

Radium Dial Workers: Back to the Future

Journal:	<i>International Journal of Radiation Biology</i>
Manuscript ID	TRAB-2021-IJRB-0008.R3
Manuscript Type:	Review
Date Submitted by the Author:	01-Apr-2021
Complete List of Authors:	Martinez, Nicole; Clemson University, Department of Environmental Engineering and Earth Sciences; Oak Ridge National Laboratory, Center for Radiation Protection Knowledge Jokisch, Derek; Francis Marion University, Department of Physics and Engineering; Oak Ridge National Laboratory, Center for Radiation Protection Knowledge Dauer, Larry; Memorial Sloan-Kettering Cancer Center, Radiology & Medical Physics Eckerman, Keith; Oak Ridge National Laboratory Goans, Ronald; MJW Corporation, Brockman, John D.; University of Missouri, Department of Chemistry Tolmachev, Sergei; Washington State University, College of Pharmacy, United States Transuranium and Uranium Registries Avtandilashvili, Maia; Washington State University, College of Pharmacy, US Transuranium and Uranium Registries Mumma, Michael; International Epidemiology Institute, Boice, J. D. ; Vanderbilt University School of Medicine, Epidemiology; NCRP, Leggett, Richard; Oak Ridge National Laboratory, Center for Radiation Protection Knowledge
Keywords:	million person study, dial painters, radium, mesothorium, Dosimetry

SCHOLARONE™
Manuscripts

Radium Dial Workers: Back to the Future

Nicole E. Martinez,^{a,b,*} Derek W. Jokisch,^{b,c} Lawrence T. Dauer,^d Keith F. Eckerman,^b Ronald E. Goans,^e John D. Brockman,^f Sergey Y. Tolmachev,^g Maia Avtandilashvili,^g Michael T. Mumma,^{h,i} John D. Boice, Jr.,^{i,j} Richard W. Leggett^b

^a Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; ^b Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, Oak Ridge, TN, USA; ^c Department of Physics and Engineering, Francis Marion University, Florence, SC, USA; ^d Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ^e MJW Corporation, Inc., Buffalo, NY, USA; ^f Department of Chemistry, University of Missouri, Columbia, MO, USA; ^g United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Richland, WA, USA; ^h International Epidemiology Institute, Rockville, MD, USA; ⁱ Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ^j National Council on Radiation Protection and Measurements, Bethesda, MD, USA

*CONTACT Nicole E. Martinez nmarti3@clemson.edu Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, SC 29625, USA

Abstract.

Purpose: This paper reviews the history of the radium dial workers in the United States, summarizes the scientific progress made since the last evaluation in the early 1990s, and discusses current progress in updating the epidemiologic cohort and applying new dosimetric models for radiation risk assessment.

Background: The discoveries of radiation and radioactivity led quickly to medical and commercial applications at the turn of the 20th century, including the development of radioluminescent paint, made by combining radium with phosphorescent material and adhesive. Workers involved with the painting of dials and instruments included painters, handlers, ancillary workers, and chemists who fabricated the paint. Dial painters were primarily women and, prior to the mid to late 1920s, would use their lips to give the brush a fine point, resulting in high intakes of radium. The tragic experience of the dial painters had a significant impact on industrial safety standards, including protection measures taken during the Manhattan Project. The dial workers study has formed the basis for radiation protection standards for intakes of radionuclides by workers and the public.

Epidemiologic approach: The mortality experience of 3,276 radium dial painters and handlers employed between 1913-1949 is being determined through 2019. The last epidemiologic follow-up was 30 years ago when most of these workers were still alive. Nearly 65% were born before 1920, 37.5% were teenagers when first hired, and nearly 50% were hired before 1930 when the habit of placing brushes in mouths essentially stopped. Comprehensive dose reconstruction techniques are being applied to estimate organ doses for each worker related to the intake of ²²⁶Ra, ²²⁸Ra, and associated photon exposures. Time dependent dose-response analyses will estimate lifetime risks for specific causes of death.

Discussion: The study of radium dial workers is part of the Million Person Study of low-dose health effects that is designed to evaluate radiation risks among healthy American workers and veterans. Despite being one of the most important and influential radiation effects studies ever conducted, shifting programmatic responsibilities and declining funding led to the termination of the radium program of studies in the early 1990s. Renewed interest and opportunity have arisen. With scientific progress made in dosimetric methodology and models, the ability to perform a study over the entire life span, and the potential applicability

1
2
3 to other scenarios such as medicine, environmental contamination and space
4 exploration, the radium dial workers have once again come to the forefront.
5
6
7
8
9

Keywords: radium; mesothorium; dial painter; Million Person Study

10 11 **Introduction**

12
13 The epidemiologic investigation of United States radium dial workers is one of the most
14 important and influential radiation effects studies ever conducted (Rowland 1994; Fry
15 1998). The last epidemiological follow-up was conducted more than 30 years ago, at
16 which time most of the radium dial workers were still alive (Stebbins et al 1984;
17 Rowland 1994; DOE 2021). Ongoing extended follow-up will provide new information
18 on the lifetime risk of cancer and other adverse effects of ionizing radiation among
19 women following intakes of radium. The study of radium dial workers is part of the
20 Million Person Study (MPS) of low-dose health effects that is designed to evaluate
21 radiation risks among healthy American workers and veterans (Boice et al 2019). This
22 paper briefly reviews the history of the radium dial workers in the United States,
23 summarizes the scientific progress made since the last epidemiologic analysis of this
24 cohort (Rowland 1994), and discusses current progress in expanding and applying
25 updated models to the original cohort.

44 **Historical context**

45
46 There are numerous excellent reviews and books that discuss the history of the dial
47
48 painters (e.g., Martland 1929; Sharpe 1978; Rowland 1994; Fry 1998; Gunderman and
49 Gonda 2015), including Kate Moore's novel *The Radium Girls* (2017) that focuses on
50 the women's experiences. From this tragedy, information was learned about radiation-
51 induced osteosarcomas as well as mastoid and paranasal sinus carcinomas. Here we
52 provide a summary to provide context for the discussion that follows.

1
2
3 Marie and Pierre Curie discovered radium in 1898 and soon after radium was
4
5 being marketed as a medicinal cure-all (Cothorn and Smith 1987). The early 1900s also
6
7 brought the recognition that radium could be combined with phosphorescent material
8
9 (e.g., zinc sulfide) to make self-luminous paint; several proprietary formulas were
10
11 eventually developed. Dr. Sabin von Sochocky, who studied both medicine and atomic
12
13 physics (the latter under Dr. Ernest Rutherford), is credited with inventing a
14
15 radioluminous paint used widely in the United States that was cheaper than that
16
17 developed in Europe (NYT 1928; Sharpe 1978). In 1913, seven years after immigrating
18
19 to the United States (US), he began selling radioluminescent watches commercially and
20
21 two years later became an original founder of what would become the US Radium
22
23 Corporation (USRC); he left the company in 1922. Dial-painting enterprises prospered
24
25 early on due to the wartime demand for radioluminescent dials (Rowland 1994).
26
27
28

29
30 ^{226}Ra ($t_{1/2} = 1600$ y), an alpha-emitter, was used in dial paint through the
31
32 summer of 1919, at which point some facilities, notably USRC in New Jersey, also
33
34 began to use ^{228}Ra ($t_{1/2} = 5.75$ y), a beta-emitting decay product of ^{232}Th commonly
35
36 referred to as mesothorium (Keane et al 1994). Figure 1 contains decay schemes for
37
38 these two radium isotopes. Despite being chemically identical, ^{228}Ra was cheaper than
39
40 ^{226}Ra . The processing of thorium ore results in the production of thorium nitrate, which
41
42 was used at the time in the manufacture of incandescent gas mantles. ^{228}Ra was a
43
44 byproduct of this process that could be obtained locally, used after a year or two
45
46 following extraction to allow in-growth of alpha-emitting progeny, necessary to achieve
47
48 reasonable luminescence. Additionally, with a higher specific activity, ^{228}Ra also had a
49
50 “greater practical luminosity” than ^{226}Ra and was thus used in some locations to
51
52 supplement ^{226}Ra in dial paint (MLR 1926; Stewart 1929; Sharpe 1978). Retrospective
53
54 analysis of USRC dial paint determined an average ratio of ^{228}Ra to ^{226}Ra of about 8.4
55
56
57
58
59
60

1
2
3 for paints used between 1919 and 1925, with other years' paint likely ^{226}Ra only (Keane
4
5 et al 1994).
6

7 Workers in dial painting facilities included dial painters, dial handlers, chemists,
8 and other ancillary workers. Making up the largest percentage (90.2%) of the current
9 epidemiological cohort are the dial painters. Thousands of workers in the current study,
10 mainly women (96.4%), painted dials and instruments with radium paint, using their
11 lips to finely point their camel hair paint brushes to paint delicate pieces quickly and
12 precisely. Being a dial painter was considered glamorous and patriotic, and early on
13 little if any concern was expressed as to worker health and safety; many individuals
14 believed radium exposure was "good for you." Interestingly, Moore reports an
15 anecdote from 1918, where a New Jersey dial painter remembers von Sochocky, as he
16 quickly passed through the room, telling her not to put the brush in her mouth because
17 she would get sick (Moore 2017). In 1919, cloths were provided to help the painters
18 shape the brushes but were removed due to their "waste" of paint (Moore 2017).
19
20 Despite this passing concern, it appears supervisors and managers remained either
21 unconvincing or unconcerned that radium had negative health consequences, and most
22 dial painters continued to moisten and/or point the brush with their mouth for several
23 years following.
24

25 It wasn't until 1923 that Dr. Theodor Blum, a dentist in Orange, New Jersey,
26 first publicly reported that osteomyelitis of the mandible and maxilla had occurred in a
27 young painter of luminous dials, a condition termed "radium jaw" (Blum 1924; Fry
28 1998), although Dr. Martin Szamatolski, consulting chemist for New Jersey Department
29 of Labor, is often credited with the earliest written suspicion (January 1923) that radium
30 was the source of this occupational disease (Stewart 1929; Sharpe 1978). Research on
31 health effects of internal radium contamination began in earnest in the mid-1920s when
32
33

1
2
3 unusual occurrences of bone and other conditions began appearing among New Jersey
4
5 radium workers (Martland 1929; Martland and Humphries 1929; Aub et al 1952;
6
7 Rowland 1994; Stebbings 2001). A report by Harvard Medical School health and safety
8
9 experts Drs. W.B. Castle, Katherine Drinker, and Cecil Drinker was written for USRC
10
11 in June 1924 and published in 1925 despite objections from the company (Castle et al
12
13 1925; Rowland 1994). This report was one of the first studies to link exposure to
14
15 radium with blood changes and jaw necrosis observed in dial painters (Castle et al 1925;
16
17 Rowland 1994). Dr. Frederick Hoffman, a statistician by education, published
18
19 independent observations the same year, concluding that detrimental effects observed in
20
21 dial painters were most likely due to direct contact with radium in the paint via lip
22
23 pointing, although effects were attributed to ^{228}Ra (Hoffman 1925; Sharpe 1978). This
24
25 assumption was seemingly based on the fact that, at the time, affected women were
26
27 from USRC and believed to have painted with only ^{228}Ra -containing paint, contrasted
28
29 with other facilities using ^{226}Ra paint. Ultimately this resulted in ^{228}Ra no longer being
30
31 used in dial paint (Stewart 1929), which is supported by the retrospective paint analysis
32
33 mentioned above (Keane et al 1994). Interestingly, one ~~factor of~~ difference between
34
35 facilities that had an impact on radium intake was the type of adhesive used. Compared
36
37 to an oil-varnish adhesive, paint applied with a water-based adhesive usually resulted in
38
39 more frequent lip-pointing as water tends to separate brush hairs and was also less
40
41 objectionable to put in the mouth. Also, paint was easier to apply with a stylus of some
42
43 kind (e.g., glass rod or metal pen) with oil-varnish adhesive, which is likely why
44
45 European dial painters did not exhibit the same effects as early American dial painters
46
47 (Stewart 1929, Sharpe 1978).

56 The top panel of Figure 2 shows yearly averages in previously computed initial
57
58 systemic intakes of ^{226}Ra (left) and ^{228}Ra (right) for individuals in the current cohort;
59
60

1
2
3 non-zero intakes have been reported for dial workers through 1929 for ^{228}Ra and 1949
4 for ^{226}Ra (DOE 2021; Rowland 1994). Error bars represent the standard error of the
5 mean and do not include consideration of measurement or modeling uncertainty.
6
7

8 Estimates of initial systemic intake are available for 1,558 individuals in the current
9 cohort of 3,276 radium dial workers (see the following section). Initial systemic intake,
10 or the amount of radium that entered systemic circulation during an individual's
11 exposure period, was calculated based on measurements of body burden, or residual
12 radium content in the body (Rowland 1994). It was, however, sometimes necessary to
13 estimate an individual's ^{228}Ra intake from colleagues' results or from measurement of
14 exposure materials (DOE 2021). Initial systemic intake was found to be a useful metric
15 for developing dose-response type of relationships as it was time-invariant and involved
16 no assumptions as to the critical tissues at risk (Rowland and Lucas 1982).
17
18

19 Many dial-painting facilities reported prohibiting lip-pointing around 1925
20 (Martland 1929), although some seem to have delayed implementing the rule (Stewart
21 1929) and reports from painters themselves describe continuing to lip-point for a year or
22 two more (Rowland and Lucas 1982; Moore 2017). Despite some uncertainty in when
23 and to what extent lip-pointing was discontinued, calculated intakes of radium by dial
24 workers were much lower in the years following 1926 (Figure 2).
25
26

27 The bottom panel of Figure 2 contains individual initial systemic intakes of
28 ^{226}Ra for those in the current cohort for whom estimates are available (DOE 2021;
29 Rowland 1994). Widespread publicity of the hazards of dial-painting and tragic
30 consequences to early dial workers is attributed to the reduction in number of
31 employees following 1925, with renewed interest in the 1940s associated with the
32 wartime demand for luminous dials (Rowland and Lucas 1982). Figure 2 also
33 highlights the overlap of age and year of first exposure. Prior to the 1926 benchmark, a
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 large number of dial workers were under 18 years old. Looking forward to the 1940s,
4
5 there are comparatively fewer teenage workers. This may be in part due to the Fair
6
7 Labor Standards Act, first passed in 1938 (29 USC Chapter 8; DOL 2011).
8
9

10 Perhaps the most extensive of the early research into the effects observed in dial
11 workers was the body of work led by Dr. Harrison Martland, a pathologist at Newark
12 City Hospital who became the medical examiner for Essex County, New Jersey in 1925
13 (Martland et al 1925; Sharpe 1978; Fry 1998; Rowland 1994). He reports in a series of
14 papers detailed exposure history, symptoms, pathology, and prognosis of the radium-
15 induced diseases seen in dial workers (e.g., jaw necrosis, aplastic anemia, and
16 osteosarcomas) along with corresponding radiological measurements (Martland et al
17 1925; Martland 1926, 1929, 1931; Martland and Humphries 1929; Aub et al 1952).
18
19 Martland and colleagues, including von Sochocky, were among the first to develop and
20 use techniques for *in vivo* measurement of radioactivity (Martland et al 1925; Martland
21 1929). Martland was an advocate for the dial workers, and his papers frequently
22 included sociolegal aspects of the occupational circumstances (e.g., Martland 1929; Fry
23 1998).
24
25

26 The early health studies were revived by the Atomic Energy Commission
27 following World War II, partly because of the importance of radium studies in
28 predicting the health effects of plutonium, a new bone-seeking alpha-emitting
29 radionuclide. In 1969, the three major human studies of radium were centralized at
30 Argonne National Laboratory, following an initial proposal made by Dr. Robley D.
31 Evans as to the need for a National Center of Human Radiobiology. Evans was a
32 physicist at the Massachusetts Institute of Technology who made substantial
33 contributions to the radium studies starting in the early 1930s, fresh out of graduate
34 school, through his retirement in 1972. The Argonne program was terminated in the
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 early 1990s and materials were transferred to Washington State University and stored at
4
5 the National Human Radiobiology Tissue Repository (NHRTR) in Richland WA
6
7 (Rowland 1994). The United States Transuranium and Uranium Registries (USTUR)
8
9 research program is a federal-grant-funded human tissue research program providing
10
11 long-term study of actinide biokinetics in former nuclear workers with accidental
12
13 internal depositions of these elements. The USTUR conducts autopsies and performs
14
15 radiochemical analyses of voluntarily donated tissue samples (Kathren and Tolmachev
16
17 2019; Tolmachev et al 2019). NHRTR holds all tissues donated to the USTUR, along
18
19 with specimens acquired from the US Radium Worker Studies (Rowland 1994). The
20
21 USTUR/NHRTR is a unique resource for retrospective analyses and distribution studies
22
23 of plutonium, uranium, americium, as well as radium and beryllium in the human whole
24
25 body, as well as in specific tissues and organs. In fact, the USTUR repository contains
26
27 1000s of specimens from the radium dial workers and has been accessed to help inform
28
29 dosimetric models, e.g., radiochemistry determination of radium in brain tissue of a
30
31 painter (Leggett et al. 2018; Kathren and Tolmachev 2019; Tolmachev et al. 2019)
32
33
34
35
36
37
38

39 ***Cohort definition***

40

41 Over the years, there have been several epidemiologic studies and analyses of the
42 radium dial workers (Rowland 1993, 1994; Rowland et al 1978a, 1978b, 1983, 1989;
43 Polednak 1978a, 1978b; Polednak et al 1978; Rowland and Lucas 1982, 1984;
44 Stebbings et al 1984). The current population is composed of the dial painters studied
45 by Polednak et al 1978 (900 dial painters first hired prior to 1930) and Stebbings et al
46 1984 (approximately 2,600 dial painters hired prior to 1950) supplemented with
47 workers available from the comprehensive dataset from Argonne National Laboratory
48 described by Rowland (1994) and digitally archived at the US Department of Energy
49 (DOE) Comprehensive Epidemiologic Data Resource (CEDR). This dataset contains
50
51
52
53
54
55
56
57
58
59
60

1
2
3 information on about 6,000 individuals with radium exposure, including not only dial
4 workers, but also radium chemists, patients treated with radium, individuals who were
5 known to have ingested radium water (e.g., *Radithor*), and other miscellaneous
6 exposures (DOE 2021; Rowland 1994). While the information available in CEDR and
7 in Rowland (1994) helps define the study population, a key source of information is the
8 100,000s of pages of individual microfilm and microfiche records that were converted
9 to optical character read format. Detailed clinical data, dosimetry data, and follow-up
10 data for individuals provides a treasure trove of information to supplement and enhance
11 the epidemiologic data. These data were made available through the DOE USTUR.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The population selection and the incremental cost for data abstraction and tracing were balanced against a small benefit from including a substantially expanded set of radium dial workers who had very low or minimal radium intakes (e.g., those first employed after about 1925, and certainly after 1950). The final defined population includes all dial painters (DP) and dial handlers (DH) employed prior to 1950. The final population size consists of 3,276 workers, including a small number ($n = 119$) of male painters and handlers.

41 *Vital status and cause of death determination*

42
43 Vital status, date and cause of death as of December 31, 2019 (aka vital status tracing)
44
45 are being sought from linkages with the National Death Index (NDI); state mortality
46 files; the Social Security Administration (SSA) Death Master File; the SSA Service to
47 Epidemiological Researchers (which confirms alive status); and credit reporting
48 agencies using the methods outlined in Mumma et al (2018). The Centers for Disease
49 Control and Prevention LinkPlus program, which incorporates a probabilistic scoring
50 system that does not require exact matches on all variables, was used for in-house
51 matches (Campbell 2008). Online ancestry providers (Ancestry.com) and credit record
52
53
54
55
56
57
58
59
60

1
2
3 providers (Transunion) are important sources to help complete and correct key
4 demographic and linking data, such as Social Security Number, last names (which often
5 changed since employment), and dates of birth and death. Vital status (VS) tracing
6 (Figure 3) continues, and preliminary results are presented in Table 1. End-of-follow-
7 up (EOFU) in Table 1 refers to the date a person is no longer considered at-risk for
8 analytic purposes. It is their date of death, 95th birthday or December 31 of the
9 calendar year. We anticipate that most of the study participants still being traced will be
10 deceased as of December 2019.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Career doses

Dosimetry records documenting radiation exposure received after employment at dial
painting facilities will be sought from additional sources: the DOE Radiation Exposure
Monitoring System (REMS), including historic DOE radiation exposure data not
included in REMS; the Nuclear Regulatory Commission (NRC) Radiation Exposure
Information and Reporting System (REIRS) and Landauer, Inc. dosimetry records
(DOE 2018; NCRP 2018; NRC 2019; Yoder et al 2020). Based on the age structure of
the population, we do not anticipate many additional external dose records. All
organ/tissue-specific doses from each source will be added together to obtain the total
organ/tissue-specific external and internal dose received by each worker for each
calendar year, following the procedures outlined in Boice et al (2006) and Ellis et al
(2018).

1
2
3 **Integration of radiation biology, dosimetry, and epidemiology for the radium**
4 **dial worker cohort**
5
6
7

8 ***Epidemiology and health outcomes***
9

10 As above, the mortality experience of a new cohort of 3,276 radium dial painters and
11 handlers employed between 1913-1949 is being examined through 2019. Nearly 65%
12 were born prior to 1920, 37.5% were teenagers when first hired, 96.4% were female,
13 90.2% were dial painters, and nearly 50% were hired before 1930 when the habit of
14 placing brushes in mouths essentially stopped (Table 1). The large number of dial
15 workers first employed 1940-1949 (46.7%), represents a relatively large low-dose group
16 for comparison. The cohort was assembled over the years from over 10 different
17 companies located primarily in New Jersey, Connecticut, and Illinois (Table 1)
18 (Polednak et al 1978; Rowland 1994). A comprehensive approach to ascertaining vital
19 status (Mumma et al 2018) has already confirmed to date that 86% have died; 99% of
20 those with known vital status have died. Comprehensive dose reconstruction techniques
21 are being applied to estimate organ doses for each worker related to the intake of ^{226}Ra ,
22 ^{228}Ra , and associated photon exposures. Time dependent dose-response analyses will
23 estimate lifetime risks for specific causes of death, with a particular focus on
24 osteosarcoma, mastoid and paranasal sinus carcinoma; leukemia; cancers of the lung,
25 breast, and brain; ischemic heart disease; and dementia, Alzheimer's, Parkinson's, and
26 motor neuron disease.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 A comprehensive review of the published epidemiological studies of radium
50 workers can be found in Rowland (1994); Dr. Robert E. Rowland, a biophysicist, was
51 the first director of the Center for Radiation Biology at Argonne National Laboratory
52 and heavily involved in the radium studies. Updates and informative reviews also are
53 available in the Biological Effects of Ionizing Radiations (BEIR) IV Report (NA/NRC
54
55
56
57
58
59
60

1
2
3 1988) and articles by Fry (1998) and Stebbings (2001). Over the years different
4 epidemiologic cohorts were defined, e.g., women first employed before 1930 (Polednak
5 et al 1978), women first employed before 1950 (Stebbins et al 1984) and women and
6 men first employed before 1950 as radium workers (Rowland and Lucas 1984).
7
8 Further, some publications focused primarily on dose-response relationships and
9 included only women with measured intakes of radium (Rowland et al 1978b), and
10 some included other types of radium workers in addition to dial painters (Rowland
11 1994). As mentioned above, the current cohort under study includes radium dial
12 painters and a few associated workers, e.g., dial handlers, first employed before 1950
13 and previously studied in large part by Stebbings et al (1984) and supplemented as
14 described in Rowland (1994).
15
16

17 Briefly, osteosarcomas and head carcinomas (mastoid and paranasal sinus
18 carcinomas) have been convincingly associated with internal radium exposure. The
19 distribution of these cancers in radium-exposed persons as of 1990 is shown in Table 2;
20 note that five individuals were diagnosed with both osteosarcomas and head
21 carcinomas. About 1.5% (64 individuals) of dial workers were diagnosed with
22 osteosarcomas, a cancer which was found to be more effectively induced by ^{228}Ra
23 compared with ^{226}Ra (Rowland et al 1978b). About 0.6% (24 individuals) of dial
24 workers were diagnosed with head carcinomas, attributed to the accumulation of ^{222}Rn
25 in the sinus cavities (NA/NRC 1988; Rowland 1994). All these cancers were observed
26 in female dial painters, attributed primarily to their higher levels of intake compared to
27 dial handlers or male dial painters; few men painted dials (Rowland et al. 1983) and
28 those ~~at~~ among women (Rowland 1994; see also Figure 2).
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Other previously studied health outcomes included leukemia (Spiers et al. 1983),
4
5 breast cancer (Adams and Brues 1980; Stebbings 2001), fertility (Polednak et al. 1980;
6
7 Schieve et al. 1997), multiple myeloma (Stebbins et al. 1990; Stebbings 2001), thyroid
8
9 tumors (Polednak 1986) and cataracts (Adams et al. 1983). Although increased risks
10
11 were reported for some of these conditions, the associations were either not statistically
12
13 meaningful and/or were not convincingly related to estimated intakes of radium.
14
15

16
17 The current work will expand upon these previous observations and will
18
19 provide a complete assessment of lifetime risks related to radium ingestion. The health
20
21 outcomes considered will include the previously studied cancer and non-cancer
22
23 outcomes and have been broadened to include cognitive deficits possibly related to
24
25 radiation exposure to brain tissue (Marazziti et al 2012; Parihar et al 2016, 2020;
26
27 Azizova et al. 2020; Pasqual et al 2021). Interestingly, NASA is concerned about
28
29 possible behavioral and cognitive impairments from high energy heavy ions in space
30
31 [galactic cosmic radiation (GCR)] that might jeopardize long missions, and, possibly,
32
33 lead to Alzheimer's, Parkinson's or dementia later in life (NCRP 2019; Boice 2019).
34
35 There are no human exposure circumstances similar to GCR in space that can provide
36
37 direct information on cognition or neurological diseases following such high-LET
38
39 exposure to brain tissue. The intake of radium can result in meaningful exposure to
40
41 brain tissue from alpha particles, and the medical records of the dial painters are
42
43 substantial, going back as early as the 1920s. Although an imperfect analog, the study
44
45 will be able to address the likelihood that high-LET exposures to brain might cause
46
47 cognitive impairment and provide some guidance as to the seriousness of this threat for
48
49 space exploration.
50
51

52
53 Uncertainties associated with this work are those typically encountered in
54
55 epidemiological studies evaluating radiation-induced health effects, although the current
56
57

1
2
3 study has the unique benefit of systemic measurements made on over half of the
4 populations, the continued monitoring and clinical visits of individuals in the
5 population, and the current availability of thousands of tissue samples, and bones, of the
6 dial painters available at USTUR. Dose reconstructions and analysis will follow current
7 best practices with respect to evaluation of uncertainty (e.g., NCRP 2009, NCRP 2018),
8 including consideration of the new approaches to address uncertainty in worker studies
9 following intakes of plutonium, another bone-seeker (Stram et al. 2021).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Cellular dosimetry

Peripheral blood slides have been reviewed from a cohort of 166 radium dial painters and ancillary workers (Goans et al 2019). The blood slides were prepared in 1960-1975 during medical follow-up and were made available in collaboration with the USTUR. The cohort contained 107 dial painters, 22 dial handlers, 19 radium chemists, and other personnel dealing with radium. Members of the cohort had ingestion of ^{226}Ra and ^{228}Ra at an early age (average age 20.6 ± 5.4 y; range 13-40 y) during the years 1914-1955. Exposure duration ranged from 1-1,820 weeks with red marrow dose 1.5-6,750 mGy.

