test level k*s, is graphically the area under the
red line and to the left of the vertical dashed line at k*s. This fraction, f, with an associated
confidence, c, can be calculated from binomial statistics for n parts with zero failures (noted as an
n/0 test).

The desired information is the survivability fraction, for the population of components when
experiencing the required stress, s. The population failure fraction is referred to as area, e, and is the
area under the red line and to the left of the vertical dashed line at stress, s, seen shaded in figure C4.
This is the same function as plotted in figure C3, but with the x-axis scale changed to more cleatly
show the box-like nature of the left tail of the distribution. The population reliability or survivability
is the area under the red line and to the right of the vertical dashed line at stress, s. This area is given
the symbol, h.
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Figure C4. The shaded area is the population failure fraction, e. The

unshaded area represents the population survivability fraction, h.

The area, f, can be calculated from binomial statistics for an n/0 test, with an associated confidence,

c. Knowing only the overtest factor, k, and the estimated failure fraction, f, at the stress level of k*s,
one can calculate the estimated population failure fraction, e, and the population estimated reliability,
h, both with the same confidence, c.

The area, e, is calculated from the area, f, as

N

C1)

&I~

Then, the reliability estimate, h, for stress level, s, is given as
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h=1-e=1-1% 2

Equations (C1) and (C2) provide a mathematically derived lower estimate for the reliability or
survivability of components with a PDF that features a box-like left tail and are exact for a true
uniform probability distribution function.
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APPENDIX D. GTARS APPLIED TO DECAYING EXPONENTIAL
DISTRIBUTION

Some possible probability distribution functions bear a strong resemblance to a decaying
exponential, at least at their left most extremes. For a decaying exponential PDF, the GTARS
approach can be used to predict the reliability of a population from a small sample size.

For a component with a required reliability or survivability threshold of, s, an overtest by a factor of,
k, for n components with zero failures results in an assessed failure fraction of, f, and a surviving
fraction of g, such that f+g=1. As discussed previously, from binomial statistics, there are multiple
possible values of, f, each with a confidence, c. The goal of the GTARS approach is to provide a
mathematically derived value for the reliability of the population when encountering an environment
with an exposure or stress no greater than, s. The GTARS approach for a decaying exponential
PDF is shown in figure D1.

Probability Density

S k*s
Environmental Stress

Figure D1. Decaying exponential probability distribution function

The shaded area under the red line has an area equal to one and represents the PDF. The n parts
are tested to a stress of k*s. The failure fraction, f, for test level k*s, is graphically the area under the
red line and to the left of the vertical dashed line at k*s. This fraction, f, with an associated
confidence, c, can be calculated from binomial statistics for n parts with zero failures (noted as an

n/0 test).

The desired information is the survivability fraction, for the population of components when
experiencing the required stress, s. The population failure fraction is referred to as area, e, and is the
area under the red line and to the left of the vertical dashed line at stress, s, seen shaded in figure
D2. The population reliability or survivability is the area under the red line and to the right of the
vertical dashed line at stress, s. This area is given the symbol, h.
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Figure D2. The shaded area is the population failure fraction, e. The

unshaded area represents the population survivability fraction, h.

The area, f, can be calculated from binomial statistics for an n/0 test, with an associated confidence,

c. Knowing only the overtest factor, k, and the estimated failure fraction, f, at the stress level of k*s,
one can calculate the estimated population failure fraction, e, and the population estimated reliability,
h, both with the same confidence, c.

The equation for a decaying exponential PDF is given as,

PDF(x) =we™* (D1)
which has the required property of having an integrated probability of one.

J, we™¥dx =1 (D2)

The fraction of the population failing, f, at stress level k*s, can be used to determine the constant w.
Recall that there exist an entire range of possible values of, f, each with an associated confidence, c.
The constant, w, is found from

f=["we™ dx=1-eks (D3)

Because g=1-f, equation (D3) can be rewritten as
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ws = — 29 (D4)

The reason for arranging with the product, ws, on the left side of equation (D4) will become
obvious below.

The final goal is to find an expression for, e, the fraction of the population failing at stress level, s.
This fraction is then used to calculate the fraction of the population, h, surviving stress level, s. This
fraction, h, is the expected reliability or survivability of the population, given with confidence, c.
Similar to equation (D3), an equation for, e, is

e = f; we WSdx =1—e"s (D5)

Then using a Taylor series approximation, the fraction, e, is given as

e=1—e" ~ws=—20_ @7 (Do)
k k
Finally, the reliability estimate, h, for stress level, s, for values of k>1, is given as
h1 4D D7)

When k=1, then h=g.
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APPENDIX E. GTARS APPLIED TO DECREASING TRIANGULAR
DISTRIBUTION

Some possible probability distribution functions bear a strong resemblance to a decreasing triangle,
at least at their left most extremes. For a decreasing triangular PDF, the GTARS approach can be
used to predict the reliability of a population from a small sample size.

For a component with a required reliability or survivability threshold of, s, an overtest by a factor of,
k, for n components with zero failures results in an assessed failure fraction of, f, and a surviving
fraction of g, such that f+g=1. As discussed previously, from binomial statistics, there are multiple
possible values of, f, each with a confidence, c. The goal of the GTARS approach is to provide a
mathematically derived value for the reliability of the population when encountering an environment
with an exposure or stress no greater than, s. The GTARS approach for a decreasing triangular
PDF is shown in figure E1.

[

| |
S k*s
Environmental Stress

Probability Density

Figure E1. Decreasing triangular probability distribution function

The shaded area under the red line has an area equal to one and represents the PDF. The n parts
are tested to a stress of k*s. The failure fraction, f, for test level k*s, is graphically the area under the
red line and to the left of the vertical dashed line at k*s. This fraction, f, with an associated
confidence, ¢, can be calculated from binomial statistics for n parts with zero failures.

The desired information is the survivability fraction, for the population of components when
experiencing the required stress, s. The population failure fraction is referred to as area, e, and is the
area under the red line and to the left of the vertical dashed line at stress, s, seen shaded in the
following figure. The population reliability or survivability is the area under the red line and to the
right of the vertical dashed line at stress, s. This area is given the symbol, h.
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Figure E2. The shaded area is the population failure fraction, e. The

unshaded area represents the population survivability fraction, h.

The area, f, can be calculated from binomial statistics for an n/0 test, with an associated confidence,
c. Knowing only the overtest factor, k, and the estimated failure fraction, f, at the stress level of k*s,
one can calculate the estimated population failure fraction, e, and the population estimated reliability,

h, both with the same confidence, c.

An equation for e, in terms of f, and k, is derived by defining point, w, as the point at which the
PDF reaches a value of zero. Then, from g=1-f, an equation for g is given as

o= [52] 2

w

Solving for w, one finds

w = ";jz (1+9)° (F2)

Again, given that f=1-g, equation (E2) can be rearranged to give

1,22
— 2ksw—k*“s (E3)

f

w?2

Next,
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(w-s)?

e=1-—

which can also be expressed as,

_ 2ws-—s?

w?2

Combining equations (E3) and (E5), an alternate expression for the area, e, is found as

L s
e—k+W2(k 1)

Then substituting equation (E2) in for w, one finds the desired result of

(k—1)f?

_f
€= T k2(1+g)2

Finally, the estimated population reliability is found as, h=1-e.
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APPENDIX F. RELIABILITY PREDICTIONS FROM GTARS USING AN
OVERTEST

To make use of the GTARS approach for different distribution shapes, it is easiest to start with a
desired confidence, and then calculate the reliability resulting from an n/0 test with an overtest
factor of k.

The reliability for no overtest, or an overtest factor of k=1, results from the specified confidence, c,
as

r="V1-c (F1)

Since the reliability for an n/0 test is also the same as the surviving fraction, g, then the fraction of
the population failing, assuming a confidence value of ¢, is given as f=1-g=1-r. To estimate the
fraction of the population sutviving at stress level, s, resulting from the n/0 overtest by a factor of k,
given a confidence value of ¢, one employs the appropriate GTARS equation.

As mentioned in appendix Al, to avoid confusion, when discussing the reliability requirement, the
symbol, r, should be used. When testing to some stress level, s, the calculated reliability should be
noted as rs, while for tests to an overtest stress level of q=k*s, the calculated reliability should be
noted as rq. Note that the goal is to get rs equal to r. Note also that rq is not the same as r o fs.
The estimated reliability at stress level, s, given as rs, can only be related to rq through use of the
GTARS approach.

For a 5/0 test series, tables F1-F4 provide calculated reliability estimates for overtest factors ranging
from k=1 to k=10. Table F1 uses the GTARS approach for a distribution with a box-like tail.
Table F2 uses the GTARS approach for a normal-like distribution. Table F3 uses the GTARS
approach for a distribution resembling a decaying exponential, while Table F4 uses the GTARS
approach for a distribution where the left-most tail resembles a decreasing triangle. The final row in
each table is for the confidence level associated with the reliability estimate resulting from Laplace’s
rule of succession, believed to be the most likely reliability for the 5/0 test.