The cell of interest in the peripheral smear is the pseudo-Pelger Huët cell (PH). PH is characterized in neutrophils by a bi-lobed nucleus whose lobes are joined by a thin chromatin bridge. PH in this case is caused by a radiation-induced decrease in the amount of the Lamin B receptor (LBR). The gene that encodes the LBR is known to be located on the long arm of chromosome 1, 1q42.12.

PH has been described as a novel, permanent, radiation-induced biomarker in circulating neutrophils (Goans et al 2015, 2017). In studies involving a group of workers from the Y-12 criticality accident (1958) and from controlled primate studies at the Armed Forces Radiobiology Research Institute (AFRRI), PH has shown a linear dose response for mixed dose in red marrow from 1-10 Gy. In the radium dial painter

1
2 cohort, PH expressed as a percentage of total neutrophils has been shown to rise in a
3 sigmoidal fashion over five decades of red marrow dose, best fit with a sigmoid
4 function and suggestive of a threshold effect (Goans et al 2019). These results are
5 consistent with health outcome findings (discussed above) in that no bone sarcomas
6 were observed in the radium dial cohort at intakes below 100 μ Ci (Rowland 1994).
7
8 Thus, PH percentages from peripheral blood tracks alpha dose to bone marrow and have
9 the potential to be a useful metric for supporting dose estimates. Figure 4 shows a plot
10 of PH percent (mean % \pm standard error of the mean) from this cohort versus date of
11 entry into the workforce. A decrease toward control values is seen for entry into the
12 workplace after 1930.
13
14

27 ***Radium biokinetics and associated models***

31 *Overview of radium kinetics in the body*

32 Radium belongs to the alkaline earth family (Group 2) of the periodic table and is a
33 physiological analogue of the lighter alkaline earth metals calcium, strontium, and
34 barium. The rates of uptake and removal by tissues differs from one alkaline earth to
35 another due to discrimination by biological membranes and hydroxyapatite crystals of
36 bone (Leggett, 1992; ICRP, 1993). The biokinetics of radium in the human body
37 resembles that of barium more closely than that of calcium or strontium.
38
39

40 Biokinetic data for radium in adult humans were reviewed in International
41 Commission on Radiological Protection (ICRP) Publication 137 (2017). Briefly, the
42 biokinetics of the individual alkaline earth elements and the comparative behaviors of
43 different pairs of these elements have been studied extensively in human subjects and
44 laboratory animals. Based on controlled studies on adult human subjects it is estimated
45 that about a third of radium atoms leaving blood deposit in excretion pathways,
46
47

1
2
3 predominantly in the colon. Soft tissues initially accumulate a substantial portion of
4 retained systemic radium but lose most of the deposited activity within a few days.
5
6 Bone soon becomes the primary systemic repository of radium after its acute uptake to
7 blood. Radium and other alkaline earths entering bone initially deposit on bone
8 surfaces, from which they are removed over a period of hours or days back to blood and
9 to a lesser extent to a bone volume pool referred to as exchangeable bone volume. The
10 rate of loss of alkaline earth elements from exchangeable bone over the first few months
11 after uptake to blood increases in the order radium > barium > strontium > calcium. A
12 portion of radium, barium, strontium, or calcium entering exchangeable bone volume
13 returns to blood over a period of months and a smaller portion becomes firmly fixed in
14 bone crystals and is retained there until removed by bone restructuring processes.
15
16 Calcium, strontium, barium, and radium are all about equally likely to transfer from
17 bone surface to exchangeable bone volume, but the likelihood of becoming firmly fixed
18 in bone crystal decreases in the order calcium > strontium > barium > radium. The rate
19 at which the non-exchangeable (firmly fixed) alkaline earth elements are removed from
20 bone volume to blood appears to depend completely on the rate of turnover of the bone
21 type (trabecular or cortical bone) and thus is independent of the element. The portion of
22 acutely injected radium in bone of a mature adult human typically is about 20-40% after
23 1 day, 6-12% after 1 month and 2-4% after 1 year.
24
25

26 Information is available on the systemic behavior of radium in immature humans
27 (ICRP, 1973; Parks et al, 1978; Parks and Keane, 1983; Muth and Glöbel, 1983; Keane
28 and Schlenker, 1987). More detailed data on the age-specific behavior of systemic
29 radium are available for laboratory animals, particularly dogs (Lloyd et al 1976a, 1976b,
30 1982, 1983a-d; Bruenger et al 1983; Bruenger and Lloyd 1989). Differences with age in
31 the systemic behavior of radium are consistent with findings for the other alkaline earth
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

elements. That is, retention of radium is greater in growing bone than in mature bone; changes with age in uptake of radium by the skeleton are roughly proportional to the age-specific rate of calcium addition to bone from bone growth plus bone remodeling; at times remote from exposure, skeletal burdens acquired during periods of growth tend to remain higher than those acquired by mature skeletons except for skeletal burdens acquired during or soon after infancy; and both deposition and removal of radium appear to be greater in areas of bone undergoing rapid remodeling than in areas of relatively slow remodeling.

Biokinetic models for radium previously applied to dial workers

Mainly on the basis of follow-up data for Elgin State Hospital patients administered known amounts of ^{226}Ra via intravenous injection, Norris et al (1955) proposed that fractional retention of absorbed radium as a function of time t (days) could be described by the power function $R(t) = 0.54t^{-0.52}$. This retention function was used for years to estimate intake of ^{226}Ra by radium dial workers, based on long-term retention of ^{226}Ra as judged from external measurement or ^{222}Rn exhalation.

ICRP Publication 20 (1973) introduced a relatively complex model of retention R of the alkaline earths calcium, strontium, barium, and radium as a function of time, t (days), based on an extensive review of data on the behavior of these elements in human subjects:

$$R(t) = (1-p)e^{-mt} + p\varepsilon^b (t+\varepsilon)^{-b} \left[\beta^{-r\lambda t} + (1-\beta)e^{\sigma r\lambda t} \right] \quad (1)$$

Some of the parameters in this retention function are element dependent and others represent physiological or unknown, element-independent processes:

λ is the rate of resorption of compact bone,

1
2
3 σ is the ratio of turnover rates of trabecular and compact bone,
4
5 β is the fraction of bone volume activity deposited in compact bone,
6
7 m is a rate constant representing an early exponential process,
8
9
10 p is the fraction of retention not in the early exponential process,
11
12 ε (element-specific) is related to fast turnover of an initial pool,
13
14 b (element-specific) is related to diffusion of exchangeable activity from bone,
15
16 r (element specific) is related to redeposition of activity at bone-forming sites.
17
18

19 In ICRP Publication 20, retention in soft tissues was calculated as the difference
20
21 between total-body retention $R(t)$ and components of the model interpreted as
22
23 representing activity in bone and blood.
24

25
26 Schlenker et al (1982) concluded from a review of the distribution and retention
27
28 of radium in soft tissues that the model of ICRP Publication 20 did not accurately depict
29
30 the time-dependent distribution of radium between bone and soft tissue. They modified
31
32 selected parameter values for radium to obtain a better fit to their collected data.
33
34

35
36 As described by Rowland (1993, 1994), measurements of retention of ^{226}Ra in
37
38 the dial painters made 30-60 years after exposure indicated faster loss of radium from
39
40 the body than predicted by the model of ICRP Publication 20. To address this issue,
41
42 Rowland (1993) modified Schlenker's revision of the ICRP model to incorporate a
43
44 higher bone turnover rate. It was later observed that case-specific modifications of the
45
46 Schlenker model may sometimes be needed because the rate of bone resorption may be
47
48 greatly reduced in cases of extremely high intake of ^{226}Ra due to radiation damage to
49
50 bone (Rowland 1994).
51
52

53
54
55 *Biokinetic model for systemic radium applied in the present study*
56

57
58 The latest version of the ICRP's biokinetic model for systemic radium will be used as
59
60 the starting place for reconstructing intake of ^{226}Ra and ^{228}Ra by radium dial painters.

1
2
3 As described below, it is expected that parameter values of the ICRP model will be
4 modified where feasible to improve estimates of the intake and subsequent behavior of
5 radium in individual dial painters or subgroups of dial painters.
6
7

8
9 The ICRP's latest biokinetic model for a reference adult is described in
10 Publication 137 (2017), which is Part 3 of an ICRP series of reports on occupational
11 intake of radionuclides (OIR). An age-specific version of that model has been
12 developed and will be described and applied in an upcoming series of ICRP reports on
13 environmental intake of radionuclides (EIR) by members of the public. The structure of
14 the model is shown in Figure 5. Reference age-specific transfer coefficients are listed in
15 Table 3. The following modifications of the radium model described in Figure 5 and
16 Table 3 are planned for application to the radium dial painters:
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- *Age- and sex-specific biokinetics of radium and progeny throughout life.* The ICRP's biokinetic model for radium addresses differences with age in radium kinetics only through age 25 y and does not address gender differences at any age. For application to the radium dial painters, the ICRP model will be modified to address age and gender differences in radium biokinetics throughout life. For example, the model will address age and gender differences in bone remodeling rates throughout life and in rates of net bone loss starting in the fifth decade of life. The ICRP model will also be modified to address differences with gender in the rates of bone maturation during adolescence.
- The relatively simple model applied by the ICRP to radon produced in vivo by decay of radium will be replaced with the more sophisticated ICRP model for radon as a parent.
- The structure of the ICRP's current biokinetic model for systemic radium (Figure 5) will be modified, insofar as allowed by available biokinetic data, to

1
2
3 improve dose estimates for tissues of interest that are not explicitly depicted in
4
5 the ICRP model. For example, a compartment representing the brain will be
6
7 added. Parameter values describing uptake and removal of radium by the brain
8
9 will be taken from an earlier paper (Leggett et al 2018).
10
11

12
13 As in the ICRP's OIR and EIR series, the assumption of independent kinetics of
14 radioactive progeny will be applied in dose reconstructions for radium dial painters.
15
16 That is, radioactive progeny produced in the body after intake of ^{226}Ra or ^{228}Ra will be
17 assumed to follow the characteristic biological behaviors of those elements (as opposed
18 to following the biokinetics of radium) following production in soft tissues or on bone
19 surface. Radioactive progeny other than radon produced in bone volume will be
20 assumed to be removed from bone volume only through bone remodeling or net bone
21
22 loss.
23
24

25
26
27
28
29
30
31
32 *Radium distribution in brain*

33
34 Analysis of brain tissue of a female individual occupationally exposed to radium was
35 conducted at USTUR recently to study the distribution of ^{226}Ra . The concentrations of
36
37 ^{226}Ra were measured with inductively coupled plasma mass spectrometry (ICP-MS) at
38 the University of Missouri in the corpus callosum, the white and grey matter of the
39 cerebrum lobes, the cerebellum, and brainstem segments of the brain. Preliminary
40 results indicate that ^{226}Ra concentration in the white matter ($18.3 \pm 3.0 \text{ Bq kg}^{-1}$) was
41 about 3.5 times higher than the average of all other brain segments (ranged $4.9\text{--}5.7 \text{ Bq}$
42
43 kg^{-1}). With only one case studied, current preliminary results suggest non-uniformly
44 distribution of radium in the human brain. In the future, this finding might have an
45 impact on biokinetic modeling of internally deposited radionuclides in the brain as well
46 as on the assessment of radiation doses to the brain. Current systemic biokinetic models,
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 recommended by the ICRP assume a uniform distribution in the brain for any specific
4 element because at present, it is not feasible to characterize with much confidence (1)
5 the distribution of most individual elements among different regions of the brain or (2)
6 element-specific biokinetics in individual regions of the brain. Thus, the assumption still
7 would be that the element is uniformly distributed in the entire brain. We recognize,
8 however, the importance of different distributions of radium within different brain
9 regions and would address such issues moving forward as new information becomes
10 available (Boice et al. 2021; NCRP 2021).

23 *Overview of methodology for internal dose calculation*

24
25 The starting point for internal dose calculation will be measurement-based radium body
26 burden estimates performed in the past. The timing, number, and type of radiological
27 measurement(s) made to estimate body burdens in dial workers varied by individual and
28 were dependent on the available instrumentation and technology. For example,
29 thallium-activated sodium iodide (NaI(Tl)) crystal was reported to be an effective
30 scintillation material in 1948 (Hine 1977), but neither useful crystals, nor appropriate
31 electronic circuitry to collect and interpret the light signal from a NaI(Tl) crystal, were
32 readily available at the time. This limited the practical application of the NaI(Tl)
33 detector for the next few years. Common types of measurements made, though,
34 included radon breath measurements, whole-body gamma-ray measurements, and
35 autopsy or other posthumous measurements (e.g., autoradiography of bones) (Rowland
36 1994).

37
38 Body burden estimates provide the activity of ^{226}Ra and/or ^{228}Ra in the body at
39 the time of measurement, which can then be coupled with biokinetic models and the
40 time of first intake from an individual's work history to develop a time series of relevant
41 activity levels in the body. In other words, the latest biokinetic models described above

1
2
3 will use previously determined body burdens to develop estimates of activity versus
4 time in each pertinent source region in the body for radium and its progeny. The
5 temporal activity data will then be customized to each dial worker based on their age
6 and duration of employment. This work will also treat the intake of radium as chronic
7 over their employment. Other factors, such as whether a dial painter's work bridged a
8 transition from mouth tipping of brushes to cessation of this practice (somewhere
9 around 1926) can be folded into the chronic intake model.
10
11
12
13
14
15
16
17
18

19 The absorbed dose rate, \dot{D}_T , to a particular target region, T , is computed using
20
21 equation (2) where A_S is the activity at a given time in a source region, S , and
22
23 $S(r_T \leftarrow r_S)$ is the S-coefficient, defined as the absorbed dose to a target region, r_T , per
24 nuclear transformation taking place in a source region, r_S .
25
26
27
28
29

$$\dot{D}_T = \sum_{r_S} A_S \cdot S(r_T \leftarrow r_S) \quad (2)$$

30
31
32 The S-coefficient is computed as shown in equation (3) and depends on the
33 energy, $E_{R,i}$, and yield, $Y_{R,i}$, of emission, i , of radiation type, R , from a given
34
35 radionuclide. The last term in equation (3), $\Phi(r_T \leftarrow r_S, E_{R,i})$, is the specific absorbed
36 fraction which is defined as the fraction of emitted energy from a source region
37 absorbed in a target region per mass of the target. The specific absorbed fraction
38 depends on the energy, radiation type, and specific source-target geometry. Before
39
40 adulthood, the S-coefficient also varies with respect to age.
41
42
43
44
45
46
47
48

$$S(r_T \leftarrow r_S) = \sum_R \sum_i E_{R,i} \cdot Y_{R,i} \cdot \Phi(r_T \leftarrow r_S, E_{R,i}) \quad (3)$$

49
50
51
52
53 The absorbed dose rates as functions of time will be integrated to provide
54 annualized absorbed doses over life. Similarly, committed absorbed dose over life will
55
56 be computed for the sake of comparison to past committed absorbed dose calculations.
57
58
59
60

1
2
3 Dosimetric targets of interest include the bone endosteum, red (active) marrow,
4
5 breast, brain, liver, lung, heart wall, and others. While the bone endosteum is
6
7 considered the current target of interest for radiogenic bone cancer (Bolch et al 2007,
8
9 Gossner 2003, Gossner et al 2000), dose to the entire bone volume will also be
10
11 computed since it has been used in past studies on this cohort.
12
13

14 The absorbed dose to the red (active) marrow resulting from alpha particles
15 emitted in the bone surface will not be uniform across the marrow cavity due to the
16 short range of the alpha particles. The current definition of the bone endosteum target is
17 the first 50 μm of marrow space adjacent to the bone surface. This region contains red
18 marrow and, for the case of radiations emitted from the bone, the endosteum dose is
19 equivalent to the shallow red marrow dose. The difference between the shallow marrow
20 dose and the marrow dose averaged over the entire cavity may provide some insight
21 into deterministic and stochastic hematopoietic response, or the lack thereof as seen in
22 previous reports of radium dial painters (Spiers et al 1983; Priest 1989).
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Use of the latest energy absorption data

39 Energies and yields of the various radionuclide emissions will be taken from ICRP
40
41 Publication 107 (2008). In 2016, the ICRP published new specific absorbed fractions
42 for reference adults (ICRP 2016). These specific absorbed fractions were computed
43 using the latest whole-body voxel phantoms and detailed models of the skeleton,
44 alimentary, and respiratory regions. Similar data for reference children were recently
45 published by the ICRP (Schwarz et al 2021a, Schwarz et al 2021b) using an age-
46 dependent set of reference phantoms (ICRP 2020a) and models.
47
48
49
50
51
52
53
54

55 The energy deposition of alpha particles emitted from the skeleton is of
56
57 particular importance to the ingestion of radium given its high uptake to the bone.
58
59 Figure 6 contains plots of the absorbed fractions provided in Publication 133 compared
60

1
2
3 to values in Publication 30 (ICRP 1979). The differences are due to new definitions of
4 source and target regions and an improved capability to perform radiation transport
5 calculations in complex geometries such as the skeleton.
6
7
8
9
10

11 *Age and sex dependency of dosimetric calculations*
12

13 As referenced earlier, the updated dosimetry calculations will include consideration of
14 the age and sex of the workers at the time of their ingestion of radium. This will impact
15 both the biokinetic, or activity term in equation (2) and the energy absorption term.
16
17

18 Figure 7 is a histogram of the ages of dial workers when they began their work.
19
20 Most dial workers were teenagers at the time of first employment (see also Figure 2)
21 and therefore at the time they were ingesting radium. Figure 8 gives the absorbed dose
22 rates for selected target tissues due to ingestion of 1 Bq of ^{226}Ra as a function of time
23 after intake. Due to significant differences in skeletal growth at age 15 compared to age
24 25 (adult), intake of radium as a teenager will result in extended retention of radium and
25 its progeny in the skeleton.
26
27

28 Also of note is that age and sex influence body weight. ICRP Publication 23
29 (1975) lists weight of the reference total body as 70 kg for men and 58 kg for women.
30 Current ICRP reference total body masses are 60 kg for adult females and 53 kg for 15-
31 year-old females (ICRP 2009, 2020a). The United States did not start collecting
32 detailed, comprehensive data on heights and weights of Americans until 1960 (Stoudt et
33 al 1960; Flegal 1996), although pockets of data were collected as early as 1858 for
34 adults (Hathaway and Foard 1960) and 1877 for children and teenagers (Hathaway
35 1957). Interestingly, a 1923 dataset drawing from 12 schools in the North Eastern and
36 North Central states (about 55,000 girls) determined a standard weight for 15-year-old
37 females (depending on height) to be about 53 kg (Hathaway 1957), giving additional
38 confidence in applying the current ICRP model to teenagers in our cohort.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 *Unique temporal aspects of dose resulting from ^{226}Ra and ^{228}Ra .*
4

5 The two radium decay chains (Figure 1) have several differences in their half-lives and
6 elemental constituents. As mentioned previously, ^{226}Ra has a significantly longer half-
7 life than ^{228}Ra and is itself an alpha emitter unlike the beta-emitting ^{228}Ra . However,
8 the comparatively short half-life of ^{228}Ra allows for in-growth of the alpha-emitting
9 progeny ^{228}Th and ^{224}Ra which are important dose contributors. Figure 9 contains plots
10 of the absorbed dose rate to selected target tissues at times following the ingestion of 1
11 Bq of the two radium isotopes. Note that the dose rate due to ^{226}Ra and progeny peaks
12 at under 1-day following ingestion. Conversely, the absorbed dose rate due to ^{228}Ra and
13 progeny reaches has two peaks. The early peak at 1 day is due to dose from the beta-
14 emitting ^{228}Ra and removal of the non-absorbed radium via the alimentary tract. The
15 late peak occurring just before 1000 days after ingestion is due to the in-growth of
16 alpha-emitting progeny ^{228}Th , ^{224}Ra and others from the fraction of radium which was
17 absorbed into the skeleton and systemic tissue. It takes time for the in-growth of
18 important ^{228}Ra progeny in the body.
19
20

21 By computing dose rate and annualized doses, the current study will allow for
22 the important temporal contributions of the two radium isotopes and their progeny to be
23 included in the dosimetry. This is particularly important since radiogenic disease
24 occurred at varying times in members of the cohort.
25
26

27 Rowland et al (1978b), among others, previously described various strategies for
28 weighting ^{228}Ra compared to ^{226}Ra for the purpose of assessing dose-effect
29 relationships, ultimately assigning different values for different biological effects. For
30 example, Rowland et al (1978b) describe three different ways to weight ^{228}Ra with
31 respect to the induction of osteosarcomas: comparative effective alpha energy per
32 decay, comparative energy deposited over the average time to sarcoma appearance, and
33 comparison of dose-response curves between two groups with intakes of predominantly
34
35

1
2
3 one isotope. The average value of these approaches, 2.5, was taken for comparative
4 effectiveness of ^{228}Ra in the induction of osteosarcomas. Corresponding dose-response
5 relationships (where “dose” is taken to be systemic intake) were developed and
6 analyzed for a total systemic intake of ^{226}Ra activity plus 2.5 times ^{228}Ra activity.
7
8

9
10 Comparatively, only ^{226}Ra intake was considered in developing dose-response
11 relationships for the induction of mastoid and paranasal sinus carcinomas. None of these
12 types of cancers were observed in those whose intake was primarily ^{228}Ra ; this has been
13 attributed to the importance of radon progeny accumulating in the sinus cavities, as
14 touched on previously (Rowland 1994). ^{220}Rn ($t_{1/2} = 55.6$ s), fifth progeny of ^{228}Ra ,
15 does not have time to migrate to the sinus cavities, compared to ^{222}Rn ($t_{1/2} = 3.82$ d),
16 first progeny of ^{226}Ra (Figure 1).
17
18

19 *Missing body burden measurements*

20 A job exposure matrix will be developed to provide body burden estimates, based on
21 work history, for those members of the cohort without body burden measurements.
22 This matrix will use the ingestion rate for other cohort members performing the same
23 task in the same workplace during the same period of time. A model will be developed
24 to provide a probability distribution of possible doses to these individuals.
25
26

27 *Additional routes of exposure*

28 Dial workers were exposed to gamma radiations emitted from the paint and inhalation
29 of airborne activity. The magnitude of these exposures depends on the working
30 conditions, e.g., number of co-workers, ventilation, and work practices. Bloomfield and
31 Knowles (1933) surveyed several facilities and reported that painters were daily
32 handling 50 to 500 μg (1.9 to 19 MBq) of radium. Measured external dose rates ranged
33 from 0.7 to 46 cGy/y (0.8 to 5.3 $\mu\text{Gy}/\text{h}$). Airborne activity of radium and radon were
34
35

1
2
3 also observed. The average airborne activity concentration of radon was 0.051 $\mu\text{Ci}/\text{m}^3$
4 (1.8 kBq/m³) and that of radium was 260 pCi/m³ (9.6 Bq/m³). Estimates of the dose to
5 the female breast and other tissues can be derived from these measurements and
6 applying the dose rate coefficients of ICRP Publication 144 (ICRP 2020b). The dose
7 contribution due to inhalation of airborne radium would largely follow the above
8 methodology with the respiratory tract being the entrance into the body. The dose
9 contribution of the airborne radon can be derived using the methods of ICRP
10 Publication 137 (ICRP 2017) with due consideration to the workplace air ventilation
11 and potential unattached radon short-lived progeny. Tissue~~s~~ dose coefficients can be
12 derived from the measured external dose rates using the dose rate coefficients of ICRP
13 Publication 144 (ICRP 2020b), which are based on the computational phantoms of
14 ICRP Publication 110 (ICRP 2009), in the manner outlined in Appendix E of NCRP
15 Report 178 (NCRP 2018).

16
17 These contributions are in addition to the potential contribution of internally
18 deposited radium. Rowland et al (1989) concluded that the elevated breast cancer risk
19 among the dial painters cannot be attributed to the external dose and questioned the
20 potential contribution of internally deposited radium. This conclusion is consistent with
21 the studies in the United Kingdom (UK) where the habit of licking brushes was not
22 seen, and any radiation exposure was primarily from external gamma radiation (mean
23 absorbed breast dose 330 mGy) (Baverstock and Papworth 1989). The possibility that
24 external radiation as well as radium intake among young women might be related to
25 breast cancer (Stebbins 2001) will be re-examined, addressing personal characteristics,
26 such as nulliparity, which are related to breast cancer risk (Adams and Brues 1980;
27 Schieve et al 1997).

1 2 3 *Applicability to current exposure circumstances* 4

5 The current work ultimately seeks to address female-specific health risks following
6 intakes of radium; provide information on public and worker health risks relevant to
7 environmental cleanups of former nuclear facilities and weapons testing; provide
8 information on cognitive function following brain exposure relevant to flight crews at
9 high altitude as well as astronaut crews on space missions; provide insights and
10 information relevant to novel clinical therapeutic uses of radium and alpha emitting
11 isotopes; and yield new scientific quantitative knowledge on the risks associated with
12 radium- and radon progeny-induced cancers of the bone, bone marrow, mastoid and
13 paranasal sinus cells, lung, breast, brain and heart.