Table F - 1. GTARS Reliability Estimates for Box-Like Tail Distribution.

k=1 k=2 k=3 k=4 k=5 k=7 k=9 k=10
Confidence| Reliability Reliability Reliability Reliability = Reliability Reliability = Reliability = Reliability

0.50 0.87 0.94 0.96 0.97 0.97 0.98 0.99 0.99
0.55 0.85 0.93 0.95 0.96 0.97 0.98 0.98 0.99
0.60 0.83 0.92 0.94 0.96 0.97 0.98 0.98 0.98
0.65 0.81 0.91 0.94 0.95 0.96 0.97 0.98 0.98
0.70 0.79 0.89 0.93 0.95 0.96 0.97 0.98 0.98
0.75 0.76 0.88 0.92 0.94 0.95 0.97 0.97 0.98
0.80 0.72 0.86 0.91 0.93 0.94 0.96 0.97 0.97
0.85 0.68 0.84 0.89 0.92 0.94 0.95 0.96 0.97
0.90 0.63 0.82 0.88 0.91 0.93 0.95 0.96 0.96
0.95 0.55 0.77 0.85 0.89 0.91 0.94 0.95 0.95
0.54 0.86 0.93 0.95 0.96 0.97 0.98 0.98 0.99

Note: Using 5/0 sample test, with overtest factors ranging from 1-10
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Table F - 2. GTARS Reliability Estimates for Normal-Like Distribution.

k=1 k=2 k=3 k=4 k=5 k=7 k=9 k=10
Confidence| Reliability Reliability Reliability = Reliability = Reliability Reliability = Reliability = Reliability

0.50 0.87 0.97 0.99 0.99 0.99 1.00 1.00 1.00
0.55 0.85 0.96 0.98 0.99 0.99 1.00 1.00 1.00
0.60 0.83 0.96 0.98 0.99 0.99 1.00 1.00 1.00
0.65 0.81 0.95 0.98 0.99 0.99 1.00 1.00 1.00
0.70 0.79 0.95 0.98 0.99 0.99 1.00 1.00 1.00
0.75 0.76 0.94 0.97 0.98 0.99 1.00 1.00 1.00
0.80 0.72 0.93 0.97 0.98 0.99 0.99 1.00 1.00
0.85 0.68 0.92 0.96 0.98 0.99 0.99 1.00 1.00
0.90 0.63 0.91 0.96 0.98 0.99 0.99 1.00 1.00
0.95 0.55 0.89 0.95 0.97 0.98 0.99 0.99 1.00
0.54 0.86 0.96 0.98 0.99 0.99 1.00 1.00 1.00

Note: Using 5/0 sample test, with overtest factors ranging from 1-10.

Table F - 3. GTARS Reliability Estimates for Decaying Exponential Distribution.

k=1 k=2 k=3 k=4 k=5 k=7 k=9 k=10
Confidence| Reliability Reliability Reliability Reliability = Reliability = Reliability = Reliability = Reliability

0.50 0.87 0.93 0.95 0.97 0.97 0.98 0.98 0.99
0.55 0.85 0.92 0.95 0.96 0.97 0.98 0.98 0.98
0.60 0.83 0.91 0.94 0.95 0.96 0.97 0.98 0.98
0.65 0.81 0.90 0.93 0.95 0.96 0.97 0.98 0.98
0.70 0.79 0.88 0.92 0.94 0.95 0.97 0.97 0.98
0.75 0.76 0.86 0.91 0.93 0.94 0.96 0.97 0.97
0.80 0.72 0.84 0.89 0.92 0.94 0.95 0.96 0.97
0.85 0.68 0.81 0.87 0.91 0.92 0.95 0.96 0.96
0.90 0.63 0.77 0.85 0.88 0.91 0.93 0.95 0.95
0.95 0.55 0.70 0.80 0.85 0.88 0.91 0.93 0.94
0.54 0.86 0.92 0.95 0.96 0.97 0.98 0.98 0.98

Note: Using 5/0 sample test, with overtest factors ranging from 1-10.
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Table F - 4. GTARS Reliability Estimates for Distribution with Decreasing Triangular Tail.

k=1 k=2 k=3 k=4 k=5 k=7 k=9 k=10
Confidence| Reliability Reliability Reliability = Reliability = Reliability Reliability = Reliability = Reliability

0.50 0.87 0.93 0.96 0.97 0.97 0.98 0.99 0.99
0.55 0.85 0.92 0.95 0.96 0.97 0.98 0.98 0.98
0.60 0.83 0.91 0.94 0.96 0.97 0.98 0.98 0.98
0.65 0.81 0.90 0.93 0.95 0.96 0.97 0.98 0.98
0.70 0.79 0.89 0.93 0.94 0.96 0.97 0.97 0.98
0.75 0.76 0.87 0.92 0.94 0.95 0.96 0.97 0.97
0.80 0.72 0.86 0.90 0.93 0.94 0.96 0.97 0.97
0.85 0.68 0.83 0.89 0.92 0.93 0.95 0.96 0.97
0.90 0.63 0.80 0.87 0.90 0.92 0.94 0.95 0.96
0.95 0.55 0.76 0.83 0.87 0.90 0.93 0.94 0.95
0.54 0.86 0.93 0.95 0.96 0.97 0.98 0.98 0.99

Note: Using 5/0 sample test, with overtest factors ranging from 1-10.