14
15 As a specific example of broader relevance, in clinical oncology there is
16 increasing interest in therapy or a combined imaging and therapy (i.e., theranostics)
17 with alpha particle emitting radiopharmaceuticals (ICRP, 2019; Nelson et al, 2021).
18 Initially, treatment of diffuse skeletal or bone metastases were explored (Pandit-Taskar
19 et al 2004) and ^{223}Ra -dichloride has been shown effective for castration-resistant
20 prostate cancer bone metastases (Parker et al 2013; Dauer et al 2014; Pandit-Taskar et al
21 2014). In addition, alpha particle emitters are increasingly being evaluated for
22 radioimmunotherapies (Sgouros et al 2010; Larson et al 2015) that can deliver high
23 LET, short range efficient tumor cell killing while sparing nearby healthy tissue (Jurcic
24 and Rosenblat 2014). As these clinical applications are moving forward, there is interest
25 in addressing uncertainties associated with actual local absorbed doses (especially in the
26 bone) and the associated selection of the most appropriate radiation weighting factors
27 for alpha dosimetry (Sgouros et al 2010; Lassmann and Nosske, 2013). This updated
28 study of the radium dial worker cohort and the associated improvements in the
29 understanding of the dosimetry of alpha emitters (along with their progeny) in the body
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 will be informative for the ongoing clinical development of effective and optimal
4
5 treatment protocols using radium or other alpha particles.
6
7
8

9 **Conclusion**
10

11
12 In the 1967 report proposing a National Center of Human Radiobiology (Rowland
13
14 1994), Evans made arguments still relevant today for continuing the study of the dial
15 workers, e.g.: the nuclear era necessitates valid radiation protection criteria; human
16 protection criteria are best derived from human evidence and, despite tragic outcomes
17 for many of the exposed and their families, the dial workers represent a unique scientific
18 opportunity not likely to be repeated; and gaining information from this group will
19 benefit current and future generations, with progressing results likely applicable to other
20 exposure scenarios not yet envisioned (such as in medicine, environmental
21 contamination and space exploration).
22
23
24

25 **Disclosure statement**
26
27

28 The authors report no conflicts of interest. The authors alone are responsible for the
29 content and writing of the paper.
30
31

32 **Funding**
33
34

35 The study of radium dial painters, a component of the Million Person Study, is
36 supported in part by grants from the US Department of Energy (Grant No. DE-
37 AU0000042 and DE-AU0000046) awarded to the National Council on Radiation
38 Protection and Measurements, and a grant from the National Aeronautics and Space
39 Administration (80NSSC17M0016). Further, contract support was received by Oak
40 Ridge National Laboratory from the Office of Radiation and Indoor Air, US
41 Environmental Protection Agency, under Interagency Agreement DOE No. 1824
42 S581-A1, under contract No. DE-AC05-00OR22725 with UT-Battelle. The United
43
44

1
2
3 States Transuranium and Uranium Registries is funded by US Department of Energy,
4
5 Office of Domestic and International Health Studies (AU-13), under grant award DE-
6
7 HS0000073 to Washington State University.
8
9
10
11
12

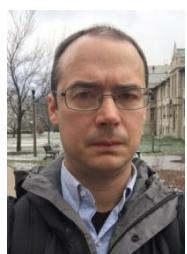
Acknowledgements

13
14 We are tremendously indebted to innumerable individuals, including the scientists,
15
16 physicians, epidemiologists, statisticians, technicians, librarians, etc. who have studied
17
18 these workers and who have published and otherwise preserved associated information
19
20 since the 1920s. We also acknowledge that in many cases, radium dial workers suffered
21
22 tremendously and died, and that this suffering and loss was also acutely felt by their
23
24 loved ones and their communities.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Notes on Contributors


Nicole E. Martinez, Certified Health Physicist, is an Associate Professor at Clemson University in the Department of Environmental Engineering and Earth Sciences. She also holds a Joint Faculty Appointment at Oak Ridge National Laboratory (ORNL) within the Center for Radiation Protection Knowledge (CRPK). Her current research focuses on dosimetric modelling and the behavior and effects of radiological contaminants in the environment. She serves on ICRP Committee 4, Application of the Commission's Recommendations.

Derek W. Jokisch is Professor of Physics and Chair of the Department of Physics and Engineering at Francis Marion University in Florence, South Carolina. He holds a Joint Faculty Appointment at ORNL within the CRPK and is a member of ICRP Committee 2 on Doses from Radiation Exposure and is a member of the US Scientific Review Group for the Department of Energy's Russian Health Studies program.


Lawrence T. Dauer is Associate Attending Physicist specializing in radiation protection at Memorial Sloan Kettering Cancer Center in the Departments of Medical Physics and Radiology. He is a Council and Board member of the National Council on Radiation Protection and Measurements (NCRP) and served as a member of the ICRP Committee 3, Protection in Medicine.

Keith F. Eckerman retired in 2013 from ORNL and is an emeritus member of the NCRP and ICRP Committee 2. He served on ICRP Committee 2 for over 20 years and chaired their task group on dose calculations.

1
2
3 **Ron Goans** has worked in the field of nuclear physics and radiation
4 effects since 1966. He received his PhD in radiation physics from the
5 University of Tennessee in 1974, his MD from the George Washington
6 University School of Medicine in 1983, and the MPH from the Tulane
7 University School of Public Health and Tropical Medicine in 2000. He is currently Senior Medical
8 Advisor with MJW Corporation and Senior Medical/Scientific Advisor with the
9 Radiation Emergency Assistance Center/Training Site (REAC/TS).
10
11
12
13
14
15
16
17
18
19

20 **John D. Brockman** is an Associate Professor in the Department of
21 Chemistry at the University of Missouri. He researches problems in
22 diverse fields that benefit from radio-analytical techniques. Currently,
23 his research group is working on problems in pre-and post-detonation
24 nuclear forensic analysis, trace element epidemiology, and nuclear engineering.
25
26
27
28
29
30
31
32

33 **Sergey Y. Tolmachev** is a Research Professor in the College of
34 Pharmacy and Pharmaceutical Sciences, Washington State University,
35 where he directs the United States Transuranium and Uranium Registries
36 and the associated National Human Radiobiology Tissue Repository. He
37 has over 20 years of experience in the development of analytical methods and in
38 actinide analyses of environmental and biological samples. Dr. Tolmachev is currently a
39 Council member of the NCRP and is a vice-chair of NCRP Scientific Committee 6-12
40 “Development of Models for Brain Dosimetry for Internally Deposited Radionuclides”.
41
42
43
44
45
46
47
48
49
50
51

52 **Maia Avtandilashvili** is an Assistant Research Professor at the U.S.
53 Transuranium and Uranium Registries (USTUR), College of Pharmacy
54 and Pharmaceutical Sciences, Washington State University. She has
55 over 15 years of experience in internal radiation dosimetry and
56
57
58
59
60

1
2
3 biokinetic modeling of actinides. Dr. Avtandilashvili serves on NCRP scientific
4
5 committee (SC) 6-12 “Development of Models for Brain Dosimetry for Internally
6
7 Deposited Radionuclides” and is a member of the European Radiation Dosimetry Group
8
9 (EURADOS) Working Group 7 on Internal Dosimetry.
10
11

12
13 **Michael T. Mumma** is the Director of Information Technology at the
14
15 International Epidemiology Institute and the International Epidemiology
16
17 Field Station for Vanderbilt University Medical Center. He has over 20
18
19 years of experience in data analysis and conducting epidemiologic
20
21 investigations. He has published on methodological topics, including geocoding and
22
23 comprehensive radiation exposure assessment, and is currently developing methods to
24
25 determine socioeconomic status based on residential history.
26
27
28

29
30 **John D. Boice** is past President of the NCRP and Professor of Medicine
31
32 at Vanderbilt University. He is an international authority on radiation
33
34 effects and served on the Main Commission of the ICRP and on the
35
36 United Nations Scientific Committee on the Effects of Atomic
37
38 Radiation. He directs the Million Person Study of Low-Dose Health Effects.
39
40

41
42 **Rich Leggett** is a research scientist in the Environmental Sciences
43
44 Division at ORNL. His main research interest is in physiological
45
46 systems modeling, with primary applications to the biokinetics and
47
48 dosimetry of radionuclides and radiation risk analysis. He is a member
49
50 of ICRP Committee 2 and the ICRP Task Group on Internal Dosimetry.
51
52

53 54 55 56 ORCID

57
58 Nicole E. Martinez <https://orcid.org/0000-0002-7184-3043>
59 Derek W. Jokisch <https://orcid.org/0000-0002-1567-5268>
60 Lawrence T. Dauer <https://orcid.org/0000-0002-5629-8462>

1
2
3 John D. Brockman <https://orcid.org/0000-0001-7419-5558>
4 Sergey Y. Tolmachev <https://orcid.org/0000-0003-0077-106X>
5 Michael T. Mumma <http://orcid.org/0000-0001-7506-8710>
6 John D. Boice <http://orcid.org/0000-0002-8755-1299>
7
8
9

10 References

11 Adams EE, Brues AM. 1980. Breast cancer in female radium dial workers first
12 employed before 1930. *J Occup Med* 22:583-587.
13
14 Adams EE, Brues AM, Anast GA. 1983. Survey of ocular cataracts in radium dial
15 workers. *Health Phys* 44 (Suppl 1):73-79.
16
17 Aub JC, Evans RD, Hemplermann LH, Martland HS. 1952. The late effects of
18 internally-deposited radioactive materials in man. *Medicine (Baltimore)*. 31(3):221-
19 329.
20
21 Azizova TV, Bannikova MV, Grigoryeva ES, Rybkina VL, Hamada N. 2020.
22
23 Occupational exposure to chronic ionizing radiation increases risk of Parkinson's
24 disease incidence in Russian Mayak workers. *Int J Epidemiol*. 49(2):435-447.
25
26 Baverstock KF, Papworth DG. 1989. The UK radium luminizer survey. In: Taylor DM,
27 Mays CW, Gerber GB, Thomas RG, editors. *BIR Report 21: Risks from Radium*
28 and Thorotrast. London (UK): British Institute of Radiology, p. 72-76.
29
30 Bloomfield JJ, Knowles FL. 1933. Health aspects of radium dial painting. II.
31
32 Occupational environment. *J Indust Hygiene*.15:368-382.
33
34 Blum T. 1924. Osteomyelitis of the mandible and maxilla. *J Am Dent Assoc*. 11:802-
35 805.
36
37 Boice JD, Cohen SS, Mumma MT, Dupree-Ellis E, Eckerman KF, Leggett RW,
38 Boecker B, Brill A, Henderson B. 2006. Mortality among radiation workers at
39 Rocketdyne (Atomics International), 1948-1999. *Radiat Res*. 166(1 Pt 1):98-115.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Boice JD Jr, Cohen SS, Mumma MT, Ellis ED. 2019. The Million Person Study,
4 whence it came and why. *Int J Radiat Biol.* Mar 4. doi:
5
6 10.1080/09553002.2019.1589015
7
8
9 Bolch WE, Shah AP, Watchman CJ, Jokisch DW, Patton PW, Rajon DA, Zankl M,
10 Petoussi-Henss N, Eckerman KF. 2007. Skeletal absorbed fractions for electrons in
11 the adult male: considerations of a revised 50- μ m definition of the bone endosteum.
12
13 *Radiat Prot Dosim.* 127(1-4):169-173.
14
15
16
17
18 Bruenger FW, Lloyd RD. 1989. The influence of age at time of exposure to Ra-226 or
19 Pu-239 on distribution, retention, post-injection survival and bone tumor induction
20 in beagle dogs. In: Thirty-fourth Annual Meeting of the Health Physics Society,
21 Abstracts of Papers Presented at the Meeting, June 25-29, 1989, Albuquerque
22 Convention Center, Albuquerque, NM, Vol. 56 (Suppl. I), 27. New York (NY):
23
24 Pergamon Press.
25
26
27 Bruenger FW, Smith JM, Atherton DR, Jee WSS, Lloyd RD, Stevens W. 1983. Skeletal
28 retention and distribution of Ra-226 and Pu-239 in beagles injected at ages ranging
29 from 2 days to 5 years. *Health Phys.* 44:513-527.
30
31
32 Campbell KM, Deck D, Krupski A. 2008. Record linkage software in the public
33 domain: a comparison of Link Plus, The Link King, and a 'basic' deterministic
34 algorithm. *Health Informatics J.* 14(1):5-15.
35
36
37 Castle WB, Drinker KR, Drinker CK. 1925. Necrosis of the jaw in workers employed in
38 applying a luminous paint containing radium. *J Ind Hyg.* 8:371-382.
39
40 Cothorn CR, Smith JE Jr. 1987. Environmental radon. New York (NY): Springer.
41
42 Dauer LT, Williamson MJ, Humm, O'Donoghue J, Ghani R, Awadallah R, Carrasquillo
43
44 J, Pandit-Taskar N, Aksnes AK, Biggin C, et al 2014. Radiation safety
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 considerations for the use of $^{112}\text{RaCl}_2$ in men with castration-resistant prostate
4
5 cancer. *Health Phys.* 106(4):494-504.
6
7

8 Department of Energy (DOE). 2018. DOE 2017 occupational radiation exposure.
9

10 Washington (DC): US Department of Energy, Office of Environment, Health,
11
12 Safety and Security, The Radiation Exposure Monitoring System (REMS).
13

14 Department of Energy (DOE). 2021. Comprehensive Epidemiological Data Resource
15 (CEDR). [accessed December 18, 2020].
16

17 <https://oriseapps.orau.gov/cedr/default.aspx>.
18

19 Department of Labor (DOL). 2011. The Fair Labor Standards Act of 1938, as amended.
20

21 Washington (DC): US Department of Labor, Wage and Hour Division. [accessed
22
23 January 12, 2021]. <http://purl.fdlp.gov/GPO/gpo24709>.
24

25 Ellis ED, Boice JD, Golden AP, Girardi DJ, Cohen SS, Mumma MT, Shore RE, Leggett
26 RW, Kerr GD. 2018. Dosimetry is key to good epidemiology: workers at
27
28 Mallinckrodt Chemical Works had seven different source exposures. *Health Phys.*
29
30 114(4):386-397.

31 Flegal KM. 1996. Trends in body weight and overweight in the U.S. population. *Nutr*
32
33 Rev. 54(4 Pt 2):S97-100.

34 Fry SA. 1998. Studies of U.S. radium dial workers: an epidemiological classic. *Radiat*
35
36 Res. 250(5 Suppl):S21-29.

37 Goans RE, Iddins CJ, Christensen D, Wiley A, Dainiak N. 2015. Appearance of Pseudo
38
39 Pelger Huet anomaly after exposure to ionizing radiation in vivo. *Health Phys.*
40
41 108(3):303-307.

42 Goans RE, Iddins CJ, Ossetrova NI, Ney PH, Dainiak N. 2017. The Pseudo-Pelger Huët
43
44 cell - a new permanent radiation biomarker. *Health Phys.* 112(3):252-257.
45
46

1
2
3 Goans RE, Toohey RE, Iddins CJ, McComish SL, Tolmachev SY, Dainiak N. 2019.
4
5 The pseudo-Pelger Huët cell as a retrospective dosimeter: analysis of a radium dial
6
7 painter cohort. *Health Phys.* 117(2):143-148.
8
9
10 Gossner W. 2003. Target cells in internal dosimetry. *Radiat Prot Dosim.* 105: 39-42.
11
12 Gossner W, Masse R, Stather JW. 2000. Cells at risk for dosimetric modeling relevant
13 to bone tumour induction. *Radiat Prot Dosim.* 92:209-213.
14
15
16 Gunderman RB, Gonda AS. 2015. Radium girls. *Radiology.* 274(2):314-318.
17
18 Hathaway ML. 1957. Heights and weights of children and youth in the United States.
19
20 Home Economics Research Report No. 2. Washington (DC): US Department of
21
22 Agriculture.
23
24
25 Hathaway ML, Foard ED. 1960. Heights and weights of adults in the United States.
26
27 Home Economics Research Report No. 10. Washington (DC): US Department of
28
29 Agriculture.
30
31
32 Hine GJ. 1977. The inception of photoelectric scintillation detection commemorated
33
34 after three decades. *J Nucl Med.* 18(9):867-871.
35
36 Hoffman FL. 1925. Radium (mesothorium) necrosis. *JAMA.* 85(13):961-965.
37
38 International Commission on Radiological Protection (ICRP). 1973. Alkaline earth
39
40 metabolism in adult man. ICRP Publication 20. *Health Phys.* 24(2):125-221.
41
42
43 International Commission on Radiological Protection (ICRP). 1975. Report of the Task
44
45 Group on Reference Man. ICRP Publication 23. Oxford (UK): Pergamon Press.
46
47
48 International Commission on Radiological Protection (ICRP). 1979. Limits for intakes
49
50 of radionuclides by workers. ICRP Publication 30. *Ann ICRP.* 2(3/4):1-116.
51
52
53 International Commission on Radiological Protection (ICRP). 1993. Age-dependent
54
55 doses to members of the public from intake of radionuclides: Part 2, ingestion dose
56
57 coefficients. ICRP Publication 67. *Ann ICRP.* 23(3/4):1-167.
58
59
60

1
2
3 International Commission on Radiological Protection (ICRP). 2008. Nuclear decay data
4 for dosimetric calculations. ICRP Publication 107. Ann ICRP. 38(3):1-96.
5
6 International Commission on Radiological Protection (ICRP). 2009. Adult reference
7 computational phantoms. ICRP Publication 110. Ann ICRP. 39(2):1-110.
8
9 International Commission on Radiological Protection (ICRP). 2016. The ICRP
10 computational framework for internal dose assessment for reference adults: specific
11 absorbed fractions. ICRP Publication 133. Ann ICRP. 45(2):1-74.
12
13 International Commission on Radiological Protection (ICRP). 2017. Occupational
14 intakes of radionuclides: Part 3. ICRP Publication 137. Ann ICRP. 46(3/4):1-486.
15
16 International Commission on Radiological Protection (ICRP). 2019. Radiological
17 protection in therapy with radiopharmaceuticals. Publication 140. Ann ICRP.
18 48(1):1-102.
19
20 International Commission on Radiological Protection (ICRP). 2020a. Paediatric
21 reference computational phantoms. ICRP Publication 143. Ann ICRP. 49(1):1-299.
22
23 International Commission on Radiological Protection (ICRP). 2020b. Dose coefficients
24 for external exposures to environmental sources. ICRP Publication 144. Ann ICRP.
25 49(2):1-147.
26
27 Jurcic JG, Rosenblat TL. 2014. Targeted alpha-particle immunotherapy for acute
28 myeloid leukemia. Am Soc Clin Oncol Educ Book. e126-131.
29
30 Kathren RL, Tolmachev SY. 2019. The US Transuranium and Uranium Registries
31 (USTUR): a five-decade follow-up of plutonium and uranium workers. Health Phys.
32 117(2):118-132.
33
34 Keane AT, Schlenker RA. 1987. Long-term loss of radium in 63 subjects exposed at
35 ages 6 to 46. In: Gerger H, Metivier H, Smith H, editors. Age-related factors in
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 radionuclide metabolism and dosimetry. Proceedings of a workshop in Angers,
4
5 November 26-28, 1986. Dordrecht (NL): Martinus Nijhoff Publishers, p. 127-135.
6
7
8 Keane AT, Holtzmann RB, Rundo J. 1994. Prevalence of technical mesothorium in self-
9
10 luminous compounds used by New Jersey radium dial workers (ANL/ER/CP--
11
12 81143). Argonne (IL): Argonne National Laboratory.
13
14
15 Larson SM, Carasquillo JA, Cneung N-K, Press OW. 2015. Radioimmunotherapy of
16
17 human tumours. *Nat Rev Cancer.* 15(8):347-360.
18
19 Lassmann M, Nosske D. 2013. Dosimetry of ^{223}Ra -chloride: dose to normal organs
20
21 and tissues. *Eur J Nucl Med Mol Imaging.* 40(2):207-212.
22
23
24 Leggett RW. 1992. A generic age-specific biokinetic model for calcium-like elements.
25
26 *Rad Prot Dosim.* 41:183-198.
27
28
29 Leggett RW, Tolmachev SY, Boice JD Jr. 2018. Potential improvements in brain dose
30
31 estimates for internal emitters. *Int J Rad Biol.* Dec 4. doi:
32
33 10.1080/09553002.2018.1554923.
34
35 Lloyd RD, Mays CW, Atherton DR. 1976a. Distribution of injected Ra-226 and Sr-90
36
37 in the beagle skeleton. *Health Phys.* 30:183-189.
38
39
40 Lloyd RD, Mays CW, Atherton DR, Taylor GN, Van Dilla MA. 1976b. Retention and
41
42 skeletal dosimetry of injected Ra-226, Ra-228, and Sr-90 in beagles. *Radiat Res.*
43
44 66:274-287.
45
46
47 Lloyd RD, Mays CW, Taylor GN, Atherton DR, Bruenger FW, Jones CW. 1982.
48
49 Radium-224 retention, distribution, and dosimetry in beagles. *Radiat Res.* 92:280-
50
51 295.
52
53
54 Lloyd RD, Bruenger FW, Jones CW, Taylor GN, Mays CW. 1983a. Retention in mature
55
56 beagles injected at 5 years of age. *Radiat Res.* 94:210-216.
57
58
59
60

1
2
3 Lloyd RD, Bruenger FW, Mays CW, Jones CW. 1983b. Skeletal radon-to-radium ratios
4
5 in neonatal, juvenile and mature beagles and in adult St. Bernards. *Health Phys.*
6
7 44:61-63.
8
9
10 Lloyd RD, Jones CW, Bruenger FW, Atherton DR, Mays CW. 1983c. Radium retention
11
12 and dosimetry in juvenile beagles. *Radiat Res.* 94:295-304.
13
14 Lloyd RD, Taylor GN, Jones CW, Mays CW. 1983d. Radium retention and dosimetry
15
16 in the St. Bernard. *Radiat Res.* 95:150-157.
17
18
19 Marazziti D, Baroni S, Catena-Dell'Osso M, Schiavi E, Ceresoli D, Conversano C,
20
21 Dell'Osso L, Picano E. 2012. Cognitive, psychological and psychiatric effects of
22
23 ionizing radiation exposure. *Curr Med Chem.* 19(12):1864-9.
24
25
26 Martland HS. 1926. Histopathology of certain anemias due to radioactivity. *Proc NY*
27
28 Pathological Soc, N.S. 26(1-5).
29
30
31 Martland HS. 1929. Occupational poisoning in manufacture of luminous watch dials.
32
33 *JAMA.* 92:466.
34
35 Martland HS. 1931. The occurrence of malignancy in radioactive persons. *Am J Cancer.*
36
37 15:2435.
38
39
40 Martland HS, Humphries RE. 1929. Osteogenic sarcoma in dial painters using luminous
41
42 paint. *Arch Path Lab Med.* 7:406-417.
43
44
45 Martland HS, Conlon P, Knef JP. 1925. Some unrecognized dangers in the use and
46
47 handling of radioactive substances: with especial reference to the storage of
48
49 insoluble products of radium and mesothorium in the reticulo-endothelial system.
50
51
52 *JAMA.* 85(23):1769-1776.
53
54
55 Monthly Labor Review (MLR). 1926. Effects of use of radioactive substances on the
56
57 health of workers. *MLR.* 22(5):18-31. [accessed January 9, 2021].
58
59
60 <https://www.jstor.org/stable/41860184>

1
2
3 Moore K. 2017. The radium girls: the dark story of America's shining women.
4
5 Naperville (IL): Sourcebooks.
6
7
8 Mumma MT, Cohen SS, Sirk JL, Ellis ED, Boice JD Jr. 2018. Obtaining vital status
9
10 and cause of death on a million persons. *Int J Radiat Biol.* Nov 9. doi:
11
12 10.1080/09553002.2018.1539884
13
14 Muth H, Glöbel B. 1983 Age dependent concentration of Ra-226 in human bone and
15
16 some transfer factors from diet to human tissues. *Health Phys.* 44:113-121.
17
18
19 National Academies/National Research Council (NA/NRC). 1988. *Health Risks of*
20
21 Radon and Other Internally Deposited Alpha-Emitters: BEIR IV. Washington (DC):
22
23 National Academies Press.
24
25
26 National Council on Radiation Protection and Measurements (NCRP). 2009. Report No.
27
28 164: *Uncertainties in internal radiation dose assessment.* Bethesda (MD): NCRP.
29
30
31 National Council on Radiation Protection and Measurements (NCRP). 2018. Report No.
32
33 178: *Deriving organ doses and their uncertainty for epidemiologic studies (with a*
34
35 *focus on the One Million U.S. Workers and Veterans Study of Low-Dose Radiation*
36
37 *Health Effects).* Bethesda (MD): NCRP.
38
39
40 National Council on Radiation Protection and Measurements (NCRP). 2019. Report No.
41
42 183: *Radiation exposures in space and the potential for central nervous system*
43
44 *effects: phase II.* Bethesda (MD): NCRP.
45
46
47 Nelson BJ, Andersson JD, Wuest F. 2021. Targeted alpha therapy: progress in
48
49 radionuclide production, radiochemistry, and applications. *Pharmaceuticals.*
50
51 13(1):E49. [accessed January 12, 2021].
52
53
54 <https://doi.org/10.3390/pharmaceutics13010049>.

1
2
3 New York Times. 1928. Radium paint takes its inventor's life. Obituary. New York
4 Times TimesMachine, 15 November 1928, p. 29, column 5. [accessed March 11,
5
6 2021]. <https://timesmachine.nytimes.com/>
7
8
9
10 Norris WP, Speckman TW, Gustafson PF. 1955. Studies of the metabolism of radium in
11 man. *Am J Roentgen.* 73:785-802.
12
13
14 Nuclear Regulatory Commission (NRC). 2019. Radiation exposure information and
15 reporting system (REIRS). US Nuclear Regulatory Commission. [accessed February
16
17 7, 2020]. <https://www.reirs.com/>.
18
19
20
21 Pandit-Taskar N, Batraki M, Divgi CR. 2004. Radiopharmaceutical therapy for
22
23 palliation of bone pain from osseous metastases. *J Nucl Med.* 45(8):1358-1365.
24
25
26 Pandit-Taskar N, Larson SM, Carrasquillo JA. 2014. Bone-seeking
27
28 radiopharmaceuticals for treatment of osseous metastases, Part 1: alpha therapy with
29
30 223Ra-dichloride. *J Nucl Med.* 55(2):268-274.
31
32
33 Parihar VK, Allen BD, Caressi C, Kwok S, Chu E, Tran KK, Chmielewski NN,
34
35 Giedzinski E, Acharya MM, Britten RA, Baulch JE, Limoli CL. 2016. Cosmic
36
37 radiation exposure and persistent cognitive dysfunction. *Sci Rep.* 6:34774.
38
39
40 Parihar VK, Angulo MC, Allen BD, Syage A, Usmani MT, Passerat de la Chapelle E,
41
42 Amin AN, Flores L, Lin X, Giedzinski E, Limoli CL. 2020. Sex-Specific Cognitive
43
44 Deficits Following Space Radiation Exposure. *Front Behav Neurosci.* 14:535885.
45
46
47 Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, Chodacki A,
48
49 Wiechno P, Logue J, Seke M, et al 2013. Alpha emitter radium-223 and survival in
50
51 metastatic prostate cancer. *New Engl J Med.* 369(3):213-223.
52
53
54 Parks NJ, Pool RR, Williams JR, Wolf HG. 1978. Age and dosage-level dependence of
55
56 radium retention in beagles. *Radiat Res.* 75:617-632.
57
58
59
60

1
2
3 Parks NJ, Keane AT. 1983. Consideration of age-dependent radium retention in people
4
5 on the basis of the beagle model. *Health Phys.* 44(Suppl 1):103-112.
6
7 Pasqual E, Boussin F, Bazyka D, Nordenskjold A, Yamada M, Ozasa K, Pazzaglia S,
8
9 Roy L, Thierry-Chef I, de Vathaire F, Benotmane MA, Cardis E. 2021. Cognitive
10
11 effects of low dose of ionizing radiation - Lessons learned and research gaps from
12
13 epidemiological and biological studies. *Environ Int.* 147:106295.
14
15
16 Polednak AP. 1978. Bone cancer among female radium dial workers. Latency periods
17
18 and incidence rates by time after exposure: brief communication. *J Natl Cancer Inst.*
19
20 60:77-82.
21
22
23 Polednak AP. 1978. Long-term effects of radium exposure in female dial workers:
24
25 differential white blood cell count. *Environ Res.* 15:252-261.
26
27 Polednak AP. 1980. Fertility of women after exposure to internal and external radiation.
28
29 *J Environ Pathol Toxicol.* 4:457-470.
30
31 Polednak AP. 1986. Thyroid tumors and thyroid function in women exposed to internal
32
33 and external radiation. *J Environ Pathol Toxicol Oncol.* 7:53-64.
34
35
36 Polednak AP, Stehney AF, Rowland RE. 1978. Mortality among women first employed
37
38 before 1930 in the U.S. radium dial-painting painting industry. A group ascertained
39
40 from employment lists. *Am J Epidemiol.* 107:179-195.
41
42
43 Priest ND. 1989. Alpha-emitters in the skeleton: An evaluation of the risk of leukaemia
44
45 following intakes of plutonium 239. In: Taylor DM, Mays CW, Gerber GH,
46
47 Thomas RG, editors. *BIR Report 21: Risks from Radium and Thorotrast.* London
48
49 (UK): British Institute of Radiology, p. 159-165.
50
51
52 Rowland RE. 1993. Low-level radium retention by the human body: a modification of
53
54 the ICRP publication 20 retention equation. *Health Phys.* 65(5):507-513.
55
56
57
58
59
60

1
2
3 Rowland RE. 1994. Radium in humans. A review of U.S. studies. Report ANUER-3.
4
5 Argonne (IL): Argonne National Laboratory.
6
7 Rowland RE, Lucas HF Jr. 1982. Radium dial workers. Conference on radiation
8
9 carcinogenesis: epidemiology and biological significance, Washington, DC, USA,
10
11 24 May 1982. [accessed January 9, 2021]. <https://www.osti.gov/biblio/6374911-radium-dial-workers>.
12
13
14
15
16 Rowland RE, Lucas HF Jr. 1984. Radium-dial workers. In: Boice JD Jr and Fraumeni
17
18 JF Jr, editors. *Radiation Carcinogenesis: Epidemiology and Biological Significance*.
19
20 New York (NY): Raven Press, p. 231-240.
21
22
23 Rowland RE, Stehney AF, Brues AM, Littman MS, Keane AT, Patten BC, Shanahan
24
25 MM. 1978a. Current status of the study of 226Ra and 228Ra in humans at the
26
27 Center for Human Radiobiology. *Health Phys.* 35:159-166.
28
29
30 Rowland RE, Stehney AF, Lucas HF Jr. 1978b. Dose-response relationships for female
31
32 radium dial workers. *Radiat Res.* 76:368-383.
33
34
35 Rowland RE, Stehney AF, Lucas HF. 1983. Dose-response relationships for radium
36
37 induced bone sarcomas. *Health Phys.* 44(Suppl I):15-31.
38
39
40 Rowland RE, Lucas HF, Schlenker RA. 1989. External radiation doses received by
41
42 female radium dial painters. In: Taylor DM, Mays CW, Gerber GB, Thomas RG,
43
44 editors. *BIR Report 21: Risks from Radium and Thorotrast*. London (UK): British
45
46 Institute of Radiology, p. 67-72.
47
48
49 Schieve LA, Davis F, Roeske J, Handler A, Freels S, Stinchcomb, Keane A. 1997.
50
51 Evaluation of internal alpha-particle radiation exposure and subsequent fertility
52
53 among a cohort of women formerly employed in the radium dial industry. *Radiat*
54
55 *Res* 147:236-244.
56
57
58
59
60

1
2
3 Schlenker RA, Keane AT, Holtzman RB. 1982. The retention of ^{226}Ra in human soft
4 tissue and bone: Implications for the ICRP 20 alkaline earth model. *Health Phys.*
5 42:671-693.
6
7 Schwarz BC, Godwin WJ, Wayson MB, Dewji SA, Jokisch DW, Lee C, Bolch WE.
8
9 Forthcoming 2021a. Specific absorbed fractions for a revised series of the UF/NCI
10 pediatric reference phantoms: internal electron sources. *Phys Med Biol.*
11
12 Schwarz BC, Godwin WJ, Wayson MB, Dewji SA, Jokisch DW, Lee C, Bolch WE.
13
14 Forthcoming 2021b. Specific absorbed fractions for a revised series of the UF/NCI
15 pediatric reference phantoms: internal photon sources. *Phys Med Biol.*
16
17 Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, Brill AB, Song H,
18 Howell RW, Akabani G, et al 2010. MIRD Pamphlet No. 22 (abridged):
19 radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide
20 therapy. *J Nucl Med.* 51(2):311-328.
21
22 Sharpe WD. 1978. The New Jersey radium dial painters: a classic in occupational
23 carcinogenesis. *Bull Hist Med.* 52(4):560-570.
24
25 Spiers FW, Lucas HF, Rundo J, Anast GA. 1983. Leukemia incidence in the U.S. dial
26 workers. *Health Phys* 44(Suppl. 1):65-72.
27
28 Stebbings JH. 2001. Health risks from radium in workplaces: an unfinished story.
29
30 Occup Med. 16:259-270.
31
32 Stebbings JH, Lucas HF, Stehney AF. 1984. Mortality from cancers of major sites in
33 female radium dial workers. *Am J Ind Med.* 5:435-459.
34
35 Stewart E. 1929. Radium poisoning. Industrial poisoning from radioactive substances.
36 Monthly Labor Review. 28(6):20-95. [accessed January 9, 2021].
37
38 <https://www.jstor.org/stable/41814411>

1
2
3 Stoudt HW, Damon A, McFarland RA. 1960. Heights and weights of white Americans.
4
5 Hum Biol. 32(4):331-341.
6
7 Stram DO, Sokolnikov M, Napier BA, Vostrotin VV, Efimov A, Preston DL. 2021.
8
9 Lung Cancer in the Mayak Workers Cohort: Risk Estimation and Uncertainty
10 Analysis. Radiat Res. Jan 20. doi: 10.1667/RADE-20-00094.1
11
12 Tolmachev SY, Swint MJ, Bistline RW, McClellan RO, McInroy JF, Kathren RL,
13
14 Filipy RE, Toohey RE. 2019. USTUR special sessions roundtable: United States
15 Transuranium and Uranium Registries (USTUR): A five-decade follow-up of
16
17 plutonium and uranium workers. Health Phys 117 (2): 211-222.
18
19 Yoder RC, Balter S, Boice JD Jr, Grogan H, Mumma M, Rothenberg L, Passmore C,
20
21 Vetter R, Dauer L. 2020. Using personal monitoring data to derive organ doses for
22 medical radiation workers in the Million Person Study -- considerations regarding
23
24 NCRP Commentary No. 30. J Radiol Prot. Dec 2. doi: 10.1088/1361-6498/abcfcb.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Radium Dial Workers: Back to the Future

Nicole E. Martinez,^{a,b,*} Derek W. Jokisch,^{b,c} Lawrence T. Dauer,^d Keith F. Eckerman,^b Ronald E. Goans,^e John D. Brockman,^f Sergey Y. Tolmachev,^g Maia Avtandilashvili,^g Michael T. Mumma,^{h,i} John D. Boice, Jr.,^{i,j} Richard W. Leggett^b

^a Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; ^b Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, Oak Ridge, TN, USA; ^c Department of Physics and Engineering, Francis Marion University, Florence, SC, USA; ^d Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ^e MJW Corporation, Inc., Buffalo, NY, USA; ^f Department of Chemistry, University of Missouri, Columbia, MO, USA; ^g United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Richland, WA, USA; ^h International Epidemiology Institute, Rockville, MD, USA; ⁱ Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ^j National Council on Radiation Protection and Measurements, Bethesda, MD, USA

*CONTACT Nicole E. Martinez nmarti3@clemson.edu Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, SC 29625, USA

Abstract.

Purpose: This paper reviews the history of the radium dial workers in the United States, summarizes the scientific progress made since the last evaluation in the early 1990s, and discusses current progress in updating the epidemiologic cohort and applying new dosimetric models for radiation risk assessment.

Background: The discoveries of radiation and radioactivity led quickly to medical and commercial applications at the turn of the 20th century, including the development of radioluminescent paint, made by combining radium with phosphorescent material and adhesive. Workers involved with the painting of dials and instruments included painters, handlers, ancillary workers, and chemists who fabricated the paint. Dial painters were primarily women and, prior to the mid to late 1920s, would use their lips to give the brush a fine point, resulting in high intakes of radium. The tragic experience of the dial painters had a significant impact on industrial safety standards, including protection measures taken during the Manhattan Project. The dial workers study has formed the basis for radiation protection standards for intakes of radionuclides by workers and the public.

Epidemiologic approach: The mortality experience of 3,276 radium dial painters and handlers employed between 1913-1949 is being determined through 2019. The last epidemiologic follow-up was 30 years ago when most of these workers were still alive. Nearly 65% were born before 1920, 37.5% were teenagers when first hired, and nearly 50% were hired before 1930 when the habit of placing brushes in mouths essentially stopped. Comprehensive dose reconstruction techniques are being applied to estimate organ doses for each worker related to the intake of ²²⁶Ra, ²²⁸Ra, and associated photon exposures. Time dependent dose-response analyses will estimate lifetime risks for specific causes of death.

Discussion: The study of radium dial workers is part of the Million Person Study of low-dose health effects that is designed to evaluate radiation risks among healthy American workers and veterans. Despite being one of the most important and influential radiation effects studies ever conducted, shifting programmatic responsibilities and declining funding led to the termination of the radium program of studies in the early 1990s. Renewed interest and opportunity have arisen. With scientific progress made in dosimetric methodology and models, the ability to perform a study over the entire life span, and the potential applicability

1
2
3 to other scenarios such as medicine, environmental contamination and space
4 exploration, the radium dial workers have once again come to the forefront.
5
6
7
8
9

Keywords: radium; mesothorium; dial painter; Million Person Study

10 11 **Introduction**

12
13 The epidemiologic investigation of United States radium dial workers is one of the most
14 important and influential radiation effects studies ever conducted (Rowland 1994; Fry
15 1998). The last epidemiological follow-up was conducted more than 30 years ago, at
16 which time most of the radium dial workers were still alive (Stebbins et al 1984;
17 Rowland 1994; DOE 2021). Ongoing extended follow-up will provide new information
18 on the lifetime risk of cancer and other adverse effects of ionizing radiation among
19 women following intakes of radium. The study of radium dial workers is part of the
20 Million Person Study (MPS) of low-dose health effects that is designed to evaluate
21 radiation risks among healthy American workers and veterans (Boice et al 2019). This
22 paper briefly reviews the history of the radium dial workers in the United States,
23 summarizes the scientific progress made since the last epidemiologic analysis of this
24 cohort (Rowland 1994), and discusses current progress in expanding and applying
25 updated models to the original cohort.

44 **Historical context**

45
46 There are numerous excellent reviews and books that discuss the history of the dial
47
48 painters (e.g., Martland 1929; Sharpe 1978; Rowland 1994; Fry 1998; Gunderman and
49 Gonda 2015), including Kate Moore's novel *The Radium Girls* (2017) that focuses on
50 the women's experiences. From this tragedy, information was learned about radiation-
51 induced osteosarcomas as well as mastoid and paranasal sinus carcinomas. Here we
52 provide a summary to provide context for the discussion that follows.

1
2
3 Marie and Pierre Curie discovered radium in 1898 and soon after radium was
4
5 being marketed as a medicinal cure-all (Cothorn and Smith 1987). The early 1900s also
6
7 brought the recognition that radium could be combined with phosphorescent material
8
9 (e.g., zinc sulfide) to make self-luminous paint; several proprietary formulas were
10
11 eventually developed. Dr. Sabin von Sochocky, who studied both medicine and atomic
12
13 physics (the latter under Dr. Ernest Rutherford), is credited with inventing a
14
15 radioluminous paint used widely in the United States that was cheaper than that
16
17 developed in Europe (NYT 1928; Sharpe 1978). In 1913, seven years after immigrating
18
19 to the United States (US), he began selling radioluminescent watches commercially and
20
21 two years later became an original founder of what would become the US Radium
22
23 Corporation (USRC); he left the company in 1922. Dial-painting enterprises prospered
24
25 early on due to the wartime demand for radioluminescent dials (Rowland 1994).
26
27
28

29
30 ^{226}Ra ($t_{1/2} = 1600$ y), an alpha-emitter, was used in dial paint through the
31
32 summer of 1919, at which point some facilities, notably USRC in New Jersey, also
33
34 began to use ^{228}Ra ($t_{1/2} = 5.75$ y), a beta-emitting decay product of ^{232}Th commonly
35
36 referred to as mesothorium (Keane et al 1994). Figure 1 contains decay schemes for
37
38 these two radium isotopes. Despite being chemically identical, ^{228}Ra was cheaper than
39
40 ^{226}Ra . The processing of thorium ore results in the production of thorium nitrate, which
41
42 was used at the time in the manufacture of incandescent gas mantles. ^{228}Ra was a
43
44 byproduct of this process that could be obtained locally, used after a year or two
45
46 following extraction to allow in-growth of alpha-emitting progeny, necessary to achieve
47
48 reasonable luminescence. Additionally, with a higher specific activity, ^{228}Ra also had a
49
50 “greater practical luminosity” than ^{226}Ra and was thus used in some locations to
51
52 supplement ^{226}Ra in dial paint (MLR 1926; Stewart 1929; Sharpe 1978). Retrospective
53
54 analysis of USRC dial paint determined an average ratio of ^{228}Ra to ^{226}Ra of about 8.4
55
56
57
58
59
60

1
2
3 for paints used between 1919 and 1925, with other years' paint likely ^{226}Ra only (Keane
4
5 et al 1994).
6

7
8 Workers in dial painting facilities included dial painters, dial handlers, chemists,
9
10 and other ancillary workers. Making up the largest percentage (90.2%) of the current
11
12 epidemiological cohort are the dial painters. Thousands of workers in the current study,
13
14 mainly women (96.4%), painted dials and instruments with radium paint, using their
15
16 lips to finely point their camel hair paint brushes to paint delicate pieces quickly and
17
18 precisely. Being a dial painter was considered glamorous and patriotic, and early on
19
20 little if any concern was expressed as to worker health and safety; many individuals
21
22 believed radium exposure was "good for you." Interestingly, Moore reports an
23
24 anecdote from 1918, where a New Jersey dial painter remembers von Sochocky, as he
25
26 quickly passed through the room, telling her not to put the brush in her mouth because
27
28 she would get sick (Moore 2017). In 1919, cloths were provided to help the painters
29
30 shape the brushes but were removed due to their "waste" of paint (Moore 2017).
31
32 Despite this passing concern, it appears supervisors and managers remained either
33
34 unconvincing or unconcerned that radium had negative health consequences, and most
35
36 dial painters continued to moisten and/or point the brush with their mouth for several
37
38 years following.
39
40
41
42
43

44
45 It wasn't until 1923 that Dr. Theodor Blum, a dentist in Orange, New Jersey,
46
47 first publicly reported that osteomyelitis of the mandible and maxilla had occurred in a
48
49 young painter of luminous dials, a condition termed "radium jaw" (Blum 1924; Fry
50
51 1998), although Dr. Martin Szamatolski, consulting chemist for New Jersey Department
52
53 of Labor, is often credited with the earliest written suspicion (January 1923) that radium
54
55 was the source of this occupational disease (Stewart 1929; Sharpe 1978). Research on
56
57 health effects of internal radium contamination began in earnest in the mid-1920s when
58
59
60

1
2
3 unusual occurrences of bone and other conditions began appearing among New Jersey
4
5 radium workers (Martland 1929; Martland and Humphries 1929; Aub et al 1952;
6
7 Rowland 1994; Stebbings 2001). A report by Harvard Medical School health and safety
8
9 experts Drs. W.B. Castle, Katherine Drinker, and Cecil Drinker was written for USRC
10
11 in June 1924 and published in 1925 despite objections from the company (Castle et al
12
13 1925; Rowland 1994). This report was one of the first studies to link exposure to
14
15 radium with blood changes and jaw necrosis observed in dial painters (Castle et al 1925;
16
17 Rowland 1994). Dr. Frederick Hoffman, a statistician by education, published
18
19 independent observations the same year, concluding that detrimental effects observed in
20
21 dial painters were most likely due to direct contact with radium in the paint via lip
22
23 pointing, although effects were attributed to ^{228}Ra (Hoffman 1925; Sharpe 1978). This
24
25 assumption was seemingly based on the fact that, at the time, affected women were
26
27 from USRC and believed to have painted with only ^{228}Ra -containing paint, contrasted
28
29 with other facilities using ^{226}Ra paint. Ultimately this resulted in ^{228}Ra no longer being
30
31 used in dial paint (Stewart 1929), which is supported by the retrospective paint analysis
32
33 mentioned above (Keane et al 1994). Interestingly, one difference between facilities
34
35 that had an impact on radium intake was the type of adhesive used. Compared to an oil-
36
37 varnish adhesive, paint applied with a water-based adhesive usually resulted in more
38
39 frequent lip-pointing as water tends to separate brush hairs and was also less
40
41 objectionable to put in the mouth. Also, paint was easier to apply with a stylus of some
42
43 kind (e.g., glass rod or metal pen) with oil-varnish adhesive, which is likely why
44
45 European dial painters did not exhibit the same effects as early American dial painters
46
47 (Stewart 1929, Sharpe 1978).

56 The top panel of Figure 2 shows yearly averages in previously computed initial
57
58 systemic intakes of ^{226}Ra (left) and ^{228}Ra (right) for individuals in the current cohort;
59
60

1
2
3 non-zero intakes have been reported for dial workers through 1929 for ^{228}Ra and 1949
4 for ^{226}Ra (DOE 2021; Rowland 1994). Error bars represent the standard error of the
5 mean and do not include consideration of measurement or modeling uncertainty.
6
7

8 Estimates of initial systemic intake are available for 1,558 individuals in the current
9 cohort of 3,276 radium dial workers (see the following section). Initial systemic intake,
10 or the amount of radium that entered systemic circulation during an individual's
11 exposure period, was calculated based on measurements of body burden, or residual
12 radium content in the body (Rowland 1994). It was, however, sometimes necessary to
13 estimate an individual's ^{228}Ra intake from colleagues' results or from measurement of
14 exposure materials (DOE 2021). Initial systemic intake was found to be a useful metric
15 for developing dose-response type of relationships as it was time-invariant and involved
16 no assumptions as to the critical tissues at risk (Rowland and Lucas 1982).
17
18

19 Many dial-painting facilities reported prohibiting lip-pointing around 1925
20 (Martland 1929), although some seem to have delayed implementing the rule (Stewart
21 1929) and reports from painters themselves describe continuing to lip-point for a year or
22 two more (Rowland and Lucas 1982; Moore 2017). Despite some uncertainty in when
23 and to what extent lip-pointing was discontinued, calculated intakes of radium by dial
24 workers were much lower in the years following 1926 (Figure 2).
25
26

27 The bottom panel of Figure 2 contains individual initial systemic intakes of
28 ^{226}Ra for those in the current cohort for whom estimates are available (DOE 2021;
29 Rowland 1994). Widespread publicity of the hazards of dial-painting and tragic
30 consequences to early dial workers is attributed to the reduction in number of
31 employees following 1925, with renewed interest in the 1940s associated with the
32 wartime demand for luminous dials (Rowland and Lucas 1982). Figure 2 also
33 highlights the overlap of age and year of first exposure. Prior to the 1926 benchmark, a
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 large number of dial workers were under 18 years old. Looking forward to the 1940s,
4
5 there are comparatively fewer teenage workers. This may be in part due to the Fair
6
7 Labor Standards Act, first passed in 1938 (29 USC Chapter 8; DOL 2011).
8
9

10 Perhaps the most extensive of the early research into the effects observed in dial
11 workers was the body of work led by Dr. Harrison Martland, a pathologist at Newark
12 City Hospital who became the medical examiner for Essex County, New Jersey in 1925
13 (Martland et al 1925; Sharpe 1978; Fry 1998; Rowland 1994). He reports in a series of
14 papers detailed exposure history, symptoms, pathology, and prognosis of the radium-
15 induced diseases seen in dial workers (e.g., jaw necrosis, aplastic anemia, and
16 osteosarcomas) along with corresponding radiological measurements (Martland et al
17 1925; Martland 1926, 1929, 1931; Martland and Humphries 1929; Aub et al 1952).
18
19 Martland and colleagues, including von Sochocky, were among the first to develop and
20 use techniques for *in vivo* measurement of radioactivity (Martland et al 1925; Martland
21 1929). Martland was an advocate for the dial workers, and his papers frequently
22 included sociolegal aspects of the occupational circumstances (e.g., Martland 1929; Fry
23 1998).
24
25

26 The early health studies were revived by the Atomic Energy Commission
27 following World War II, partly because of the importance of radium studies in
28 predicting the health effects of plutonium, a new bone-seeking alpha-emitting
29 radionuclide. In 1969, the three major human studies of radium were centralized at
30 Argonne National Laboratory, following an initial proposal made by Dr. Robley D.
31 Evans as to the need for a National Center of Human Radiobiology. Evans was a
32 physicist at the Massachusetts Institute of Technology who made substantial
33 contributions to the radium studies starting in the early 1930s, fresh out of graduate
34 school, through his retirement in 1972. The Argonne program was terminated in the
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 early 1990s and materials were transferred to Washington State University and stored at
4
5 the National Human Radiobiology Tissue Repository (NHRTR) in Richland WA
6
7 (Rowland 1994). The United States Transuranium and Uranium Registries (USTUR)
8
9 research program is a federal-grant-funded human tissue research program providing
10
11 long-term study of actinide biokinetics in former nuclear workers with accidental
12
13 internal depositions of these elements. The USTUR conducts autopsies and performs
14
15 radiochemical analyses of voluntarily donated tissue samples (Kathren and Tolmachev
16
17 2019; Tolmachev et al 2019). NHRTR holds all tissues donated to the USTUR, along
18
19 with specimens acquired from the US Radium Worker Studies (Rowland 1994). The
20
21 USTUR/NHRTR is a unique resource for retrospective analyses and distribution studies
22
23 of plutonium, uranium, americium, as well as radium and beryllium in the human whole
24
25 body, as well as in specific tissues and organs. In fact, the USTUR repository contains
26
27 1000s of specimens from the radium dial workers and has been accessed to help inform
28
29 dosimetric models, e.g., radiochemistry determination of radium in brain tissue of a
30
31 painter (Leggett et al. 2018; Kathren and Tolmachev 2019; Tolmachev et al. 2019)
32
33
34
35
36
37
38

39 ***Cohort definition***

40

41 Over the years, there have been several epidemiologic studies and analyses of the
42 radium dial workers (Rowland 1993, 1994; Rowland et al 1978a, 1978b, 1983, 1989;
43 Polednak 1978a, 1978b; Polednak et al 1978; Rowland and Lucas 1982, 1984;
44 Stebbings et al 1984). The current population is composed of the dial painters studied
45 by Polednak et al 1978 (900 dial painters first hired prior to 1930) and Stebbings et al
46 1984 (approximately 2,600 dial painters hired prior to 1950) supplemented with
47 workers available from the comprehensive dataset from Argonne National Laboratory
48 described by Rowland (1994) and digitally archived at the US Department of Energy
49 (DOE) Comprehensive Epidemiologic Data Resource (CEDR). This dataset contains
50
51
52
53
54
55
56
57
58
59
60

1
2
3 information on about 6,000 individuals with radium exposure, including not only dial
4 workers, but also radium chemists, patients treated with radium, individuals who were
5 known to have ingested radium water (e.g., *Radithor*), and other miscellaneous
6 exposures (DOE 2021; Rowland 1994). While the information available in CEDR and
7 in Rowland (1994) helps define the study population, a key source of information is the
8 100,000s of pages of individual microfilm and microfiche records that were converted
9 to optical character read format. Detailed clinical data, dosimetry data, and follow-up
10 data for individuals provides a treasure trove of information to supplement and enhance
11 the epidemiologic data. These data were made available through the DOE USTUR.
12
13
14

15 The population selection and the incremental cost for data abstraction and
16 tracing were balanced against a small benefit from including a substantially expanded
17 set of radium dial workers who had very low or minimal radium intakes (e.g., those first
18 employed after about 1925, and certainly after 1950). The final defined population
19 includes all dial painters (DP) and dial handlers (DH) employed prior to 1950. The
20 final population size consists of 3,276 workers, including a small number ($n = 119$) of
21 male painters and handlers.
22
23
24