For a 7/0 test seties, tables F5-F8 provide calculated reliability estimates for overtest factors ranging
from k=1 to k=10 similar to the above.

Table F - 5. GTARS Reliability Estimates for Box-Like Tail Distribution.

k=1 k=2 k=3 k=4 k=5 k=7 k=9 k=10
Confidence| Reliability Reliability Reliability Reliability = Reliability Reliability = Reliability = Reliability

0.50 0.91 0.95 0.97 0.98 0.98 0.99 0.99 0.99
0.55 0.89 0.95 0.96 0.97 0.98 0.98 0.99 0.99
0.60 0.88 0.94 0.96 0.97 0.98 0.98 0.99 0.99
0.65 0.86 0.93 0.95 0.97 0.97 0.98 0.98 0.99
0.70 0.84 0.92 0.95 0.96 0.97 0.98 0.98 0.98
0.75 0.82 0.91 0.94 0.96 0.96 0.97 0.98 0.98
0.80 0.79 0.90 0.93 0.95 0.96 0.97 0.98 0.98
0.85 0.76 0.88 0.92 0.94 0.95 0.97 0.97 0.98
0.90 0.72 0.86 0.91 0.93 0.94 0.96 0.97 0.97
0.95 0.65 0.83 0.88 0.91 0.93 0.95 0.96 0.97
0.56 0.89 0.94 0.96 0.97 0.98 0.98 0.99 0.99

Note: Using 7/0 sample test, with overtest factors ranging from 1-10.
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Table F - 6. GTARS Reliability Estimates for Normal-Like Distribution.

k=1 k=2 k=3 k=4 k=5 k=7 k=9 k=10
Confidence| Reliability Reliability Reliability = Reliability = Reliability Reliability = Reliability = Reliability

0.50 0.91 0.98 0.99 0.99 1.00 1.00 1.00 1.00
0.55 0.89 0.97 0.99 0.99 1.00 1.00 1.00 1.00
0.60 0.88 0.97 0.99 0.99 1.00 1.00 1.00 1.00
0.65 0.86 0.97 0.98 0.99 0.99 1.00 1.00 1.00
0.70 0.84 0.96 0.98 0.99 0.99 1.00 1.00 1.00
0.75 0.82 0.96 0.98 0.99 0.99 1.00 1.00 1.00
0.80 0.79 0.95 0.98 0.99 0.99 1.00 1.00 1.00
0.85 0.76 0.94 0.97 0.99 0.99 1.00 1.00 1.00
0.90 0.72 0.93 0.97 0.98 0.99 0.99 1.00 1.00
0.95 0.65 0.91 0.96 0.98 0.99 0.99 1.00 1.00
0.56 0.89 0.97 0.99 0.99 1.00 1.00 1.00 1.00

Note: Using 7/0 sample test, with overtest factors ranging from 1-10.

Table F - 7. GTARS Reliability Estimates for Decaying Exponential Distribution.

k=1 k=2 k=3 k=4 k=5 k=7 k=9 k=10
Confidence| Reliability Reliability Reliability Reliability = Reliability Reliability = Reliability = Reliability

0.50 0.91 0.95 0.97 0.98 0.98 0.99 0.99 0.99
0.55 0.89 0.94 0.96 0.97 0.98 0.98 0.99 0.99
0.60 0.88 0.93 0.96 0.97 0.97 0.98 0.99 0.99
0.65 0.86 0.93 0.95 0.96 0.97 0.98 0.98 0.99
0.70 0.84 0.91 0.94 0.96 0.97 0.98 0.98 0.98
0.75 0.82 0.90 0.93 0.95 0.96 0.97 0.98 0.98
0.80 0.79 0.89 0.92 0.94 0.95 0.97 0.97 0.98
0.85 0.76 0.86 0.91 0.93 0.95 0.96 0.97 0.97
0.90 0.72 0.84 0.89 0.92 0.93 0.95 0.96 0.97
0.95 0.65 0.79 0.86 0.89 0.91 0.94 0.95 0.96
0.56 0.89 0.94 0.96 0.97 0.98 0.98 0.99 0.99

Note: Using 7/0 sample test, with overtest factors ranging from 1-10.
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Table F - 8. GTARS Reliability Estimates for Distribution with Decreasing Triangular Tail.

k=1 k=2 k=3 k=4 k=5 k=7 k=9 k=10
Confidence| Reliability Reliability Reliability = Reliability = Reliability Reliability = Reliability = Reliability