25 *Vital status and cause of death determination*

26 Vital status, date and cause of death as of December 31, 2019 (aka vital status tracing)
27 are being sought from linkages with the National Death Index (NDI); state mortality
28 files; the Social Security Administration (SSA) Death Master File; the SSA Service to
29 Epidemiological Researchers (which confirms alive status); and credit reporting
30 agencies using the methods outlined in Mumma et al (2018). The Centers for Disease
31 Control and Prevention LinkPlus program, which incorporates a probabilistic scoring
32 system that does not require exact matches on all variables, was used for in-house
33 matches (Campbell 2008). Online ancestry providers (Ancestry.com) and credit record
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2 providers (Transunion) are important sources to help complete and correct key
3 demographic and linking data, such as Social Security Number, last names (which often
4 changed since employment), and dates of birth and death. Vital status (VS) tracing
5 (Figure 3) continues, and preliminary results are presented in Table 1. End-of-follow-
6 up (EOFU) in Table 1 refers to the date a person is no longer considered at-risk for
7 analytic purposes. It is their date of death, 95th birthday or December 31 of the
8 calendar year. We anticipate that most of the study participants still being traced will be
9 deceased as of December 2019.
10
11
12
13
14
15
16
17
18
19
20
21
22

23 *Career doses*

24
25 Dosimetry records documenting radiation exposure received after employment at dial
26 painting facilities will be sought from additional sources: the DOE Radiation Exposure
27 Monitoring System (REMS), including historic DOE radiation exposure data not
28 included in REMS; the Nuclear Regulatory Commission (NRC) Radiation Exposure
29 Monitoring System (REIRS) and Landauer, Inc. dosimetry records
30 (DOE 2018; NCRP 2018; NRC 2019; Yoder et al 2020). Based on the age structure of
31 the population, we do not anticipate many additional external dose records. All
32 organ/tissue-specific doses from each source will be added together to obtain the total
33 organ/tissue-specific external and internal dose received by each worker for each
34 calendar year, following the procedures outlined in Boice et al (2006) and Ellis et al
35 (2018).
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 **Integration of radiation biology, dosimetry, and epidemiology for the radium**
4 **dial worker cohort**
5
6
7

8 ***Epidemiology and health outcomes***
9

10 As above, the mortality experience of a new cohort of 3,276 radium dial painters and
11 handlers employed between 1913-1949 is being examined through 2019. Nearly 65%
12 were born prior to 1920, 37.5% were teenagers when first hired, 96.4% were female,
13 90.2% were dial painters, and nearly 50% were hired before 1930 when the habit of
14 placing brushes in mouths essentially stopped (Table 1). The large number of dial
15 workers first employed 1940-1949 (46.7%), represents a relatively large low-dose group
16 for comparison. The cohort was assembled over the years from over 10 different
17 companies located primarily in New Jersey, Connecticut, and Illinois (Table 1)
18 (Polednak et al 1978; Rowland 1994). A comprehensive approach to ascertaining vital
19 status (Mumma et al 2018) has already confirmed to date that 86% have died; 99% of
20 those with known vital status have died. Comprehensive dose reconstruction techniques
21 are being applied to estimate organ doses for each worker related to the intake of ^{226}Ra ,
22 ^{228}Ra , and associated photon exposures. Time dependent dose-response analyses will
23 estimate lifetime risks for specific causes of death, with a particular focus on
24 osteosarcoma, mastoid and paranasal sinus carcinoma; leukemia; cancers of the lung,
25 breast, and brain; ischemic heart disease; and dementia, Alzheimer's, Parkinson's, and
26 motor neuron disease.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 A comprehensive review of the published epidemiological studies of radium
50 workers can be found in Rowland (1994); Dr. Robert E. Rowland, a biophysicist, was
51 the first director of the Center for Radiation Biology at Argonne National Laboratory
52 and heavily involved in the radium studies. Updates and informative reviews also are
53 available in the Biological Effects of Ionizing Radiations (BEIR) IV Report (NA/NRC
54
55
56
57
58
59
60

1
2
3 1988) and articles by Fry (1998) and Stebbings (2001). Over the years different
4 epidemiologic cohorts were defined, e.g., women first employed before 1930 (Polednak
5 et al 1978), women first employed before 1950 (Stebbins et al 1984) and women and
6 men first employed before 1950 as radium workers (Rowland and Lucas 1984).
7
8 Further, some publications focused primarily on dose-response relationships and
9 included only women with measured intakes of radium (Rowland et al 1978b), and
10 some included other types of radium workers in addition to dial painters (Rowland
11 1994). As mentioned above, the current cohort under study includes radium dial
12 painters and a few associated workers, e.g., dial handlers, first employed before 1950
13 and previously studied in large part by Stebbings et al (1984) and supplemented as
14 described in Rowland (1994).
15
16

17 Briefly, osteosarcomas and head carcinomas (mastoid and paranasal sinus
18 carcinomas) have been convincingly associated with internal radium exposure. The
19 distribution of these cancers in radium-exposed persons as of 1990 is shown in Table 2;
20 note that five individuals were diagnosed with both osteosarcomas and head
21 carcinomas. About 1.5% (64 individuals) of dial workers were diagnosed with
22 osteosarcomas, a cancer which was found to be more effectively induced by ^{228}Ra
23 compared with ^{226}Ra (Rowland et al 1978b). About 0.6% (24 individuals) of dial
24 workers were diagnosed with head carcinomas, attributed to the accumulation of ^{222}Rn
25 in the sinus cavities (NA/NRC 1988; Rowland 1994). All these cancers were observed
26 in female dial painters, attributed primarily to their higher levels of intake compared to
27 dial handlers or male dial painters; few men painted dials (Rowland et al. 1983) and
28 those who did generally had measured intake levels of ^{226}Ra that were much lower than
29 those among women (Rowland 1994; see also Figure 2).
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Other previously studied health outcomes included leukemia (Spiers et al. 1983),
4
5 breast cancer (Adams and Brues 1980; Stebbings 2001), fertility (Polednak et al. 1980;
6
7 Schieve et al. 1997), multiple myeloma (Stebbins et al. 1990; Stebbings 2001), thyroid
8
9 tumors (Polednak 1986) and cataracts (Adams et al. 1983). Although increased risks
10
11 were reported for some of these conditions, the associations were either not statistically
12
13 meaningful and/or were not convincingly related to estimated intakes of radium.
14
15

17 The current work will expand upon these previous observations and will
18 provide a complete assessment of lifetime risks related to radium ingestion. The health
19 outcomes considered will include the previously studied cancer and non-cancer
20 outcomes and have been broadened to include cognitive deficits possibly related to
21 radiation exposure to brain tissue (Marazziti et al 2012; Parihar et al 2016, 2020;
22 Azizova et al. 2020; Pasqual et al 2021). Interestingly, NASA is concerned about
23 possible behavioral and cognitive impairments from high energy heavy ions in space
24 [galactic cosmic radiation (GCR)] that might jeopardize long missions, and, possibly,
25 lead to Alzheimer's, Parkinson's or dementia later in life (NCRP 2019; Boice 2019).
26
27 There are no human exposure circumstances similar to GCR in space that can provide
28 direct information on cognition or neurological diseases following such high-LET
29 exposure to brain tissue. The intake of radium can result in meaningful exposure to
30 brain tissue from alpha particles, and the medical records of the dial painters are
31 substantial, going back as early as the 1920s. Although an imperfect analog, the study
32 will be able to address the likelihood that high-LET exposures to brain might cause
33 cognitive impairment and provide some guidance as to the seriousness of this threat for
34 space exploration.
35
36

37 Uncertainties associated with this work are those typically encountered in
38 epidemiological studies evaluating radiation-induced health effects, although the current
39

1
2
3 study has the unique benefit of systemic measurements made on over half of the
4 populations, the continued monitoring and clinical visits of individuals in the
5 population, and the current availability of thousands of tissue samples, and bones, of the
6 dial painters available at USTUR. Dose reconstructions and analysis will follow current
7 best practices with respect to evaluation of uncertainty (e.g., NCRP 2009, NCRP 2018),
8 including consideration of the new approaches to address uncertainty in worker studies
9 following intakes of plutonium, another bone-seeker (Stram et al. 2021).

10
11
12
13
14
15
16
17
18
19
20 ***Cellular dosimetry***

21 Peripheral blood slides have been reviewed from a cohort of 166 radium dial painters
22 and ancillary workers (Goans et al 2019). The blood slides were prepared in 1960-1975
23 during medical follow-up and were made available in collaboration with the USTUR.
24 The cohort contained 107 dial painters, 22 dial handlers, 19 radium chemists, and other
25 personnel dealing with radium. Members of the cohort had ingestion of ^{226}Ra and ^{228}Ra
26 at an early age (average age 20.6 ± 5.4 y; range 13-40 y) during the years 1914-1955.
27 Exposure duration ranged from 1-1,820 weeks with red marrow dose 1.5-6,750 mGy.
28

29 The cell of interest in the peripheral smear is the pseudo-Pelger Huët cell (PH).
30 PH is characterized in neutrophils by a bi-lobed nucleus whose lobes are joined by a
31 thin chromatin bridge. PH in this case is caused by a radiation-induced decrease in the
32 amount of the Lamin B receptor (LBR). The gene that encodes the LBR is known to be
33 located on the long arm of chromosome 1, 1q42.12.
34

35 PH has been described as a novel, permanent, radiation-induced biomarker in
36 circulating neutrophils (Goans et al 2015, 2017). In studies involving a group of
37 workers from the Y-12 criticality accident (1958) and from controlled primate studies at
38 the Armed Forces Radiobiology Research Institute (AFRRI), PH has shown a linear
39 dose response for mixed dose in red marrow from 1-10 Gy. In the radium dial painter
40

1
2
3 cohort, PH expressed as a percentage of total neutrophils has been shown to rise in a
4 sigmoidal fashion over five decades of red marrow dose, best fit with a sigmoid
5 function and suggestive of a threshold effect (Goans et al 2019). These results are
6 consistent with health outcome findings (discussed above) in that no bone sarcomas
7 were observed in the radium dial cohort at intakes below 100 μ Ci (Rowland 1994).
8
9 Thus, PH percentages from peripheral blood tracks alpha dose to bone marrow and have
10 the potential to be a useful metric for supporting dose estimates. Figure 4 shows a plot
11 of PH percent (mean % \pm standard error of the mean) from this cohort versus date of
12 entry into the workforce. A decrease toward control values is seen for entry into the
13 workplace after 1930.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 **Radium biokinetics and associated models**
29
30
31 *Overview of radium kinetics in the body*
32
33 Radium belongs to the alkaline earth family (Group 2) of the periodic table and is a
34 physiological analogue of the lighter alkaline earth metals calcium, strontium, and
35 barium. The rates of uptake and removal by tissues differs from one alkaline earth to
36 another due to discrimination by biological membranes and hydroxyapatite crystals of
37 bone (Leggett, 1992; ICRP, 1993). The biokinetics of radium in the human body
38 resembles that of barium more closely than that of calcium or strontium.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Biokinetic data for radium in adult humans were reviewed in International
Commission on Radiological Protection (ICRP) Publication 137 (2017). Briefly, the
biokinetics of the individual alkaline earth elements and the comparative behaviors of
different pairs of these elements have been studied extensively in human subjects and
laboratory animals. Based on controlled studies on adult human subjects it is estimated
that about a third of radium atoms leaving blood deposit in excretion pathways,

1 predominantly in the colon. Soft tissues initially accumulate a substantial portion of
2 retained systemic radium but lose most of the deposited activity within a few days.
3 Bone soon becomes the primary systemic repository of radium after its acute uptake to
4 blood. Radium and other alkaline earths entering bone initially deposit on bone
5 surfaces, from which they are removed over a period of hours or days back to blood and
6 to a lesser extent to a bone volume pool referred to as exchangeable bone volume. The
7 rate of loss of alkaline earth elements from exchangeable bone over the first few months
8 after uptake to blood increases in the order radium > barium > strontium > calcium. A
9 portion of radium, barium, strontium, or calcium entering exchangeable bone volume
10 returns to blood over a period of months and a smaller portion becomes firmly fixed in
11 bone crystals and is retained there until removed by bone restructuring processes.
12 Calcium, strontium, barium, and radium are all about equally likely to transfer from
13 bone surface to exchangeable bone volume, but the likelihood of becoming firmly fixed
14 in bone crystal decreases in the order calcium > strontium > barium > radium. The rate
15 at which the non-exchangeable (firmly fixed) alkaline earth elements are removed from
16 bone volume to blood appears to depend completely on the rate of turnover of the bone
17 type (trabecular or cortical bone) and thus is independent of the element. The portion of
18 acutely injected radium in bone of a mature adult human typically is about 20-40% after
19 1 day, 6-12% after 1 month and 2-4% after 1 year.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Information is available on the systemic behavior of radium in immature humans
(ICRP, 1973; Parks et al, 1978; Parks and Keane, 1983; Muth and Glöbel, 1983; Keane
and Schlenker, 1987). More detailed data on the age-specific behavior of systemic
radium are available for laboratory animals, particularly dogs (Lloyd et al 1976a, 1976b,
1982, 1983a-d; Bruenger et al 1983; Bruenger and Lloyd 1989). Differences with age in
the systemic behavior of radium are consistent with findings for the other alkaline earth

elements. That is, retention of radium is greater in growing bone than in mature bone; changes with age in uptake of radium by the skeleton are roughly proportional to the age-specific rate of calcium addition to bone from bone growth plus bone remodeling; at times remote from exposure, skeletal burdens acquired during periods of growth tend to remain higher than those acquired by mature skeletons except for skeletal burdens acquired during or soon after infancy; and both deposition and removal of radium appear to be greater in areas of bone undergoing rapid remodeling than in areas of relatively slow remodeling.

Biokinetic models for radium previously applied to dial workers

Mainly on the basis of follow-up data for Elgin State Hospital patients administered known amounts of ^{226}Ra via intravenous injection, Norris et al (1955) proposed that fractional retention of absorbed radium as a function of time t (days) could be described by the power function $R(t) = 0.54t^{-0.52}$. This retention function was used for years to estimate intake of ^{226}Ra by radium dial workers, based on long-term retention of ^{226}Ra as judged from external measurement or ^{222}Rn exhalation.

ICRP Publication 20 (1973) introduced a relatively complex model of retention R of the alkaline earths calcium, strontium, barium, and radium as a function of time, t (days), based on an extensive review of data on the behavior of these elements in human subjects:

$$R(t) = (1-p)e^{-mt} + p\varepsilon^b (t+\varepsilon)^{-b} \left[\beta^{-r\lambda t} + (1-\beta)e^{\sigma r\lambda t} \right] \quad (1)$$

Some of the parameters in this retention function are element dependent and others represent physiological or unknown, element-independent processes:

λ is the rate of resorption of compact bone,

1
2
3 σ is the ratio of turnover rates of trabecular and compact bone,
4
5 β is the fraction of bone volume activity deposited in compact bone,
6
7 m is a rate constant representing an early exponential process,
8
9
10 p is the fraction of retention not in the early exponential process,
11
12 ε (element-specific) is related to fast turnover of an initial pool,
13
14 b (element-specific) is related to diffusion of exchangeable activity from bone,
15
16 r (element specific) is related to redeposition of activity at bone-forming sites.
17
18

19 In ICRP Publication 20, retention in soft tissues was calculated as the difference
20
21 between total-body retention $R(t)$ and components of the model interpreted as
22
23 representing activity in bone and blood.
24

25
26 Schlenker et al (1982) concluded from a review of the distribution and retention
27
28 of radium in soft tissues that the model of ICRP Publication 20 did not accurately depict
29
30 the time-dependent distribution of radium between bone and soft tissue. They modified
31
32 selected parameter values for radium to obtain a better fit to their collected data.
33
34

35
36 As described by Rowland (1993, 1994), measurements of retention of ^{226}Ra in
37
38 the dial painters made 30-60 years after exposure indicated faster loss of radium from
39
40 the body than predicted by the model of ICRP Publication 20. To address this issue,
41
42 Rowland (1993) modified Schlenker's revision of the ICRP model to incorporate a
43
44 higher bone turnover rate. It was later observed that case-specific modifications of the
45
46 Schlenker model may sometimes be needed because the rate of bone resorption may be
47
48 greatly reduced in cases of extremely high intake of ^{226}Ra due to radiation damage to
49
50 bone (Rowland 1994).
51
52

53
54
55 *Biokinetic model for systemic radium applied in the present study*
56

57
58 The latest version of the ICRP's biokinetic model for systemic radium will be used as
59
60 the starting place for reconstructing intake of ^{226}Ra and ^{228}Ra by radium dial painters.

1
2
3 As described below, it is expected that parameter values of the ICRP model will be
4 modified where feasible to improve estimates of the intake and subsequent behavior of
5 radium in individual dial painters or subgroups of dial painters.
6
7

8
9 The ICRP's latest biokinetic model for a reference adult is described in
10 Publication 137 (2017), which is Part 3 of an ICRP series of reports on occupational
11 intake of radionuclides (OIR). An age-specific version of that model has been
12 developed and will be described and applied in an upcoming series of ICRP reports on
13 environmental intake of radionuclides (EIR) by members of the public. The structure of
14 the model is shown in Figure 5. Reference age-specific transfer coefficients are listed in
15 Table 3. The following modifications of the radium model described in Figure 5 and
16 Table 3 are planned for application to the radium dial painters:
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- *Age- and sex-specific biokinetics of radium and progeny throughout life.* The ICRP's biokinetic model for radium addresses differences with age in radium kinetics only through age 25 y and does not address gender differences at any age. For application to the radium dial painters, the ICRP model will be modified to address age and gender differences in radium biokinetics throughout life. For example, the model will address age and gender differences in bone remodeling rates throughout life and in rates of net bone loss starting in the fifth decade of life. The ICRP model will also be modified to address differences with gender in the rates of bone maturation during adolescence.
- The relatively simple model applied by the ICRP to radon produced in vivo by decay of radium will be replaced with the more sophisticated ICRP model for radon as a parent.
- The structure of the ICRP's current biokinetic model for systemic radium (Figure 5) will be modified, insofar as allowed by available biokinetic data, to

1
2
3 improve dose estimates for tissues of interest that are not explicitly depicted in
4
5 the ICRP model. For example, a compartment representing the brain will be
6
7 added. Parameter values describing uptake and removal of radium by the brain
8
9 will be taken from an earlier paper (Leggett et al 2018).
10
11

12
13 As in the ICRP's OIR and EIR series, the assumption of independent kinetics of
14 radioactive progeny will be applied in dose reconstructions for radium dial painters.
15
16 That is, radioactive progeny produced in the body after intake of ^{226}Ra or ^{228}Ra will be
17 assumed to follow the characteristic biological behaviors of those elements (as opposed
18 to following the biokinetics of radium) following production in soft tissues or on bone
19 surface. Radioactive progeny other than radon produced in bone volume will be
20 assumed to be removed from bone volume only through bone remodeling or net bone
21
22 loss.
23
24

25
26
27
28
29
30
31
32 *Radium distribution in brain*

33
34 Analysis of brain tissue of a female individual occupationally exposed to radium was
35 conducted at USTUR recently to study the distribution of ^{226}Ra . The concentrations of
36
37 ^{226}Ra were measured with inductively coupled plasma mass spectrometry (ICP-MS) at
38 the University of Missouri in the corpus callosum, the white and grey matter of the
39 cerebrum lobes, the cerebellum, and brainstem segments of the brain. Preliminary
40 results indicate that ^{226}Ra concentration in the white matter ($18.3 \pm 3.0 \text{ Bq kg}^{-1}$) was
41 about 3.5 times higher than the average of all other brain segments (ranged $4.9\text{--}5.7 \text{ Bq}$
42
43 kg^{-1}). With only one case studied, current preliminary results suggest non-uniformly
44 distribution of radium in the human brain. In the future, this finding might have an
45 impact on biokinetic modeling of internally deposited radionuclides in the brain as well
46 as on the assessment of radiation doses to the brain. Current systemic biokinetic models,
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 recommended by the ICRP assume a uniform distribution in the brain for any specific
4 element because at present, it is not feasible to characterize with much confidence (1)
5 the distribution of most individual elements among different regions of the brain or (2)
6 element-specific biokinetics in individual regions of the brain. Thus, the assumption still
7 would be that the element is uniformly distributed in the entire brain. We recognize,
8 however, the importance of different distributions of radium within different brain
9 regions and would address such issues moving forward as new information becomes
10 available (Boice et al. 2021; NCRP 2021).

23 *Overview of methodology for internal dose calculation*

24
25 The starting point for internal dose calculation will be measurement-based radium body
26 burden estimates performed in the past. The timing, number, and type of radiological
27 measurement(s) made to estimate body burdens in dial workers varied by individual and
28 were dependent on the available instrumentation and technology. For example,
29 thallium-activated sodium iodide (NaI(Tl)) crystal was reported to be an effective
30 scintillation material in 1948 (Hine 1977), but neither useful crystals, nor appropriate
31 electronic circuitry to collect and interpret the light signal from a NaI(Tl) crystal, were
32 readily available at the time. This limited the practical application of the NaI(Tl)
33 detector for the next few years. Common types of measurements made, though,
34 included radon breath measurements, whole-body gamma-ray measurements, and
35 autopsy or other posthumous measurements (e.g., autoradiography of bones) (Rowland
36 1994).

37
38 Body burden estimates provide the activity of ^{226}Ra and/or ^{228}Ra in the body at
39 the time of measurement, which can then be coupled with biokinetic models and the
40 time of first intake from an individual's work history to develop a time series of relevant
41 activity levels in the body. In other words, the latest biokinetic models described above
42

1
2
3 will use previously determined body burdens to develop estimates of activity versus
4 time in each pertinent source region in the body for radium and its progeny. The
5 temporal activity data will then be customized to each dial worker based on their age
6 and duration of employment. This work will also treat the intake of radium as chronic
7 over their employment. Other factors, such as whether a dial painter's work bridged a
8 transition from mouth tipping of brushes to cessation of this practice (somewhere
9 around 1926) can be folded into the chronic intake model.
10
11
12
13
14
15
16
17
18

19 The absorbed dose rate, \dot{D}_T , to a particular target region, T , is computed using
20
21 equation (2) where A_S is the activity at a given time in a source region, S , and
22
23 $S(r_T \leftarrow r_S)$ is the S-coefficient, defined as the absorbed dose to a target region, r_T , per
24 nuclear transformation taking place in a source region, r_S .
25
26
27
28
29

$$\dot{D}_T = \sum_{r_S} A_S \cdot S(r_T \leftarrow r_S) \quad (2)$$

30 The S-coefficient is computed as shown in equation (3) and depends on the
31
32 energy, $E_{R,i}$, and yield, $Y_{R,i}$, of emission, i , of radiation type, R , from a given
33
34 radionuclide. The last term in equation (3), $\Phi(r_T \leftarrow r_S, E_{R,i})$, is the specific absorbed
35
36 fraction which is defined as the fraction of emitted energy from a source region
37
38 absorbed in a target region per mass of the target. The specific absorbed fraction
39
40 depends on the energy, radiation type, and specific source-target geometry. Before
41
42 adulthood, the S-coefficient also varies with respect to age.
43
44
45
46
47
48

$$S(r_T \leftarrow r_S) = \sum_R \sum_i E_{R,i} \cdot Y_{R,i} \cdot \Phi(r_T \leftarrow r_S, E_{R,i}) \quad (3)$$

49
50 The absorbed dose rates as functions of time will be integrated to provide
51
52 annualized absorbed doses over life. Similarly, committed absorbed dose over life will
53
54 be computed for the sake of comparison to past committed absorbed dose calculations.
55
56
57
58
59
60

1
2
3 Dosimetric targets of interest include the bone endosteum, red (active) marrow,
4
5 breast, brain, liver, lung, heart wall, and others. While the bone endosteum is
6
7 considered the current target of interest for radiogenic bone cancer (Bolch et al 2007,
8
9 Gossner 2003, Gossner et al 2000), dose to the entire bone volume will also be
10
11 computed since it has been used in past studies on this cohort.
12
13

14
15 The absorbed dose to the red (active) marrow resulting from alpha particles
16
17 emitted in the bone surface will not be uniform across the marrow cavity due to the
18
19 short range of the alpha particles. The current definition of the bone endosteum target is
20
21 the first 50 μm of marrow space adjacent to the bone surface. This region contains red
22
23 marrow and, for the case of radiations emitted from the bone, the endosteum dose is
24
25 equivalent to the shallow red marrow dose. The difference between the shallow marrow
26
27 dose and the marrow dose averaged over the entire cavity may provide some insight
28
29 into deterministic and stochastic hematopoietic response, or the lack thereof as seen in
30
31 previous reports of radium dial painters (Spiers et al 1983; Priest 1989).
32
33
34

35
36 *Use of the latest energy absorption data*
37
38

39 Energies and yields of the various radionuclide emissions will be taken from ICRP
40
41 Publication 107 (2008). In 2016, the ICRP published new specific absorbed fractions
42
43 for reference adults (ICRP 2016). These specific absorbed fractions were computed
44
45 using the latest whole-body voxel phantoms and detailed models of the skeleton,
46
47 alimentary, and respiratory regions. Similar data for reference children were recently
48
49 published by the ICRP (Schwarz et al 2021a, Schwarz et al 2021b) using an age-
50
51 dependent set of reference phantoms (ICRP 2020a) and models.
52
53

54 The energy deposition of alpha particles emitted from the skeleton is of
55
56 particular importance to the ingestion of radium given its high uptake to the bone.
57
58 Figure 6 contains plots of the absorbed fractions provided in Publication 133 compared
59
60

1
2
3 to values in Publication 30 (ICRP 1979). The differences are due to new definitions of
4 source and target regions and an improved capability to perform radiation transport
5 calculations in complex geometries such as the skeleton.
6
7
8
9
10

11 *Age and sex dependency of dosimetric calculations*
12

13 As referenced earlier, the updated dosimetry calculations will include consideration of
14 the age and sex of the workers at the time of their ingestion of radium. This will impact
15 both the biokinetic, or activity term in equation (2) and the energy absorption term.
16
17

18 Figure 7 is a histogram of the ages of dial workers when they began their work.
19
20 Most dial workers were teenagers at the time of first employment (see also Figure 2)
21 and therefore at the time they were ingesting radium. Figure 8 gives the absorbed dose
22 rates for selected target tissues due to ingestion of 1 Bq of ^{226}Ra as a function of time
23 after intake. Due to significant differences in skeletal growth at age 15 compared to age
24 25 (adult), intake of radium as a teenager will result in extended retention of radium and
25 its progeny in the skeleton.
26
27

28 Also of note is that age and sex influence body weight. ICRP Publication 23
29 (1975) lists weight of the reference total body as 70 kg for men and 58 kg for women.
30 Current ICRP reference total body masses are 60 kg for adult females and 53 kg for 15-
31 year-old females (ICRP 2009, 2020a). The United States did not start collecting
32 detailed, comprehensive data on heights and weights of Americans until 1960 (Stoudt et
33 al 1960; Flegal 1996), although pockets of data were collected as early as 1858 for
34 adults (Hathaway and Foard 1960) and 1877 for children and teenagers (Hathaway
35 1957). Interestingly, a 1923 dataset drawing from 12 schools in the North Eastern and
36 North Central states (about 55,000 girls) determined a standard weight for 15-year-old
37 females (depending on height) to be about 53 kg (Hathaway 1957), giving additional
38 confidence in applying the current ICRP model to teenagers in our cohort.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 *Unique temporal aspects of dose resulting from ^{226}Ra and ^{228}Ra .*
4