0.50 0.91 0.95 0.97 0.98 0.98 0.99 0.99 0.99
0.55 0.89 0.95 0.96 0.97 0.98 0.98 0.99 0.99
0.60 0.88 0.94 0.96 0.97 0.97 0.98 0.99 0.99
0.65 0.86 0.93 0.95 0.96 0.97 0.98 0.98 0.99
0.70 0.84 0.92 0.95 0.96 0.97 0.98 0.98 0.98
0.75 0.82 0.91 0.94 0.95 0.96 0.97 0.98 0.98
0.80 0.79 0.89 0.93 0.95 0.96 0.97 0.98 0.98
0.85 0.76 0.88 0.92 0.94 0.95 0.96 0.97 0.97
0.90 0.72 0.85 0.90 0.93 0.94 0.96 0.97 0.97
0.95 0.65 0.82 0.88 0.91 0.92 0.95 0.96 0.96
0.56 0.89 0.94 0.96 0.97 0.98 0.98 0.99 0.99

Note: Using 7/0 sample test, with overtest factors ranging from 1-10.
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APPENDIX G. GTARS BASED COMPONENT RELIABILITY TEST DESIGN

The purpose of component reliability testing is to provide a measure of confidence that the system
will operate as intended. Component reliability requirements are negotiated with the system
developer such that the overall system reliability is expected to meet or exceed requirements.
Translating the system-level requirements to the component level is essentially a budgeting exercise,
resulting in a component reliability specification and, whether explicitly stated or not, an acceptable
level of confidence in the assessed reliability.

The GTARS approach to component reliability testing employs an amplification or overtest factor
to reduce the number of components that must be tested to destruction in order to provide
assurances of reliability under specified stressors (e.g., for radiation testing a total dose or dose rate
might be a relevant stressor). The component reliability tester must design an appropriate tradeoff
between sample size and overtest factor, given the specified component reliability and assessment
confidence. This paper is intended to demonstrate the necessary mathematics leading to a design
equation for the overtest factor based on reliability, confidence, and sample size.

Definition of Terms

Several variables are necessary or helpful for describing the GTARS method and estimating the
overtest factot.

s = specification stressor level

k = overtest factor

q = applied stressor level under test conditions (q=k*s)

f = failure probability under test conditions (stressor level q)

e = failure probability under specified stressor level s (estimated as e = f/k2)
h = component reliability under specified stressor level s (h = 1-¢)

¢ = confidence attributed to test

rq = estimated component reliability under test conditions (stressor level q)
rs = estimated component reliability at required stress (stressor level s)

r = reliability in general (stressor level to be specified)

n = component sample size (count)

Note that h=rs
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Mathematical Approach

Start with previously established binomial formula relating sample count, confidence, and reliability.
The confidence level for the overtest and for the component reliability at spec are identical. The
incremental cost of sample size may be clearly defined by economic factors. The incremental cost
of overtest factor may be influenced by technical limitations of the test apparatus. Assume for this
analysis that there is a reason for engaging in a tradeoff between sample size and overtest level.

r=1-c)'n (G1)

Note: If testing to required stressor level, s, then the reliability in equation (G1) is rs. If testing to
an overtest stressor level, q=k*s, then the reliability in equation (G1) is rq. With stressor level
unspecified, only the symbol, r, is used.

Survival or reliability probability is the complement of the failure probability.
r=1-—f (G2)

When overtesting by some factor, k, with k>1, such that the stressor level is given as q=k*s, the
estimated component reliability at the required stressor level, s, is higher than that given in equation
(G2). The estimated reliability, h=rs, is then given as

h=1-% (G3)

Solving, equation (G3) for f,
f=Q-hk? (G4)

Then substituting for h=rs,

1-c)/n=1-(1-h)k? (G5)

Solving equation (G5) for k2,

1-(1-¢)/n

k? = — (Go6)
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Equation (G6) can be stated in other terms to provide some mathematical insight into the
relationship between the overtest factor, k, the failure probability, f=(1-tq), resulting from the n/0
test at stressor g-k*s, and the estimated population failure probability, e=(1-rs).

k? =

(G7)

Finally, equation (G6) can be reduced to yield

(G8)

The utility of equation (G8) is that it conveniently expresses the necessary overtest factor, k, as a
function of the desired confidence, population reliability estimate, rs, and sample size, n, assuming
an n/0 test.

As a demonstration of the utility of equation (G8), consider an example with n=5, ¢=0.9, and
rs=0.91. From Table F2 in appendix F, the necessary value of the overtest factor, k, is
approximately k=2. Equation (G8) yields an overtest factor of, k=2.024. The difference between
Table FF2 and equation (G8) is negligible, given that the values in Table F2 were only reported to two
significant digits.

As an additional demonstration, consider an example with n=5, ¢=0.9, and h=0.95. The value of k,
as calculated from equation (G8) is k=2.72 which is consistent with values that can be interpolated
from Table F2 in Appendix F.
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APPENDIX H. NUMERICAL SIMULATION APPROACH AND CODES

H.1. Simulation Approach

The ThresholdArray holds the failure thresholds for SigmaStepN component populations. Each
component population has PopN virtual component sets. FEach component set is TestN units. The
ThresholdArray is a PopN by SigmaStepN by TestN array.

The failure thresholds for the component populations follow a zero-truncated Normal distribution
with mean = 1 and SD = SigmaStep*1:SigmaStepN. As SD increases the distortion of the Normal
distribution due to truncation also increases.

There are OverSpecN items in the OverSpecFactors vector.

In simulation, each overtest design is repeated OTDesignRepeats times to enable estimation of
average outcomes.

ResultsDT is the central simulation table.

ResultsDTN = OverSpecN*OTDesignRepeats*SigmaStepN is the number of rows in ResultsDT

The columns of ResultsDT are:

SampleNumber represents all results for a given SD

Repetition represents all overtest levels for a single overtest design Repetition
SD is the standard deviation for the SampleNumber

Specification is the performance requirement for the component
Overtestlndex is the index for the OverSpecFactors Vector
OpvertestLevel is the actual level at over-test

OTSampleSize is the number of components in an overtest (=TestN)
FailureCount is the number of failed components in an overtest
Passing is marked as 1 if the FailureCount is 0, otherwise 0
ProjRelSpec is the projected reliability at Spec by GTARS
SimRelSpec is the simulated reliability at Spec

RelConservative is true if ProjRelSpec < SimRelSpec

RelCon is 1 if ProjRelSpec < SimRelSpec
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ProjConfidence is the projected confidence based on TestN

SuccessDT is the subset of ResultsDT where the overtest was successful, meaning that no failures
were observed.

Simulation was performed in the Julia programming language.

H.2. GTARS Simulation Script for LogNormal Distribution

#Revision of truncated Normal PDF based GTARS simulation script to instead use the LLogNormal
distribution.

cd("C:\\Users\ \tdosbor\ \julia_ GTARS")
println(pwd())
H
# Activate necessary packages
println("Initiating packages for data processing and visualization")
using OhMyREPL
using Revise
using Statistics
using Gadfly
using Cairo
using Fontconfig
using DatalFrames
using CSV
using Feather
using Distributions
println("Packages initiated")
H
H=
Package status as of 09Apr2021
(v1.0) pkg> status
Status "C:\Users\tdosbor\ .juliapro\JuliaPro_v1.0.5-2\environments\v1.0\Project.toml’
[c52e3926] Atom v0.11.2
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[336ed68f] CSV v0.7.7
[15913aea] Cairo v0.8.0
[293¢c6£00] DataFrames v0.21.5
[31c24¢10] Distributions v0.23.8
[becb17da] Feather v0.5.6
186bb1d3] Fontconfig v0.3.0
c91e804a] Gadfly v1.3.0
7073££75] IJulia v1.21.2
682c06a0] JSON v0.21.0
e5e0dc1b] Juno v0.7.2
5tb14364] OhMyREPL v0.5.5
69de0a09] Parsers v1.0.7
91a5bcdd] Plots v0.28.4
295af30f] Revise v2.7.3
2cb1919¢] StatsKit v0.3.0

=#

#Since the LogNormal is supported by the Distributions package, and since the LogNormal
distribution doesn't extend below zero, a few changes ate necessary.

— e/ /| e /| /e

—

#Note that the LogNormal mu parameter, when set to zero, makes the median unity.

#The LogNormal sigma parameter is not equivalent to the SD, but plays a similar role. It must be
greater than zero but less than or equal to unity. Otherwise the second derivative will initially be
negative and the GTARS wedge approximation assumes it is >=0.

#

#

PopN = 10000#Count of points (components) generated for each distribution
MaxOpverSpecLevel = 1.0#Purpose is to avoid cutting too close to the median - was 0.32
MaxSigma = 1.0#Limit sigma to no larger than unity

DistMedian = 1.0#Standardize so the first half of the distribution is in the space between zero and
unity.

DistMu = log(DistMedian)#In Julia the natural logarithm is log() and the base 10 logarithm is
log10()

OverSpecFactors = [11.522.533.544555566.577.588.59 9.5 10]#Vector of overspec
multiplication factors.

OverSpecN = size( OverSpecFactors )[2]#Number of overspec levels to test
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TestN = 11#Number of components in reliability test. A requirement of zero failures is assumed (a
TestN/0 testing approach).

Spec = 0.1#Specified stress level for component reliability
OTDesignRepeats = 50000#Number of times to repeat each overtest design at each overtest level
MaxOverSpec = maximum( OverSpecFactors )
MinOverSpec = minimum( OverSpecFactors )
MaxSpec = MaxOverSpeclevel / MaxOverSpec
if Spec > MaxSpec
Spec = MaxSpec
end
#Reduce Spec to MaxSpec if it would cause the overtest stress level to exceed MaxOverSpeclevel

SigmaStepN = 10#Number of sigma values used to map out response space. Sigma will vary from
MaxSigma/SigmaSteps up to MaxSigma.