5 The two radium decay chains (Figure 1) have several differences in their half-lives and
6 elemental constituents. As mentioned previously, ^{226}Ra has a significantly longer half-
7 life than ^{228}Ra and is itself an alpha emitter unlike the beta-emitting ^{228}Ra . However,
8 the comparatively short half-life of ^{228}Ra allows for in-growth of the alpha-emitting
9 progeny ^{228}Th and ^{224}Ra which are important dose contributors. Figure 9 contains plots
10 of the absorbed dose rate to selected target tissues at times following the ingestion of 1
11 Bq of the two radium isotopes. Note that the dose rate due to ^{226}Ra and progeny peaks
12 at under 1-day following ingestion. Conversely, the absorbed dose rate due to ^{228}Ra and
13 progeny reaches has two peaks. The early peak at 1 day is due to dose from the beta-
14 emitting ^{228}Ra and removal of the non-absorbed radium via the alimentary tract. The
15 late peak occurring just before 1000 days after ingestion is due to the in-growth of
16 alpha-emitting progeny ^{228}Th , ^{224}Ra and others from the fraction of radium which was
17 absorbed into the skeleton and systemic tissue. It takes time for the in-growth of
18 important ^{228}Ra progeny in the body.
19
20

21 By computing dose rate and annualized doses, the current study will allow for
22 the important temporal contributions of the two radium isotopes and their progeny to be
23 included in the dosimetry. This is particularly important since radiogenic disease
24 occurred at varying times in members of the cohort.
25
26

27 Rowland et al (1978b), among others, previously described various strategies for
28 weighting ^{228}Ra compared to ^{226}Ra for the purpose of assessing dose-effect
29 relationships, ultimately assigning different values for different biological effects. For
30 example, Rowland et al (1978b) describe three different ways to weight ^{228}Ra with
31 respect to the induction of osteosarcomas: comparative effective alpha energy per
32 decay, comparative energy deposited over the average time to sarcoma appearance, and
33 comparison of dose-response curves between two groups with intakes of predominantly
34
35

1
2
3 one isotope. The average value of these approaches, 2.5, was taken for comparative
4
5 effectiveness of ^{228}Ra in the induction of osteosarcomas. Corresponding dose-response
6
7 relationships (where “dose” is taken to be systemic intake) were developed and
8
9 analyzed for a total systemic intake of ^{226}Ra activity plus 2.5 times ^{228}Ra activity.
10
11

12 Comparatively, only ^{226}Ra intake was considered in developing dose-response
13 relationships for the induction of mastoid and paranasal sinus carcinomas. None of these
14 types of cancers were observed in those whose intake was primarily ^{228}Ra ; this has been
15 attributed to the importance of radon progeny accumulating in the sinus cavities, as
16
17 touched on previously (Rowland 1994). ^{220}Rn ($t_{1/2} = 55.6$ s), fifth progeny of ^{228}Ra ,
18
19 does not have time to migrate to the sinus cavities, compared to ^{222}Rn ($t_{1/2} = 3.82$ d),
20
21 first progeny of ^{226}Ra (Figure 1).
22
23
24
25
26
27
28
29
30

31 *Missing body burden measurements*

32 A job exposure matrix will be developed to provide body burden estimates, based on
33 work history, for those members of the cohort without body burden measurements.
34
35 This matrix will use the ingestion rate for other cohort members performing the same
36 task in the same workplace during the same period of time. A model will be developed
37 to provide a probability distribution of possible doses to these individuals.
38
39
40
41
42
43
44
45

46 *Additional routes of exposure*

47 Dial workers were exposed to gamma radiations emitted from the paint and inhalation
48 of airborne activity. The magnitude of these exposures depends on the working
49 conditions, e.g., number of co-workers, ventilation, and work practices. Bloomfield and
50 Knowles (1933) surveyed several facilities and reported that painters were daily
51 handling 50 to 500 μg (1.9 to 19 MBq) of radium. Measured external dose rates ranged
52 from 0.7 to 46 cGy/y (0.8 to 5.3 $\mu\text{Gy}/\text{h}$). Airborne activity of radium and radon were
53
54
55
56
57
58
59
60

1
2
3 also observed. The average airborne activity concentration of radon was 0.051 $\mu\text{Ci}/\text{m}^3$
4 (1.8 kBq/m³) and that of radium was 260 pCi/m³ (9.6 Bq/m³). Estimates of the dose to
5 the female breast and other tissues can be derived from these measurements and
6 applying the dose rate coefficients of ICRP Publication 144 (ICRP 2020b). The dose
7 contribution due to inhalation of airborne radium would largely follow the above
8 methodology with the respiratory tract being the entrance into the body. The dose
9 contribution of the airborne radon can be derived using the methods of ICRP
10 Publication 137 (ICRP 2017) with due consideration to the workplace air ventilation
11 and potential unattached radon short-lived progeny. Tissue dose coefficients can be
12 derived from the measured external dose rates using the dose rate coefficients of ICRP
13 Publication 144 (ICRP 2020b), which are based on the computational phantoms of
14 ICRP Publication 110 (ICRP 2009), in the manner outlined in Appendix E of NCRP
15 Report 178 (NCRP 2018).

16
17 These contributions are in addition to the potential contribution of internally
18 deposited radium. Rowland et al (1989) concluded that the elevated breast cancer risk
19 among the dial painters cannot be attributed to the external dose and questioned the
20 potential contribution of internally deposited radium. This conclusion is consistent with
21 the studies in the United Kingdom (UK) where the habit of licking brushes was not
22 seen, and any radiation exposure was primarily from external gamma radiation (mean
23 absorbed breast dose 330 mGy) (Baverstock and Papworth 1989). The possibility that
24 external radiation as well as radium intake among young women might be related to
25 breast cancer (Stebbins 2001) will be re-examined, addressing personal characteristics,
26 such as nulliparity, which are related to breast cancer risk (Adams and Brues 1980;
27 Schieve et al 1997).

1 2 3 *Applicability to current exposure circumstances* 4

5 The current work ultimately seeks to address female-specific health risks following
6 intakes of radium; provide information on public and worker health risks relevant to
7 environmental cleanups of former nuclear facilities and weapons testing; provide
8 information on cognitive function following brain exposure relevant to flight crews at
9 high altitude as well as astronaut crews on space missions; provide insights and
10 information relevant to novel clinical therapeutic uses of radium and alpha emitting
11 isotopes; and yield new scientific quantitative knowledge on the risks associated with
12 radium- and radon progeny-induced cancers of the bone, bone marrow, mastoid and
13 paranasal sinus cells, lung, breast, brain and heart.

14
15 As a specific example of broader relevance, in clinical oncology there is
16 increasing interest in therapy or a combined imaging and therapy (i.e., theranostics)
17 with alpha particle emitting radiopharmaceuticals (ICRP, 2019; Nelson et al, 2021).
18 Initially, treatment of diffuse skeletal or bone metastases were explored (Pandit-Taskar
19 et al 2004) and ^{223}Ra -dichloride has been shown effective for castration-resistant
20 prostate cancer bone metastases (Parker et al 2013; Dauer et al 2014; Pandit-Taskar et al
21 2014). In addition, alpha particle emitters are increasingly being evaluated for
22 radioimmunotherapies (Sgouros et al 2010; Larson et al 2015) that can deliver high
23 LET, short range efficient tumor cell killing while sparing nearby healthy tissue (Jurcic
24 and Rosenblat 2014). As these clinical applications are moving forward, there is interest
25 in addressing uncertainties associated with actual local absorbed doses (especially in the
26 bone) and the associated selection of the most appropriate radiation weighting factors
27 for alpha dosimetry (Sgouros et al 2010; Lassmann and Nosske, 2013). This updated
28 study of the radium dial worker cohort and the associated improvements in the
29 understanding of the dosimetry of alpha emitters (along with their progeny) in the body
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 will be informative for the ongoing clinical development of effective and optimal
4
5 treatment protocols using radium or other alpha particles.
6
7
8

9 **Conclusion**
10

11
12 In the 1967 report proposing a National Center of Human Radiobiology (Rowland
13
14 1994), Evans made arguments still relevant today for continuing the study of the dial
15 workers, e.g.: the nuclear era necessitates valid radiation protection criteria; human
16 protection criteria are best derived from human evidence and, despite tragic outcomes
17 for many of the exposed and their families, the dial workers represent a unique scientific
18 opportunity not likely to be repeated; and gaining information from this group will
19 benefit current and future generations, with progressing results likely applicable to other
20 exposure scenarios not yet envisioned (such as in medicine, environmental
21 contamination and space exploration).
22
23
24

25 **Disclosure statement**
26
27

28 The authors report no conflicts of interest. The authors alone are responsible for the
29 content and writing of the paper.
30
31

32 **Funding**
33
34

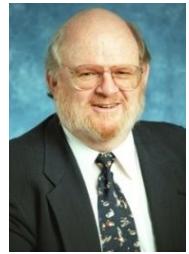
35 The study of radium dial painters, a component of the Million Person Study, is
36 supported in part by grants from the US Department of Energy (Grant No. DE-
37 AU0000042 and DE-AU0000046) awarded to the National Council on Radiation
38 Protection and Measurements, and a grant from the National Aeronautics and Space
39 Administration (80NSSC17M0016). Further, contract support was received by Oak
40 Ridge National Laboratory from the Office of Radiation and Indoor Air, US
41 Environmental Protection Agency, under Interagency Agreement DOE No. 1824
42 S581-A1, under contract No. DE-AC05-00OR22725 with UT-Battelle. The United
43
44

1
2
3 States Transuranium and Uranium Registries is funded by US Department of Energy,
4
5 Office of Domestic and International Health Studies (AU-13), under grant award DE-
6
7 HS0000073 to Washington State University.
8
9
10
11
12

Acknowledgements

13
14 We are tremendously indebted to innumerable individuals, including the scientists,
15
16 physicians, epidemiologists, statisticians, technicians, librarians, etc. who have studied
17
18 these workers and who have published and otherwise preserved associated information
19
20 since the 1920s. We also acknowledge that in many cases, radium dial workers suffered
21
22 tremendously and died, and that this suffering and loss was also acutely felt by their
23
24 loved ones and their communities.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Notes on Contributors


Nicole E. Martinez, Certified Health Physicist, is an Associate Professor at Clemson University in the Department of Environmental Engineering and Earth Sciences. She also holds a Joint Faculty Appointment at Oak Ridge National Laboratory (ORNL) within the Center for Radiation Protection Knowledge (CRPK). Her current research focuses on dosimetric modelling and the behavior and effects of radiological contaminants in the environment. She serves on ICRP Committee 4, Application of the Commission's Recommendations.

Derek W. Jokisch is Professor of Physics and Chair of the Department of Physics and Engineering at Francis Marion University in Florence, South Carolina. He holds a Joint Faculty Appointment at ORNL within the CRPK and is a member of ICRP Committee 2 on Doses from Radiation Exposure and is a member of the US Scientific Review Group for the Department of Energy's Russian Health Studies program.

Lawrence T. Dauer is Associate Attending Physicist specializing in radiation protection at Memorial Sloan Kettering Cancer Center in the Departments of Medical Physics and Radiology. He is a Council and Board member of the National Council on Radiation Protection and Measurements (NCRP) and served as a member of the ICRP Committee 3, Protection in Medicine.

Keith F. Eckerman retired in 2013 from ORNL and is an emeritus member of the NCRP and ICRP Committee 2. He served on ICRP Committee 2 for over 20 years and chaired their task group on dose calculations.

1
2
3 **Ron Goans** has worked in the field of nuclear physics and radiation
4 effects since 1966. He received his PhD in radiation physics from the
5 University of Tennessee in 1974, his MD from the George Washington
6 University School of Medicine in 1983, and the MPH from the Tulane
7 University School of Public Health and Tropical Medicine in 2000. He is currently Senior Medical
8 Advisor with MJW Corporation and Senior Medical/Scientific Advisor with the
9 Radiation Emergency Assistance Center/Training Site (REAC/TS).
10
11
12
13
14
15
16
17
18
19

20 **John D. Brockman** is an Associate Professor in the Department of
21 Chemistry at the University of Missouri. He researches problems in
22 diverse fields that benefit from radio-analytical techniques. Currently,
23 his research group is working on problems in pre-and post-detonation
24 nuclear forensic analysis, trace element epidemiology, and nuclear engineering.
25
26
27
28
29
30
31
32

33 **Sergey Y. Tolmachev** is a Research Professor in the College of
34 Pharmacy and Pharmaceutical Sciences, Washington State University,
35 where he directs the United States Transuranium and Uranium Registries
36 and the associated National Human Radiobiology Tissue Repository. He
37 has over 20 years of experience in the development of analytical methods and in
38 actinide analyses of environmental and biological samples. Dr. Tolmachev is currently a
39 Council member of the NCRP and is a vice-chair of NCRP Scientific Committee 6-12
40 “Development of Models for Brain Dosimetry for Internally Deposited Radionuclides”.
41
42
43
44
45
46
47
48
49
50
51

52 **Maia Avtandilashvili** is an Assistant Research Professor at the U.S.
53 Transuranium and Uranium Registries (USTUR), College of Pharmacy
54 and Pharmaceutical Sciences, Washington State University. She has
55 over 15 years of experience in internal radiation dosimetry and
56
57
58
59
60

1
2
3 biokinetic modeling of actinides. Dr. Avtandilashvili serves on NCRP scientific
4
5 committee (SC) 6-12 “Development of Models for Brain Dosimetry for Internally
6
7 Deposited Radionuclides” and is a member of the European Radiation Dosimetry Group
8
9 (EURADOS) Working Group 7 on Internal Dosimetry.
10
11

12
13 **Michael T. Mumma** is the Director of Information Technology at the
14 International Epidemiology Institute and the International Epidemiology
15 Field Station for Vanderbilt University Medical Center. He has over 20
16 years of experience in data analysis and conducting epidemiologic
17 investigations. He has published on methodological topics, including geocoding and
18 comprehensive radiation exposure assessment, and is currently developing methods to
19 determine socioeconomic status based on residential history.
20
21

22
23 **John D. Boice** is past President of the NCRP and Professor of Medicine
24 at Vanderbilt University. He is an international authority on radiation
25 effects and served on the Main Commission of the ICRP and on the
26 United Nations Scientific Committee on the Effects of Atomic
27 Radiation. He directs the Million Person Study of Low-Dose Health Effects.
28
29

30
31 **Rich Leggett** is a research scientist in the Environmental Sciences
32 Division at ORNL. His main research interest is in physiological
33 systems modeling, with primary applications to the biokinetics and
34 dosimetry of radionuclides and radiation risk analysis. He is a member
35 of ICRP Committee 2 and the ICRP Task Group on Internal Dosimetry.
36
37

56 ORCID

57
58 Nicole E. Martinez <https://orcid.org/0000-0002-7184-3043>
59 Derek W. Jokisch <https://orcid.org/0000-0002-1567-5268>
60 Lawrence T. Dauer <https://orcid.org/0000-0002-5629-8462>

1
2
3 John D. Brockman <https://orcid.org/0000-0001-7419-5558>
4 Sergey Y. Tolmachev <https://orcid.org/0000-0003-0077-106X>
5 Michael T. Mumma <http://orcid.org/0000-0001-7506-8710>
6 John D. Boice <http://orcid.org/0000-0002-8755-1299>
7
8
9

10 References

11 Adams EE, Brues AM. 1980. Breast cancer in female radium dial workers first
12 employed before 1930. *J Occup Med* 22:583-587.
13
14 Adams EE, Brues AM, Anast GA. 1983. Survey of ocular cataracts in radium dial
15 workers. *Health Phys* 44 (Suppl 1):73-79.
16
17 Aub JC, Evans RD, Hemplermann LH, Martland HS. 1952. The late effects of
18 internally-deposited radioactive materials in man. *Medicine (Baltimore)*. 31(3):221-
19 329.
20
21 Azizova TV, Bannikova MV, Grigoryeva ES, Rybkina VL, Hamada N. 2020.
22 Occupational exposure to chronic ionizing radiation increases risk of Parkinson's
23 disease incidence in Russian Mayak workers. *Int J Epidemiol*. 49(2):435-447.
24
25 Baverstock KF, Papworth DG. 1989. The UK radium luminizer survey. In: Taylor DM,
26 Mays CW, Gerber GB, Thomas RG, editors. *BIR Report 21: Risks from Radium*
27 and Thorotrast. London (UK): British Institute of Radiology, p. 72-76.
28
29 Bloomfield JJ, Knowles FL. 1933. Health aspects of radium dial painting. II.
30 Occupational environment. *J Indust Hygiene*. 15:368-382.
31
32 Blum T. 1924. Osteomyelitis of the mandible and maxilla. *J Am Dent Assoc*. 11:802-
33 805.
34
35 Boice JD, Cohen SS, Mumma MT, Dupree-Ellis E, Eckerman KF, Leggett RW,
36 Boecker B, Brill A, Henderson B. 2006. Mortality among radiation workers at
37 Rocketdyne (Atomics International), 1948-1999. *Radiat Res*. 166(1 Pt 1):98-115.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Boice JD Jr, Cohen SS, Mumma MT, Ellis ED. 2019. The Million Person Study,
4 whence it came and why. *Int J Radiat Biol.* Mar 4. doi:
5
6 10.1080/09553002.2019.1589015
7
8
9 Bolch WE, Shah AP, Watchman CJ, Jokisch DW, Patton PW, Rajon DA, Zankl M,
10 Petoussi-Henss N, Eckerman KF. 2007. Skeletal absorbed fractions for electrons in
11 the adult male: considerations of a revised 50- μ m definition of the bone endosteum.
12
13 *Radiat Prot Dosim.* 127(1-4):169-173.
14
15
16
17
18 Bruenger FW, Lloyd RD. 1989. The influence of age at time of exposure to Ra-226 or
19 Pu-239 on distribution, retention, post-injection survival and bone tumor induction
20 in beagle dogs. In: Thirty-fourth Annual Meeting of the Health Physics Society,
21 Abstracts of Papers Presented at the Meeting, June 25-29, 1989, Albuquerque
22 Convention Center, Albuquerque, NM, Vol. 56 (Suppl. I), 27. New York (NY):
23
24 Pergamon Press.
25
26
27 Bruenger FW, Smith JM, Atherton DR, Jee WSS, Lloyd RD, Stevens W. 1983. Skeletal
28 retention and distribution of Ra-226 and Pu-239 in beagles injected at ages ranging
29 from 2 days to 5 years. *Health Phys.* 44:513-527.
30
31
32 Campbell KM, Deck D, Krupski A. 2008. Record linkage software in the public
33 domain: a comparison of Link Plus, The Link King, and a 'basic' deterministic
34 algorithm. *Health Informatics J.* 14(1):5-15.
35
36
37 Castle WB, Drinker KR, Drinker CK. 1925. Necrosis of the jaw in workers employed in
38 applying a luminous paint containing radium. *J Ind Hyg.* 8:371-382.
39
40 Cothorn CR, Smith JE Jr. 1987. Environmental radon. New York (NY): Springer.
41
42 Dauer LT, Williamson MJ, Humm, O'Donoghue J, Ghani R, Awadallah R, Carrasquillo
43
44 J, Pandit-Taskar N, Aksnes AK, Biggin C, et al 2014. Radiation safety
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 considerations for the use of $^{112}\text{RaCl}_2$ in men with castration-resistant prostate
4
5 cancer. *Health Phys.* 106(4):494-504.
6
7

8 Department of Energy (DOE). 2018. DOE 2017 occupational radiation exposure.
9
10 Washington (DC): US Department of Energy, Office of Environment, Health,
11
12 Safety and Security, The Radiation Exposure Monitoring System (REMS).
13
14

15 Department of Energy (DOE). 2021. Comprehensive Epidemiological Data Resource
16
17 (CEDR). [accessed December 18, 2020].
18
19 <https://oriseapps.orau.gov/cedr/default.aspx>.
20
21

22 Department of Labor (DOL). 2011. The Fair Labor Standards Act of 1938, as amended.
23
24 Washington (DC): US Department of Labor, Wage and Hour Division. [accessed
25
26 January 12, 2021]. <http://purl.fdlp.gov/GPO/gpo24709>.
27
28

29 Ellis ED, Boice JD, Golden AP, Girardi DJ, Cohen SS, Mumma MT, Shore RE, Leggett
30
31 RW, Kerr GD. 2018. Dosimetry is key to good epidemiology: workers at
32
33 Mallinckrodt Chemical Works had seven different source exposures. *Health Phys.*
34
35 114(4):386-397.
36
37

38 Flegal KM. 1996. Trends in body weight and overweight in the U.S. population. *Nutr*
39
40 Rev. 54(4 Pt 2):S97-100.
41
42

43 Fry SA. 1998. Studies of U.S. radium dial workers: an epidemiological classic. *Radiat*
44
45 Res. 250(5 Suppl):S21-29.
46
47

48 Goans RE, Iddins CJ, Christensen D, Wiley A, Dainiak N. 2015. Appearance of Pseudo
49 Pelger Huet anomaly after exposure to ionizing radiation in vivo. *Health Phys.*
50
51 108(3):303-307.
52
53

54 Goans RE, Iddins CJ, Ossetrova NI, Ney PH, Dainiak N. 2017. The Pseudo-Pelger Huët
55
56 cell - a new permanent radiation biomarker. *Health Phys.* 112(3):252-257.
57
58
59
60

1
2
3 Goans RE, Toohey RE, Iddins CJ, McComish SL, Tolmachev SY, Dainiak N. 2019.
4
5 The pseudo-Pelger Huët cell as a retrospective dosimeter: analysis of a radium dial
6
7 painter cohort. *Health Phys.* 117(2):143-148.
8
9
10 Gossner W. 2003. Target cells in internal dosimetry. *Radiat Prot Dosim.* 105: 39-42.
11
12 Gossner W, Masse R, Stather JW. 2000. Cells at risk for dosimetric modeling relevant
13 to bone tumour induction. *Radiat Prot Dosim.* 92:209-213.
14
15
16 Gunderman RB, Gonda AS. 2015. Radium girls. *Radiology.* 274(2):314-318.
17
18 Hathaway ML. 1957. Heights and weights of children and youth in the United States.
19
20 Home Economics Research Report No. 2. Washington (DC): US Department of
21
22 Agriculture.
23
24
25 Hathaway ML, Foard ED. 1960. Heights and weights of adults in the United States.
26
27 Home Economics Research Report No. 10. Washington (DC): US Department of
28
29 Agriculture.
30
31
32 Hine GJ. 1977. The inception of photoelectric scintillation detection commemorated
33
34 after three decades. *J Nucl Med.* 18(9):867-871.
35
36 Hoffman FL. 1925. Radium (mesothorium) necrosis. *JAMA.* 85(13):961-965.
37
38 International Commission on Radiological Protection (ICRP). 1973. Alkaline earth
39
40 metabolism in adult man. ICRP Publication 20. *Health Phys.* 24(2):125-221.
41
42
43 International Commission on Radiological Protection (ICRP). 1975. Report of the Task
44
45 Group on Reference Man. ICRP Publication 23. Oxford (UK): Pergamon Press.
46
47
48 International Commission on Radiological Protection (ICRP). 1979. Limits for intakes
49
50 of radionuclides by workers. ICRP Publication 30. *Ann ICRP.* 2(3/4):1-116.
51
52
53 International Commission on Radiological Protection (ICRP). 1993. Age-dependent
54
55 doses to members of the public from intake of radionuclides: Part 2, ingestion dose
56
57 coefficients. ICRP Publication 67. *Ann ICRP.* 23(3/4):1-167.
58
59
60

1
2
3 International Commission on Radiological Protection (ICRP). 2008. Nuclear decay data
4 for dosimetric calculations. ICRP Publication 107. Ann ICRP. 38(3):1-96.
5
6 International Commission on Radiological Protection (ICRP). 2009. Adult reference
7 computational phantoms. ICRP Publication 110. Ann ICRP. 39(2):1-110.
8
9 International Commission on Radiological Protection (ICRP). 2016. The ICRP
10 computational framework for internal dose assessment for reference adults: specific
11 absorbed fractions. ICRP Publication 133. Ann ICRP. 45(2):1-74.
12
13 International Commission on Radiological Protection (ICRP). 2017. Occupational
14 intakes of radionuclides: Part 3. ICRP Publication 137. Ann ICRP. 46(3/4):1-486.
15
16 International Commission on Radiological Protection (ICRP). 2019. Radiological
17 protection in therapy with radiopharmaceuticals. Publication 140. Ann ICRP.
18 48(1):1-102.
19
20 International Commission on Radiological Protection (ICRP). 2020a. Paediatric
21 reference computational phantoms. ICRP Publication 143. Ann ICRP. 49(1):1-299.
22
23 International Commission on Radiological Protection (ICRP). 2020b. Dose coefficients
24 for external exposures to environmental sources. ICRP Publication 144. Ann ICRP.
25 49(2):1-147.
26
27 Jurcic JG, Rosenblat TL. 2014. Targeted alpha-particle immunotherapy for acute
28 myeloid leukemia. Am Soc Clin Oncol Educ Book. e126-131.
29
30 Kathren RL, Tolmachev SY. 2019. The US Transuranium and Uranium Registries
31 (USTUR): a five-decade follow-up of plutonium and uranium workers. Health Phys.
32 117(2):118-132.
33
34 Keane AT, Schlenker RA. 1987. Long-term loss of radium in 63 subjects exposed at
35 ages 6 to 46. In: Gerger H, Metivier H, Smith H, editors. Age-related factors in
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 radionuclide metabolism and dosimetry. Proceedings of a workshop in Angers,
4
5 November 26-28, 1986. Dordrecht (NL): Martinus Nijhoff Publishers, p. 127-135.
6
7
8 Keane AT, Holtzmann RB, Rundo J. 1994. Prevalence of technical mesothorium in self-
9
10 luminous compounds used by New Jersey radium dial workers (ANL/ER/CP--
11
12 81143). Argonne (IL): Argonne National Laboratory.
13
14 Larson SM, Carasquillo JA, Cneung N-K, Press OW. 2015. Radioimmunotherapy of
15
16 human tumours. *Nat Rev Cancer.* 15(8):347-360.
17
18 Lassmann M, Nosske D. 2013. Dosimetry of ^{223}Ra -chloride: dose to normal organs
19
20 and tissues. *Eur J Nucl Med Mol Imaging.* 40(2):207-212.
21
22
23 Leggett RW. 1992. A generic age-specific biokinetic model for calcium-like elements.
24
25 *Rad Prot Dosim.* 41:183-198.
26
27
28 Leggett RW, Tolmachev SY, Boice JD Jr. 2018. Potential improvements in brain dose
29
30 estimates for internal emitters. *Int J Rad Biol.* Dec 4. doi:
31
32
33 10.1080/09553002.2018.1554923.
34
35 Lloyd RD, Mays CW, Atherton DR. 1976a. Distribution of injected Ra-226 and Sr-90
36
37 in the beagle skeleton. *Health Phys.* 30:183-189.
38
39
40 Lloyd RD, Mays CW, Atherton DR, Taylor GN, Van Dilla MA. 1976b. Retention and
41
42 skeletal dosimetry of injected Ra-226, Ra-228, and Sr-90 in beagles. *Radiat Res.*
43
44 66:274-287.
45
46
47 Lloyd RD, Mays CW, Taylor GN, Atherton DR, Bruenger FW, Jones CW. 1982.
48
49 Radium-224 retention, distribution, and dosimetry in beagles. *Radiat Res.* 92:280-
50
51
52 295.
53
54 Lloyd RD, Bruenger FW, Jones CW, Taylor GN, Mays CW. 1983a. Retention in mature
55
56 beagles injected at 5 years of age. *Radiat Res.* 94:210-216.
57
58
59
60

1
2
3 Lloyd RD, Bruenger FW, Mays CW, Jones CW. 1983b. Skeletal radon-to-radium ratios
4 in neonatal, juvenile and mature beagles and in adult St. Bernards. *Health Phys.*
5 44:61-63.
6
7
8 Lloyd RD, Jones CW, Bruenger FW, Atherton DR, Mays CW. 1983c. Radium retention
9 and dosimetry in juvenile beagles. *Radiat Res.* 94:295-304.
10
11 Lloyd RD, Taylor GN, Jones CW, Mays CW. 1983d. Radium retention and dosimetry
12 in the St. Bernard. *Radiat Res.* 95:150-157.
13
14 Marazziti D, Baroni S, Catena-Dell'Osso M, Schiavi E, Ceresoli D, Conversano C,
15 Dell'Osso L, Picano E. 2012. Cognitive, psychological and psychiatric effects of
16 ionizing radiation exposure. *Curr Med Chem.* 19(12):1864-9.
17
18 Martland HS. 1926. Histopathology of certain anemias due to radioactivity. *Proc NY*
19
20 Pathological Soc, N.S. 26(1-5).
21
22 Martland HS. 1929. Occupational poisoning in manufacture of luminous watch dials.
23
24 JAMA. 92:466.
25
26 Martland HS. 1931. The occurrence of malignancy in radioactive persons. *Am J Cancer.*
27
28 15:2435.
29
30 Martland HS, Humphries RE. 1929. Osteogenic sarcoma in dial painters using luminous
31
32 paint. *Arch Path Lab Med.* 7:406-417.
33
34 Martland HS, Conlon P, Knef JP. 1925. Some unrecognized dangers in the use and
35 handling of radioactive substances: with especial reference to the storage of
36
37 insoluble products of radium and mesothorium in the reticulo-endothelial system.
38
39 JAMA. 85(23):1769-1776.
40
41 Monthly Labor Review (MLR). 1926. Effects of use of radioactive substances on the
42
43 health of workers. *MLR.* 22(5):18-31. [accessed January 9, 2021].
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
<https://www.jstor.org/stable/41860184>

1
2
3 Moore K. 2017. The radium girls: the dark story of America's shining women.
4
5 Naperville (IL): Sourcebooks.
6
7
8 Mumma MT, Cohen SS, Sirk JL, Ellis ED, Boice JD Jr. 2018. Obtaining vital status
9
10 and cause of death on a million persons. *Int J Radiat Biol.* Nov 9. doi:
11
12 10.1080/09553002.2018.1539884
13
14 Muth H, Glöbel B. 1983 Age dependent concentration of Ra-226 in human bone and
15
16 some transfer factors from diet to human tissues. *Health Phys.* 44:113-121.
17
18
19 National Academies/National Research Council (NA/NRC). 1988. *Health Risks of*
20
21 Radon and Other Internally Deposited Alpha-Emitters: BEIR IV. Washington (DC):
22
23 National Academies Press.
24
25
26 National Council on Radiation Protection and Measurements (NCRP). 2009. Report No.
27
28 164: *Uncertainties in internal radiation dose assessment.* Bethesda (MD): NCRP.
29
30
31 National Council on Radiation Protection and Measurements (NCRP). 2018. Report No.
32
33 178: *Deriving organ doses and their uncertainty for epidemiologic studies (with a*
34
35 *focus on the One Million U.S. Workers and Veterans Study of Low-Dose Radiation*
36
37 *Health Effects).* Bethesda (MD): NCRP.
38
39
40 National Council on Radiation Protection and Measurements (NCRP). 2019. Report No.
41
42 183: *Radiation exposures in space and the potential for central nervous system*
43
44 *effects: phase II.* Bethesda (MD): NCRP.
45
46
47 Nelson BJ, Andersson JD, Wuest F. 2021. Targeted alpha therapy: progress in
48
49 radionuclide production, radiochemistry, and applications. *Pharmaceuticals.*
50
51 13(1):E49. [accessed January 12, 2021].
52
53
54 <https://doi.org/10.3390/pharmaceutics13010049>.

1
2
3 New York Times. 1928. Radium paint takes its inventor's life. Obituary. New York
4 Times TimesMachine, 15 November 1928, p. 29, column 5. [accessed March 11,
5
6 2021]. <https://timesmachine.nytimes.com/>
7
8
9
10 Norris WP, Speckman TW, Gustafson PF. 1955. Studies of the metabolism of radium in
11 man. *Am J Roentgen.* 73:785-802.
12
13
14 Nuclear Regulatory Commission (NRC). 2019. Radiation exposure information and
15 reporting system (REIRS). US Nuclear Regulatory Commission. [accessed February
16
17 7, 2020]. <https://www.reirs.com/>.
18
19
20
21 Pandit-Taskar N, Batraki M, Divgi CR. 2004. Radiopharmaceutical therapy for
22
23 palliation of bone pain from osseous metastases. *J Nucl Med.* 45(8):1358-1365.
24
25
26 Pandit-Taskar N, Larson SM, Carrasquillo JA. 2014. Bone-seeking
27
28 radiopharmaceuticals for treatment of osseous metastases, Part 1: alpha therapy with
29
30 223Ra-dichloride. *J Nucl Med.* 55(2):268-274.
31
32
33 Parihar VK, Allen BD, Caressi C, Kwok S, Chu E, Tran KK, Chmielewski NN,
34
35 Giedzinski E, Acharya MM, Britten RA, Baulch JE, Limoli CL. 2016. Cosmic
36
37 radiation exposure and persistent cognitive dysfunction. *Sci Rep.* 6:34774.
38
39
40 Parihar VK, Angulo MC, Allen BD, Syage A, Usmani MT, Passerat de la Chapelle E,
41
42 Amin AN, Flores L, Lin X, Giedzinski E, Limoli CL. 2020. Sex-Specific Cognitive
43
44 Deficits Following Space Radiation Exposure. *Front Behav Neurosci.* 14:535885.
45
46
47 Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, Chodacki A,
48
49 Wiechno P, Logue J, Seke M, et al 2013. Alpha emitter radium-223 and survival in
50
51 metastatic prostate cancer. *New Engl J Med.* 369(3):213-223.
52
53
54 Parks NJ, Pool RR, Williams JR, Wolf HG. 1978. Age and dosage-level dependence of
55
56 radium retention in beagles. *Radiat Res.* 75:617-632.
57
58
59
60

1
2
3 Parks NJ, Keane AT. 1983. Consideration of age-dependent radium retention in people
4
5 on the basis of the beagle model. *Health Phys.* 44(Suppl 1):103-112.
6
7 Pasqual E, Boussin F, Bazyka D, Nordenskjold A, Yamada M, Ozasa K, Pazzaglia S,
8
9 Roy L, Thierry-Chef I, de Vathaire F, Benotmane MA, Cardis E. 2021. Cognitive
10
11 effects of low dose of ionizing radiation - Lessons learned and research gaps from
12
13 epidemiological and biological studies. *Environ Int.* 147:106295.
14
15
16 Polednak AP. 1978. Bone cancer among female radium dial workers. Latency periods
17
18 and incidence rates by time after exposure: brief communication. *J Natl Cancer Inst.*
19
20 60:77-82.
21
22
23 Polednak AP. 1978. Long-term effects of radium exposure in female dial workers:
24
25 differential white blood cell count. *Environ Res.* 15:252-261.
26
27
28 Polednak AP. 1980. Fertility of women after exposure to internal and external radiation.
29
30 *J Environ Pathol Toxicol.* 4:457-470.
31
32
33 Polednak AP. 1986. Thyroid tumors and thyroid function in women exposed to internal
34
35 and external radiation. *J Environ Pathol Toxicol Oncol.* 7:53-64.
36
37
38 Polednak AP, Stehney AF, Rowland RE. 1978. Mortality among women first employed
39
40 before 1930 in the U.S. radium dial-painting painting industry. A group ascertained
41
42 from employment lists. *Am J Epidemiol.* 107:179-195.
43
44
45 Priest ND. 1989. Alpha-emitters in the skeleton: An evaluation of the risk of leukaemia
46
47 following intakes of plutonium 239. In: Taylor DM, Mays CW, Gerber GH,
48
49 Thomas RG, editors. *BIR Report 21: Risks from Radium and Thorotrast.* London
50
51 (UK): British Institute of Radiology, p. 159-165.
52
53
54 Rowland RE. 1993. Low-level radium retention by the human body: a modification of
55
56 the ICRP publication 20 retention equation. *Health Phys.* 65(5):507-513.
57
58
59
60

1
2
3 Rowland RE. 1994. Radium in humans. A review of U.S. studies. Report ANUER-3.
4
5 Argonne (IL): Argonne National Laboratory.
6
7 Rowland RE, Lucas HF Jr. 1982. Radium dial workers. Conference on radiation
8
9 carcinogenesis: epidemiology and biological significance, Washington, DC, USA,
10
11 24 May 1982. [accessed January 9, 2021]. <https://www.osti.gov/biblio/6374911-radium-dial-workers>.
12
13
14
15
16 Rowland RE, Lucas HF Jr. 1984. Radium-dial workers. In: Boice JD Jr and Fraumeni
17
18 JF Jr, editors. *Radiation Carcinogenesis: Epidemiology and Biological Significance*.
19
20 New York (NY): Raven Press, p. 231-240.
21
22
23 Rowland RE, Stehney AF, Brues AM, Littman MS, Keane AT, Patten BC, Shanahan
24
25 MM. 1978a. Current status of the study of 226Ra and 228Ra in humans at the
26
27 Center for Human Radiobiology. *Health Phys.* 35:159-166.
28
29
30 Rowland RE, Stehney AF, Lucas HF Jr. 1978b. Dose-response relationships for female
31
32 radium dial workers. *Radiat Res.* 76:368-383.
33
34
35 Rowland RE, Stehney AF, Lucas HF. 1983. Dose-response relationships for radium
36
37 induced bone sarcomas. *Health Phys.* 44(Suppl I):15-31.
38
39
40 Rowland RE, Lucas HF, Schlenker RA. 1989. External radiation doses received by
41
42 female radium dial painters. In: Taylor DM, Mays CW, Gerber GB, Thomas RG,
43
44 editors. *BIR Report 21: Risks from Radium and Thorotrast*. London (UK): British
45
46 Institute of Radiology, p. 67-72.
47
48
49 Schieve LA, Davis F, Roeske J, Handler A, Freels S, Stinchcomb, Keane A. 1997.
50
51 Evaluation of internal alpha-particle radiation exposure and subsequent fertility
52
53 among a cohort of women formerly employed in the radium dial industry. *Radiat*
54
55 *Res* 147:236-244.
56
57
58
59
60

1
2
3 Schlenker RA, Keane AT, Holtzman RB. 1982. The retention of ^{226}Ra in human soft
4 tissue and bone: Implications for the ICRP 20 alkaline earth model. *Health Phys.*
5 42:671-693.
6
7 Schwarz BC, Godwin WJ, Wayson MB, Dewji SA, Jokisch DW, Lee C, Bolch WE.
8
9 Forthcoming 2021a. Specific absorbed fractions for a revised series of the UF/NCI
10 pediatric reference phantoms: internal electron sources. *Phys Med Biol.*
11
12 Schwarz BC, Godwin WJ, Wayson MB, Dewji SA, Jokisch DW, Lee C, Bolch WE.
13
14 Forthcoming 2021b. Specific absorbed fractions for a revised series of the UF/NCI
15 pediatric reference phantoms: internal photon sources. *Phys Med Biol.*
16
17 Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, Brill AB, Song H,
18 Howell RW, Akabani G, et al 2010. MIRD Pamphlet No. 22 (abridged):
19 radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide
20 therapy. *J Nucl Med.* 51(2):311-328.
21
22 Sharpe WD. 1978. The New Jersey radium dial painters: a classic in occupational
23 carcinogenesis. *Bull Hist Med.* 52(4):560-570.
24
25 Spiers FW, Lucas HF, Rundo J, Anast GA. 1983. Leukemia incidence in the U.S. dial
26 workers. *Health Phys* 44(Suppl. 1):65-72.
27
28 Stebbings JH. 2001. Health risks from radium in workplaces: an unfinished story.
29
30 Occup Med. 16:259-270.
31
32 Stebbings JH, Lucas HF, Stehney AF. 1984. Mortality from cancers of major sites in
33 female radium dial workers. *Am J Ind Med.* 5:435-459.
34
35 Stewart E. 1929. Radium poisoning. Industrial poisoning from radioactive substances.
36 Monthly Labor Review. 28(6):20-95. [accessed January 9, 2021].
37
38 <https://www.jstor.org/stable/41814411>

1
2
3 Stoudt HW, Damon A, McFarland RA. 1960. Heights and weights of white Americans.
4
5 Hum Biol. 32(4):331-341.
6
7 Stram DO, Sokolnikov M, Napier BA, Vostrotin VV, Efimov A, Preston DL. 2021.
8
9 Lung Cancer in the Mayak Workers Cohort: Risk Estimation and Uncertainty
10 Analysis. Radiat Res. Jan 20. doi: 10.1667/RADE-20-00094.1
11
12 Tolmachev SY, Swint MJ, Bistline RW, McClellan RO, McInroy JF, Kathren RL,
13
14 Filipy RE, Toohey RE. 2019. USTUR special sessions roundtable: United States
15 Transuranium and Uranium Registries (USTUR): A five-decade follow-up of
16
17 plutonium and uranium workers. Health Phys 117 (2): 211-222.
18
19 Yoder RC, Balter S, Boice JD Jr, Grogan H, Mumma M, Rothenberg L, Passmore C,
20
21 Vetter R, Dauer L. 2020. Using personal monitoring data to derive organ doses for
22 medical radiation workers in the Million Person Study -- considerations regarding
23
24 NCRP Commentary No. 30. J Radiol Prot. Dec 2. doi: 10.1088/1361-6498/abcfcb.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

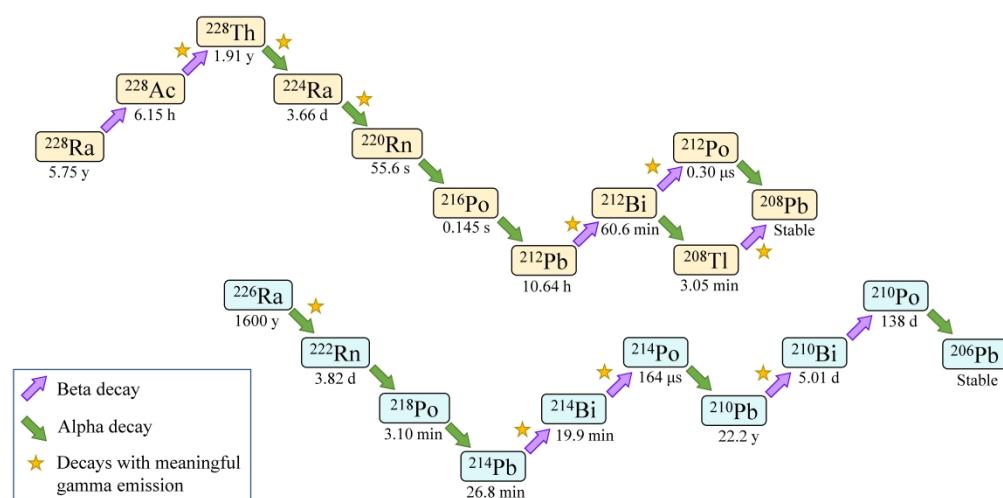


Figure 1. Decay chains for ^{228}Ra (top) and ^{226}Ra (bottom). Arrows pointing up and to the right indicate beta decay. Arrows pointing down and to the right indicate alpha decay. Stars indicate decays that are associated with meaningful gamma emission. Radiological half-lives are listed below each nuclide (ICRP 2008).

254x124mm (600 x 600 DPI)

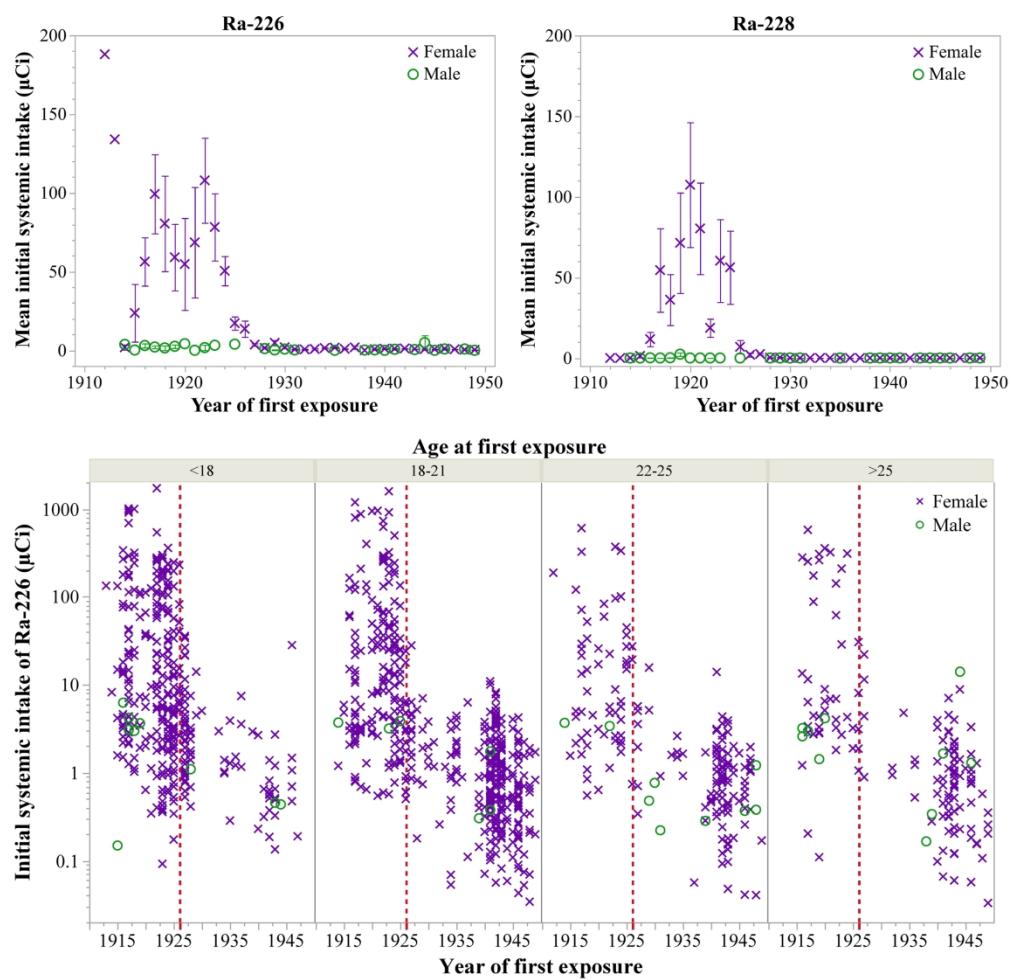


Figure 2: Available initial systemic intakes of radium (μCi) for individuals in the current cohort by year of first exposure, generally taken to be the year an individual was first hired. (x) represent females and (o) represent males. Data were drawn from the Comprehensive Epidemiologic Data Resource (DOE 2021). (Top panel) Mean initial systemic intakes (linear scale) of ^{226}Ra (left) and ^{228}Ra (right). Error bars represent the standard error of the mean in reported intakes and do not include consideration of measurement or modeling uncertainty. (Bottom panel) Individual initial systemic intakes (log scale) of ^{226}Ra grouped by age at first exposure. The red dashed lines represent the year 1926.

219x213mm (300 x 300 DPI)

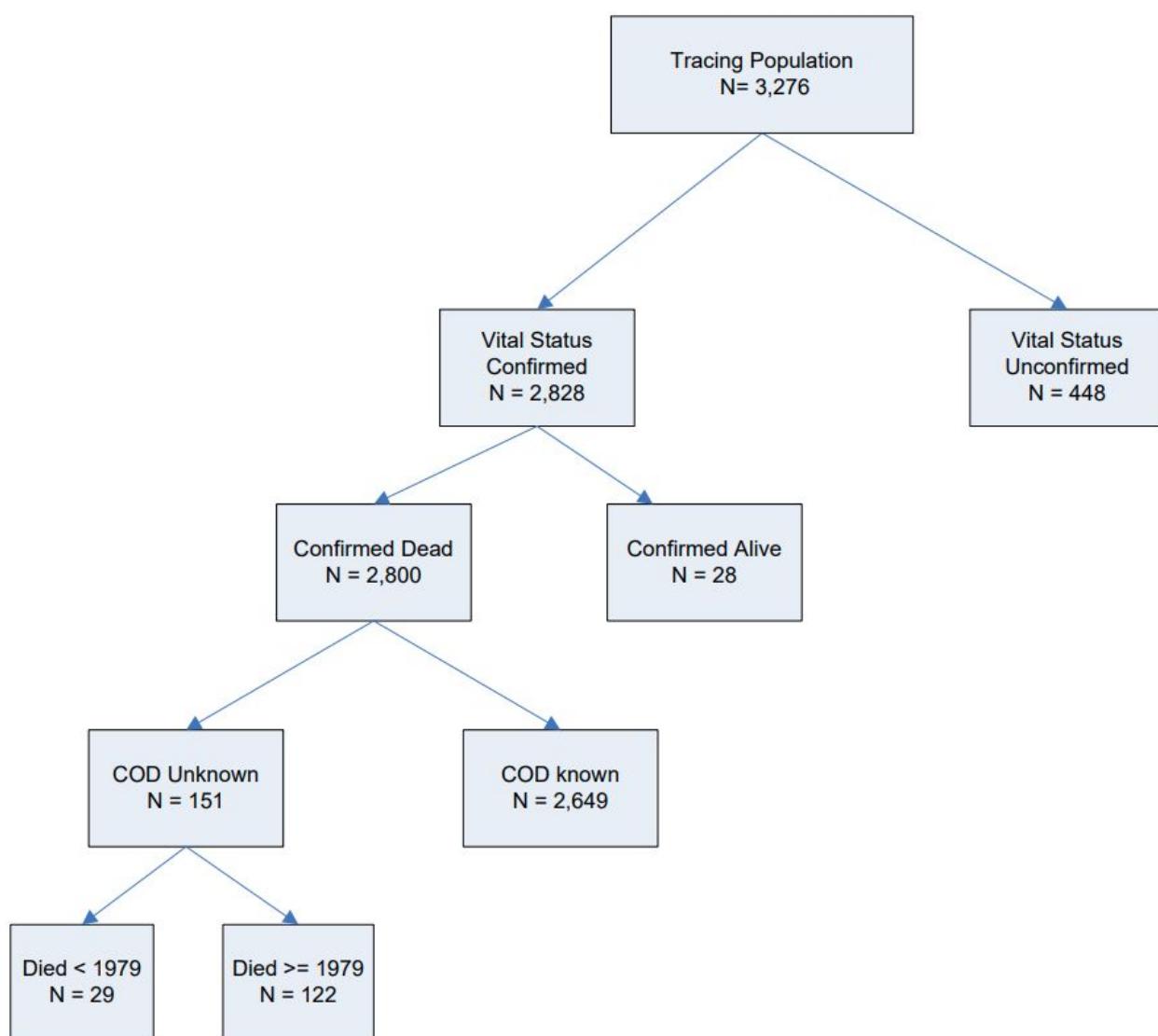


Figure 3. Schematic of the selection and vital status tracing results as of December 31, 2019 for the study population of 3,276 radium dial painters and radium dial handlers employed prior to 1950. COD indicates Cause of Death.

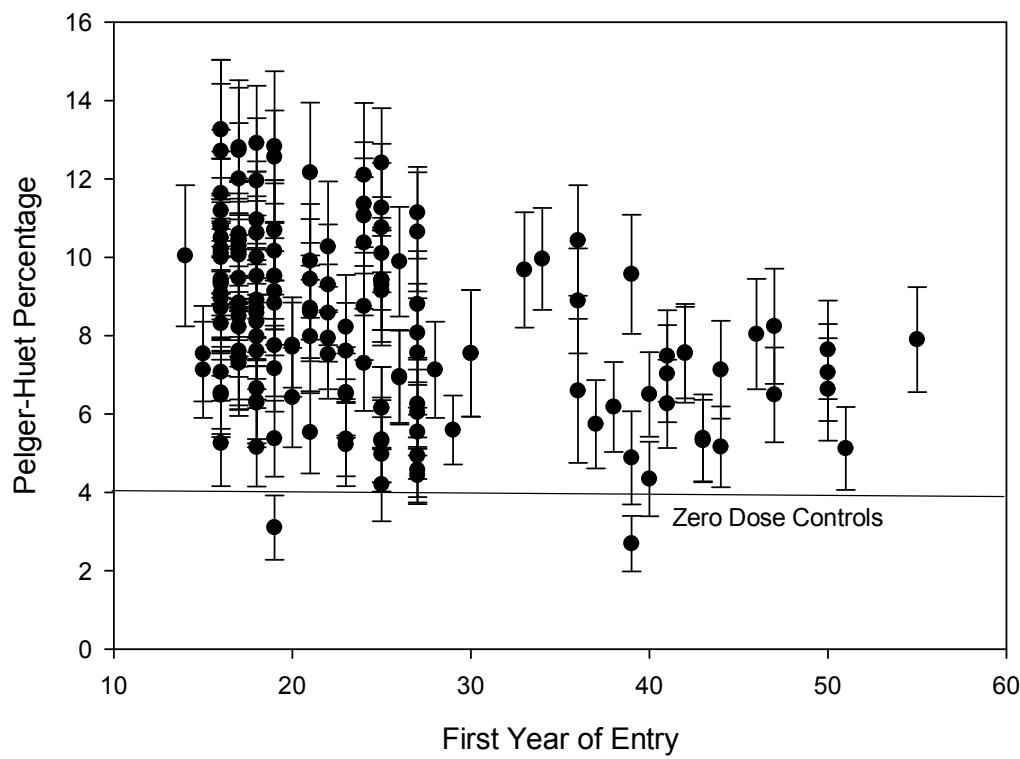


Figure 4. Pelger Huët percent (mean % \pm SEM) observed in a cohort of 166 radium dial painters and ancillary workers versus date of entry into the workforce.