SigmaStep = MaxSigma / SigmaStepN

#

#

function Rand_LogNormal(work_mu, work_sigma)
tempval=rand(LogNormal(work_mu, work_sigma))
return tempval

end

H

show(Rand_LogNormal(.5, Spec))

#

ThresholdArray = [Rand_LogNormal(DistMu, SigmaStep*j) for i=1:PopN, j=1:SigmaStepN,
k=1:TestN]

#

#First column to add is SampleNumber

#SampleNumber repeats by OverSpecN *OTDesignRepeats
SampleNumberReps = OverSpecN*OTDesignRepeats
ResultsDTN = SampleNumberReps*SigmaStepN
OvertestBlocks=floor(Int, ResultsDTN/OverSpecN)
OTBnew = OTDesignRepeats*SigmaStepN

#
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DistributionDT=DataFrame(SigmaStep=repeat(1:SigmaStepN, inner=PopN), Outcome=0.0)
for i=1:SigmaStepN
Baseline=(1-1)*PopN
for j=1:PopN
Marker=Baseline+j
#DistributionDT .SigmaStep[Marker] =1
DistributionDT.Outcome[Marker|=Threshold Array]j, 1, 1]
end

end

#

ResultsDT = DataFFrame(SampleNumber=repeat(1:SigmaStepN, inner=SampleNumberReps))
#

RepetitionX=repeat(1:OTDesignRepeats, inner=0OverSpecN, outer=SigmaStepN)
ResultsDT.Repetition = RepetitionX

#

SDX=ResultsDT.SampleNumber*SigmaStep
ResultsDT.SD=SDX

#

SpecificationX = fill(Spec, ResultsDTN)
ResultsDT.Specification = SpecificationX

#

OvertestIndexX=repeat(1:OverSpecN, outer=0OvertestBlocks)
ResultsDT.Overtestlndex = OvertestIndexX

#

OvertestFactorX = OverSpecFactors[ResultsDT.OvertestIndex]
ResultsDT.OvertestFactor = OvertestFactorX

#

OvertestLevelX = ResultsDT.OvertestFactor*Spec
ResultsDT.OvertestLevel = OvertestLevelX

#

OTSampleSizeX=fill(TestN, ResultsDTN)
ResultsDT.OTSampleSize = OTSampleSizeX
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#

#The Failure Count and Passing vectors are set to -1 so that if any of these values survive further
processing it will be obvious that an error occurred.

#

FailureCountX = fill(-1, ResultsD'TN)
ResultsDT.FailureCount = FailureCountX
#

PassingX = fill(-1, ResultsDTN)
ResultsDT.Passing = PassingX

H

#The following loop randomly picks one of the PopN sets of TestN components for each row of
the ResultsDT dataframe. This sampling with replacement since the set of TestN components is
not retired when drawn. The number of components with threshold less than the overtest level is
counted. If the count is nonzero then that test is considered to have failed (Passing = 0).

#
for i=1:ResultsD'TN

ResultsDT . FailureCount[i]=sum(Threshold Array|[ceil(Int,
PopN*rand()),ResultsDT.SampleNumber][i],:]. <ResultsDT.OvertestLevel[i])

if ResultsDT.FailureCount[i] == 0
ResultsDT.Passing[i]=1
else
ResultsDT.Passing]i]=0
end
end
H

#The next chunk calculates the projected reliability at spec using Laplace's rule. Squaring the
individual values of the overtest factor means that the projection is for a wedge, or "Normal-like"
component failure threshold distribution. Fpr the more conservative flat-tailed distribution the
overtest factor is not squared.

#

ProjRelSpecX =1 .- (1 - (TestN + 1) / (TestN + 2)) ./ (OvertestFactorX.”2)
ResultsDT.ProjRelSpec = ProjRelSpecX

#

#The next chunk repeats the projected reliability calculation as above, but for the flat-tailed or
uniform distribution assumption.

#
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ProjRelSpecXU =1 .- (1 - (TestN + 1) / (TestN + 2)) ./ (OvertestFactorX)
ResultsDT.ProjRelSpecU = ProjRelSpecXU
#

#The next chunk takes all of the values in the Threshold Array for each level of SD and compares
them with the spec level. The count of values exceeding the spec is compared with the count of
values in the array for that SD, yielding a simulated reliability at spec. That value is placed in the
Reliability by Standard Deviation (RelBySD) dictionary and then in the next loop the values are
placed in the SimRelSpec vector in the ResultsDT dataframe.