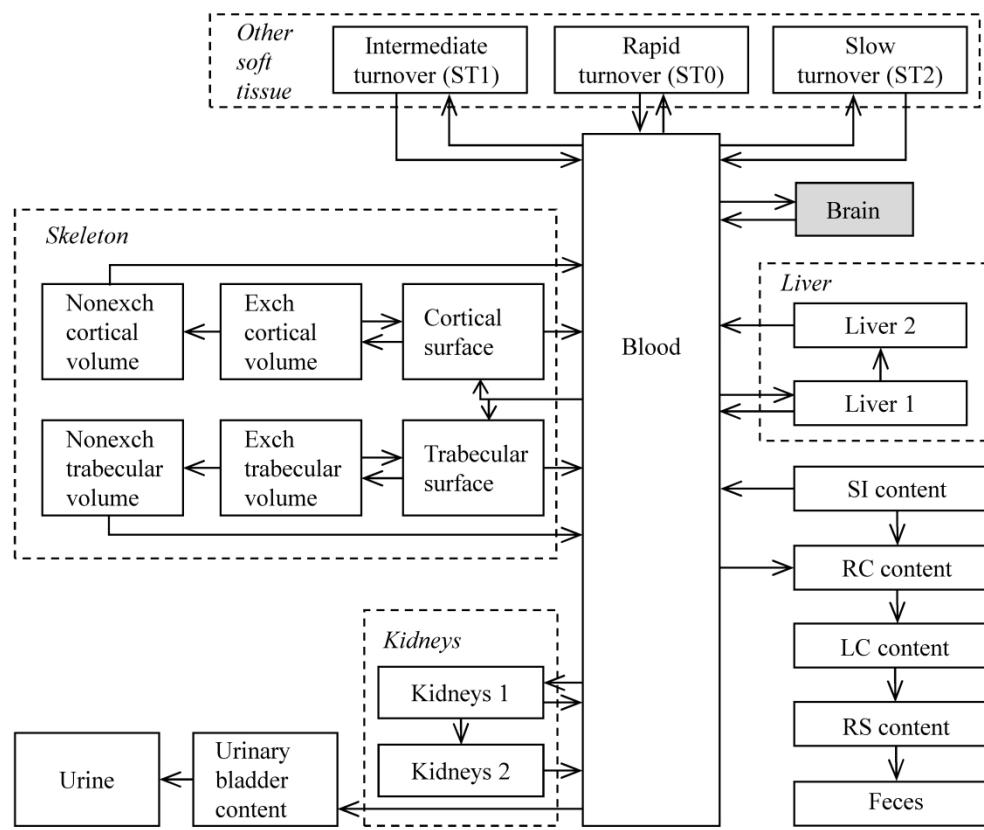


Figure 5. Structure of the ICRP's current biokinetic model for systemic radium (ICRP 2017) with the addition of the brain (shaded).

173x143mm (600 x 600 DPI)

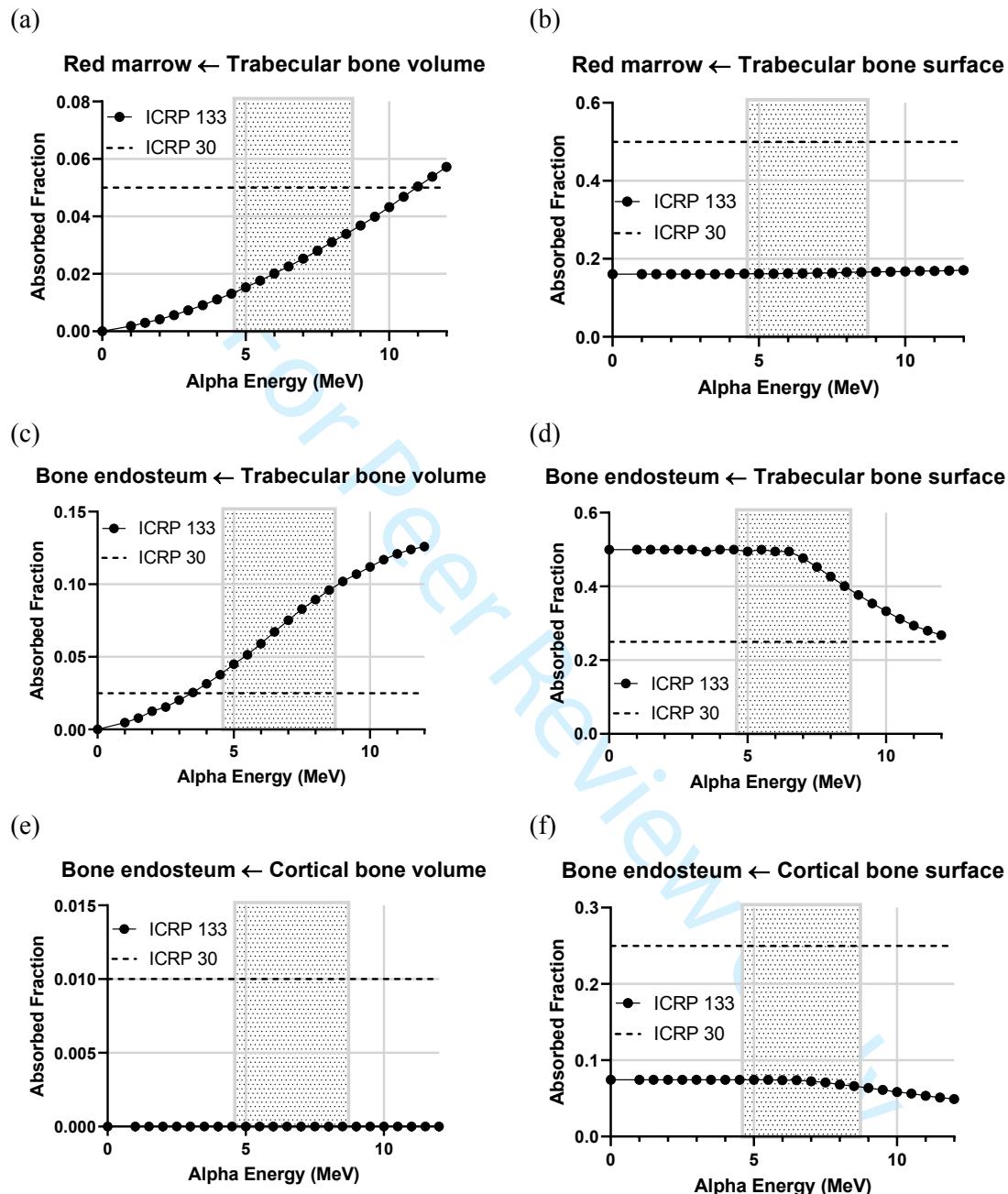


Figure 6. Plots of the fraction of the energy absorbed in a target tissue per alpha energy emitted from a skeletal source region. Data points (circles) are from ICRP Publication 133 (2016) and dashed lines are the values in ICRP Publication 30 (1979). The shaded region represents the range of alpha particle energies emitted in the ^{226}Ra and ^{228}Ra decay chains.

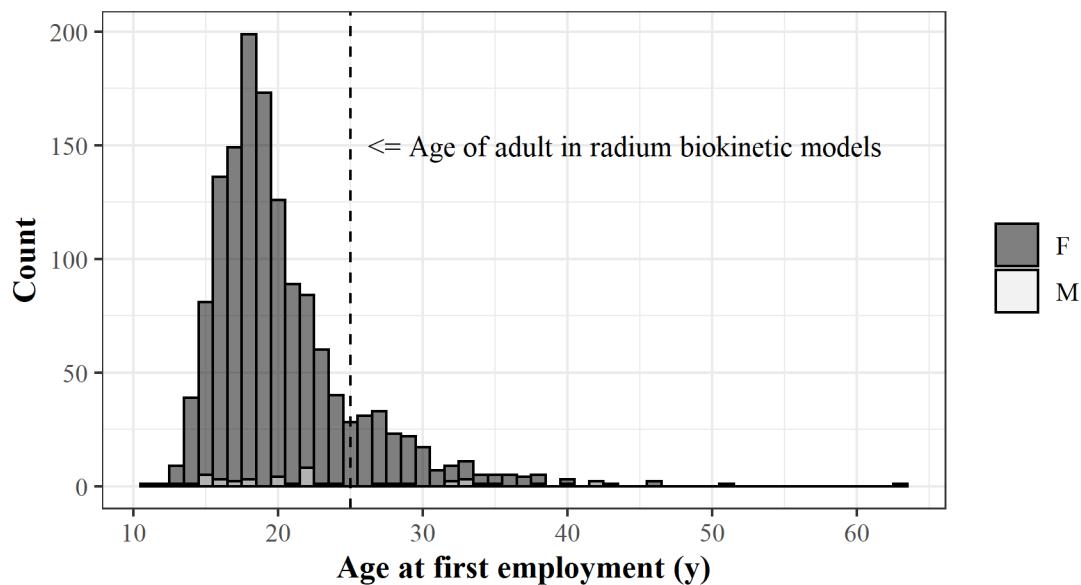


Figure 7. 1,558 members of the radium dial painter cohort by sex and age at time of first employment. The vertical dashed line is at age 25 years and is the age of the adult in systemic biokinetic models for radium and its progeny.

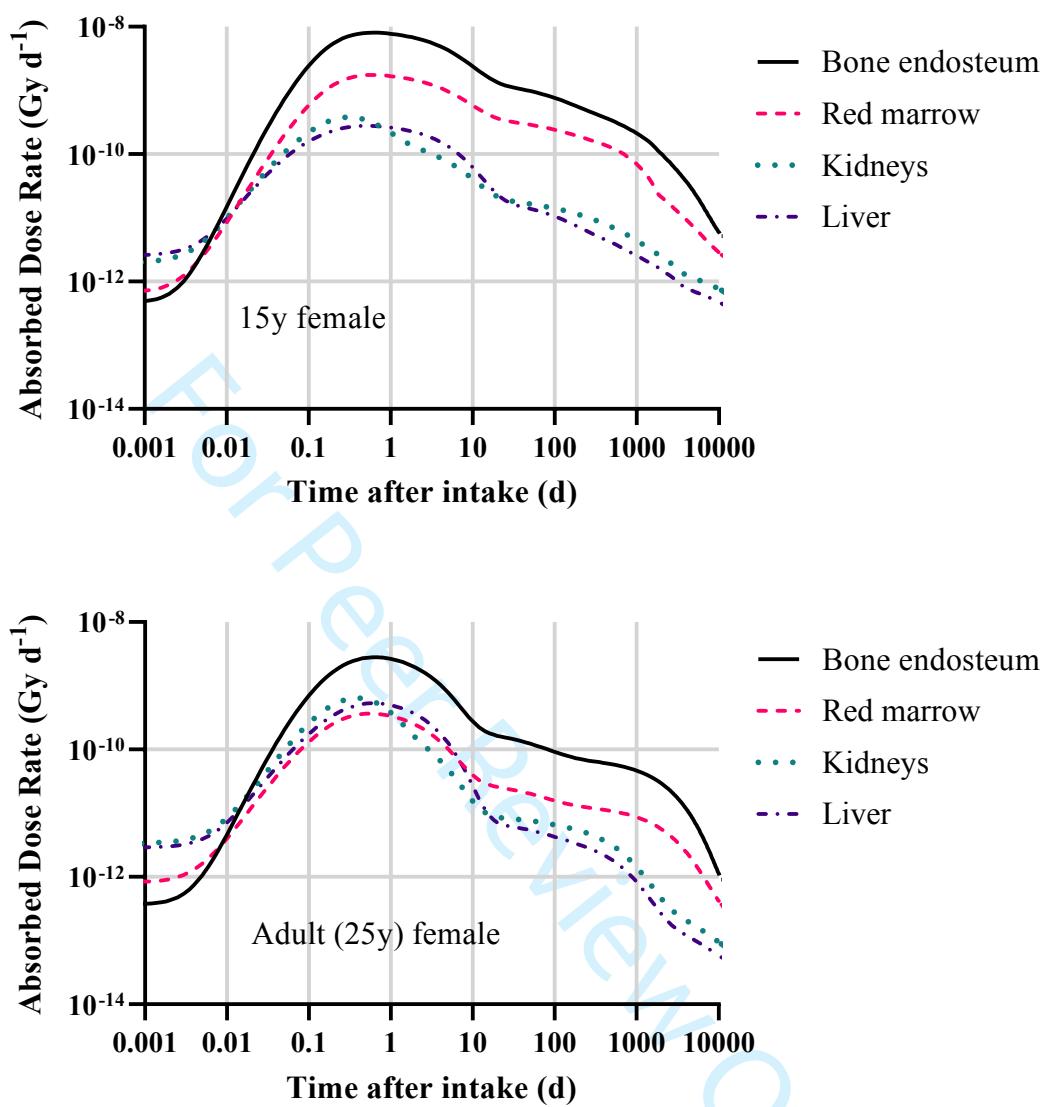


Figure 8. Absorbed dose rates to selected target regions for ingestion of 1 Bq of ^{226}Ra in a reference 15-year-old female (top) and reference adult female (bottom). The plots include contributions from radium progeny created post-ingestion.

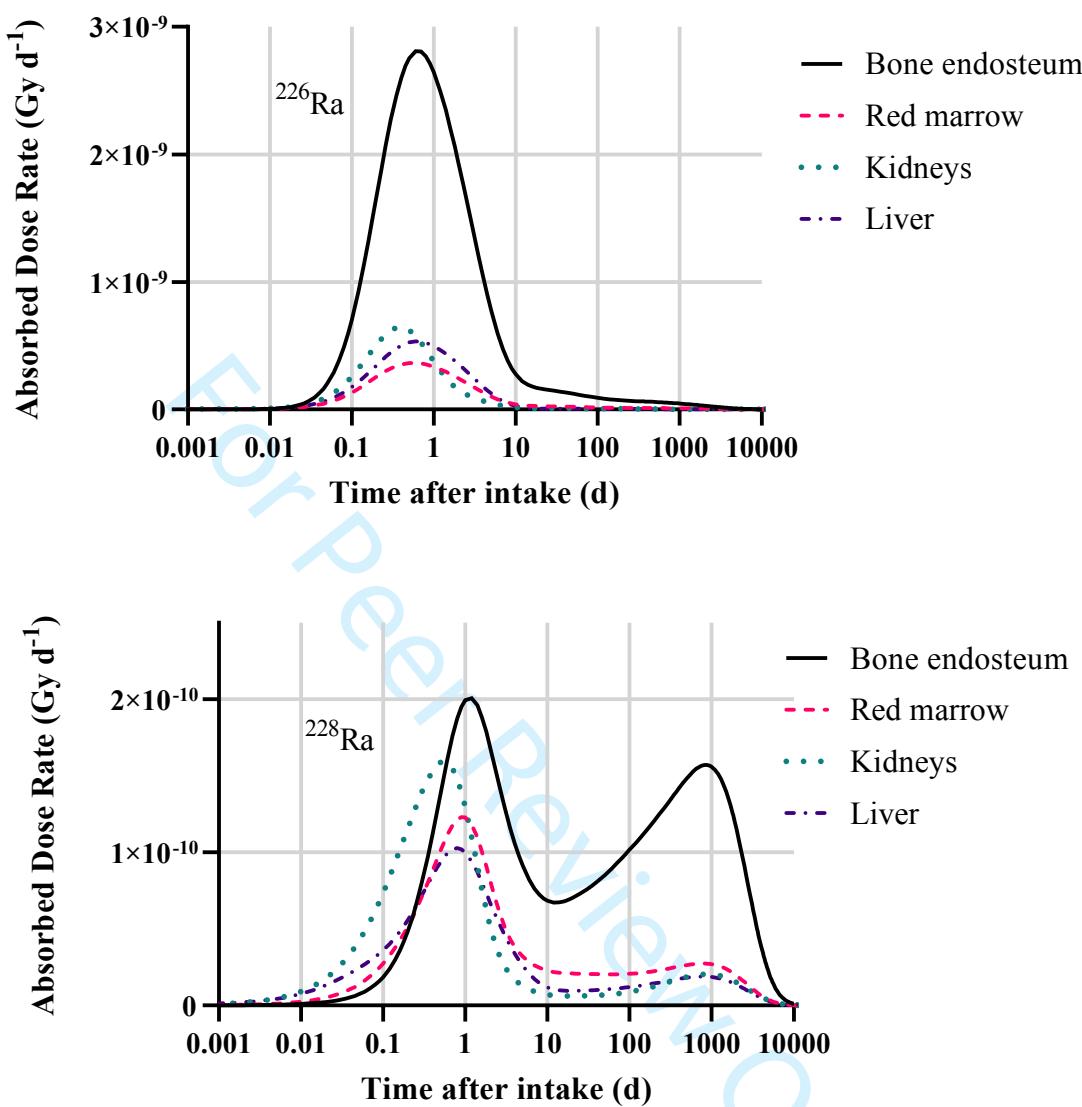


Figure 9. Absorbed dose rate to selected targets versus time following the ingestion of 1 Bq of ^{226}Ra (top) and ^{228}Ra (bottom) including contributions from radium progeny created post-ingestion.

1
2 Table 1. Descriptive characteristics of the 3,276 radium dial painters and handlers first employed 1910-
3 1949 that comprise the epidemiologic cohort being studied. EOFU = end of follow up; VS = vital status.
4

Characteristic	N	%
Primary Employer		
Bendix	266	8.1
Elgin National Watch Company	52	1.6
Ingraham Clock Company	78	2.4
Luminous Engineering/Processes	978	29.9
Radium Dial Company	396	12.1
Standard Chemical	83	2.5
US Radium Company	594	18.1
Waltham Watch Company	88	2.7
Waterbury Clock Company	457	13.9
Other	284	8.7
Job Category		
Dial Painter	2,955	90.2
Dial Handler	321	9.8
Sex		
Male	119	3.6
Female	3,157	96.4
Year of Birth		
1856-1899	473	14.4
1900-1919	1,637	50.0
1920-1932	711	21.7
Unknown	455	13.9
Year of First Hire		
1912-1919	529	16.1
1920-1924	546	16.7
1925-1929	445	13.6
1930-1939	172	5.3
1940-1949	1,481	45.2
Unknown	103	3.1
Age at First Hire		
10-15 years	183	5.6
16-19 years	1,044	31.9
20-24 years	822	25.1
25-29 years	334	10.2
30-39 years	263	8.0
40 years or older	121	3.7
Unknown	509	15.5
Vital Status as of Dec. 31, 2019		
Confirmed dead	2,800	85.5
Confirmed alive	28	0.9
Currently being traced	448	13.7
Age at death or EOFU (Dec. 31, 2019)-VS confirmed		
< 40 years	155	5.5
40-49 years	89	3.1
50-59 years	171	6.0
60-69 years	348	12.3
70-79 years	571	20.2
80-89 years	829	29.3
90 year and older	539	19.1
Unknown	126	4.5

1
2
3 Table 2. Distribution of bone sarcomas and head carcinomas* in radium-exposed persons as of 1990 by exposure circumstance
4 (radium dial worker or other**), measurement status*** and sex, modified from Rowland (1994)
5
6

Radium-Exposure Circumstance	Number of persons			Osteosarcomas (%)			Head carcinomas (%)		
	Female	Male	All	Female	Male	All	Female	Male	All
Persons measured									
Dial worker	1747	161	1908	46 (2.6%)	0 (0.0%)	46 (2.4%)	19 (1.1%)	0 (0.0%)	19 (1.0%)
Other	156	319	475	15 (9.6%)	3 (1.4%)	18 (3.8%)	8 (5.1%)	5 (1.6%)	13 (2.7%)
Total	1903	480	2383	61 (3.2%)	3 (0.6%)	64 (2.7%)	27 (1.4%)	5 (1.0%)	32 (1.3%)
Persons not measured									
Dial worker	1910	315	2225	18 (0.9%)	0 (0.0%)	18 (0.8%)	5 (0.3%)	0 (0.0%)	5 (0.2%)
Other	871	1196	2067	1 (0.1%)	2 (0.2%)	3 (0.1%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Total	2781	1511	4292	19 (0.7%)	2 (0.1%)	21 (0.5%)	5 (0.2%)	0 (0.0%)	5 (0.1%)
All persons									
Dial worker	3657	476	4133	64 (1.8%)	0 (0.0%)	64 (1.5%)	24 (0.7%)	0 (0.0%)	24 (0.6%)
Other	1027	1515	2542	16 (1.6%)	5 (0.3%)	21 (0.8%)	8 (0.8%)	5 (0.3%)	13 (0.5%)
Total	4684	1991	6675	80 (1.7%)	5 (0.3%)	85 (1.3%)	32 (0.7%)	5 (0.3%)	37 (0.6%)

26 *Carcinomas originating in the paranasal sinuses or mastoids.
27

28 ** Other includes chemists, physicists, laboratory technicians, nurses, offspring born to female subjects who had been exposed to
29 radium, persons and patients injected with radium, and persons who drank *Radithor* (a form of radium available to the public in the
30 1920s which included bottled drinking water spiked with radium and sold over the counter or by mail).

31 *** Whether or not measurements were made to determine radium body burden. The highest measurements were found among
32 workers in the dial industry, patients treated with radium and from self-administered radium, e.g., drinking *Radithor*.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Table 3. ICRP's age-specific transfer coefficients for radium (adopted for use and to be published in the environmental intake of radionuclide [EIR] series).

Path ^a	Transfer coefficient (d ⁻¹)					
	100 d	1 y	5 y	10 y	15 y	Adult
Blood to Urinary bladder content	2.02E-01	4.44E-01	4.85E-01	3.56E-01	2.10E-01	6.06E-01
Blood to Right colon content	7.26E+00	1.60E+01	1.74E+01	1.28E+01	7.55E+00	2.18E+01
Blood to Trab bone surf	1.05E+01	6.30E+00	6.23E+00	9.87E+00	1.44E+01	9.72E+00
Blood to Cort bone surf	4.20E+01	2.52E+01	2.18E+01	2.93E+01	3.74E+01	7.78E+00
Blood to Other 3	6.98E+00	1.53E+01	1.67E+01	1.23E+01	7.26E+00	2.09E+01
Blood to Other 4	1.17E+00	2.57E+00	2.80E+00	2.05E+00	1.21E+00	3.50E+00
Blood to Other 5	2.33E-02	5.13E-02	5.60E-02	4.11E-02	2.43E-02	7.00E-02
Blood to Liver 1	1.40E+00	3.08E+00	3.36E+00	2.46E+00	1.46E+00	4.20E+00
Blood to Kidneys 1	4.67E-01	1.03E+00	1.12E+00	8.21E-01	4.85E-01	1.40E+00
Trab bone surf to Blood	5.78E-01	5.78E-01	5.78E-01	5.78E-01	5.78E-01	5.78E-01
Trab bone surf to Exch trab bone vol	1.16E-01	1.16E-01	1.16E-01	1.16E-01	1.16E-01	1.16E-01
Cort bone surf to Blood	5.78E-01	5.78E-01	5.78E-01	5.78E-01	5.78E-01	5.78E-01
Cort bone surf to Exch trab bone vol	1.16E-01	1.16E-01	1.16E-01	1.16E-01	1.16E-01	1.16E-01
Other 3 to Blood	6.98E+00	6.98E+00	6.98E+00	6.98E+00	6.98E+00	6.98E+00
Other 4 to Blood	6.93E-01	6.93E-01	6.93E-01	6.93E-01	6.93E-01	6.93E-01
Other 5 to Blood	3.80E-04	3.80E-04	3.80E-04	3.80E-04	3.80E-04	3.80E-04
Liver 1 to Blood	6.91E-01	6.91E-01	6.91E-01	6.91E-01	6.91E-01	6.91E-01
Liver 1 to Liver 2	2.08E-03	2.08E-03	2.08E-03	2.08E-03	2.08E-03	2.08E-03
Liver 2 to Blood	1.90E-03	1.90E-03	1.90E-03	1.90E-03	1.90E-03	1.90E-03
Kidneys 1 to Blood	2.07E+00	2.07E+00	2.07E+00	2.07E+00	2.07E+00	2.07E+00
Kidneys 1 to Kidneys 2	6.24E-03	6.24E-03	6.24E-03	6.24E-03	6.24E-03	6.24E-03
Kidneys 2 to Blood	1.90E-03	1.90E-03	1.90E-03	1.90E-03	1.90E-03	1.90E-03
Exch trab bone vol to Trab bone surf	1.85E-02	1.85E-02	1.85E-02	1.85E-02	1.85E-02	1.85E-02
Exch to Nonexch trab bone vol	4.60E-03	4.60E-03	4.60E-03	4.60E-03	4.60E-03	4.60E-03
Exch cort bone vol to Cort bone surf	1.85E-02	1.85E-02	1.85E-02	1.85E-02	1.85E-02	1.85E-02
Exch to Nonexch cort bone vol	4.60E-03	4.60E-03	4.60E-03	4.60E-03	4.60E-03	4.60E-03
Nonexch cort bone vol to Blood	8.22E-03	2.88E-03	1.53E-03	9.04E-04	5.21E-04	8.21E-05
Nonexch trab bone vol to Blood	8.22E-03	2.88E-03	1.81E-03	1.32E-03	9.59E-04	4.93E-04

^aTrab = Trabecular, Cort = cortical, surf = surface, vol = volume, Exch = Exchangeable, Nonexch = Nonexchangeable