RelBySD = Dict()

SimCount = PopN*TestN

for i=1:SigmaStepN
TempSum = sum(ThresholdArray[:, i, :] .> Spec)
TempRel = TempSum/SimCount
setindex!(RelBySD, TempRel, 1)

end

#

SampleNumberX=ResultsDT.SampleNumber

SimRelSpecX=zeros(Float64, ResultsDTN)

for i=1:ResultsDTN
SimRelSpecX[i]=RelBySD[SampleNumberX{[i]]

end

ResultsDT.SimRelSpec=SimRelSpecX

#

RelConservativeX=trues(ResultsDTN)

RelConservativeX=SimRelSpecX.>ProjRelSpecX

ResultsDT.RelConservative=RelConservativeX

#

#

RelConservativeXU=trues(ResultsD'TN)

RelConservative XU=SimRelSpecX.>ProjRelSpecXU

ResultsDT.RelConservativeU=RelConservative XU

#

RelConX=zeros(Float64, ResultsD'TN)

for i=1:ResultsDTN
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if SimRelSpecX]i] > ProjRelSpecX(i]
RelConX]i]=1.0

end
end
ResultsDT.RelCon=RelConX
H
H

RelConXU=zeros(Float64, ResultsDTN)
for i=1:ResultsDTN
if SimRelSpecX[i] > ProjRelSpecXUlj]
RelConXUJi]=1.0

end
end
ResultsDT.RelConU=RelConXU
#

ProjConfidenceX=zeros(Float64, ResultsDTN)
TestNConf=1 - ((TestN + 1) / (TestN + 2)) * TestN
for i=1:ResultsDTN

ProjConfidenceX|i]= TestNConf
end
ResultsDT.ProjConfidence=ProjConfidenceX
show(ResultsDT, allcols=true)
#

ResultsDTComboA=combine(groupby(ResultsDT, [:SampleNumber, :OvertestIndex]), df ->
mean(df.RelCon))

show(ResultsDTComboA, allcols=true)
#

ResultsDTComboB=combine(groupby(ResultsDT, [:SampleNumber, :OvertestIndex]), :Repetition
=> maximum, :OvertestLevel => mean, :SimRelSpec => mean, :FailureCount => mean,
:ProjRelSpec => mean, :RelCon => mean)

show(ResultsDTComboB, allcols=true, allrows=true)
#

#Generate SuccessDT, a subset of ResultsDT where the overtest was a success (no failures
observed)
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SuccessDT = ResultsDT[ResultsDT.Passing .== 1, {]
H

#Generate SummaryDT, an aggregation of SuccessDT that enables comparison of the simulated
confidence with the projected confidence

SummaryDT=combine(groupby(SuccessDT, [:OvertestFactor, :OvertestLevel, :SDJ), :Specification
=> mean, :RelCon => mean, :ProjConfidence => mean, nrow)

show(SummaryDT, allcols=true, allrows=true)

#

#Need to plot SummaryDT showing simulated and projected confidence vs. overtest level and/or
overtest factor

#Concerned that RelCon is not giving an accurate mean.

#Next visualize the data using Gadfly
set_default_plot_size(15cm, 10cm)
#Make a scatterplot

ConfidenceVSOvertestFactor = plot(SummaryDT, x=:OvertestFactor, y=:RelCon_mean, color =
:SD, Theme(point_size = 1.5mm))

ConfidenceVSOvertestFactor | > SVG("ConfidenceVSOvertestFactor.svg")
ConfidenceVSOvertestFactor | > PNG("ConfidenceVSOvertestFactor.png")
#

#Save dataframes for examination with other tools (e.g., JMP, Excel)
ResultsDT | > CSV.write("ResultsDT.csv")

SuccessDT | > CSV.write("SuccessDT.csv")

SummaryDT |> CSV.write("SummaryDT.csv")

DistributionDT | > CSV.write("DistributionDT.csv")

#

H=

How this script works:

The ThresholdArray holds the failure thresholds for SigmaStepN component populations. Each
component population has PopN virtual component sets. Fach component set is TestN units. The
ThresholdArray is a PopN by SigmaStepN by TestN array.

There are OverSpecN items in the OverSpecFactors vector.
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In simulation, each overtest design is repeated OTDesignRepeats times to enable estimation of
average outcomes.

ResultsDT is the central simulation table.
ResultsDTN = OverSpecN*OTDesignRepeats*SigmaStepN is the number of rows in ResultsDT

The columns of ResultsDT are:

SampleNumber represents all results for a given SD

Repetition represents all overtest levels for a single overtest design Repetition
SD is the standard deviation for the SampleNumber

Specification is the performance requirement for the component
Overtestlndex is the index for the OverSpecFactors Vector
OvertestLevel is the actual level at over-test

OTSampleSize is the number of components in an overtest (=TestN)
FailureCount is the number of failed components in an overtest
Passing is marked as 1 if the FailureCount is 0, otherwise 0
ProjRelSpec is the projected reliability at Spec by GTARS
SimRelSpec is the simulated reliability at Spec

RelConservative is true if ProjRelSpec < SimRelSpec

RelCon is 1 if ProjRelSpec < SimRelSpec

ProjConfidence is the projected confidence based on TestN

SuccessDT is the subset of ResultsDT where the overtest was successful, meaning that no failures
were observed.
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