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High Field Stressing in Si02

• Several physical mechanisms have been proposed for the generation
of high field stress induced defects in Si/Si02 devices [1]—[3]

• Very little evidence [4] exists as to the chemical and physical identity
of such defects

• Here, we present electrically detected magnetic resonance (EDMR)
measurements of spin-dependent recombination (SDR) currents at
the Si/Si02 interface of MOSFETs
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Background- Electron Paramagnetic Resonance

• The parent technique of EDMR is electron paramagnetic resonance (EPR)

A

Illustration of Zeeman splitting

Spin-orbit coupling
Electron-nuclear
hyperfine interactions

hv = gilBB +LAiIi

4/2

 ►13

Virtual IIRW, October, 2020 3 )



Background: The EPR Measurement
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• EPR has been used for
decades to study
paramagnetic defects in
bulk semiconductors and
insulators [5-9].

• EPR is limited in sensitivity
(a minimum of 1010

paramagnetic defects are
needed to detect an EPR
singal) — NOT GOOD for

measurements at the device
level

4 4



Background: EDMR
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• EDMR overcomes EPR
limitations by changing
the way the magnetic
resonance signal is
detected
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Spin Dependent Recombination (SDR) Current

• Here, we measure the EDMR signal through an
SDR current

• SDR is best understood from the SRH model for
recombination in deep level defect sites [10].

• In order for an electron to fall into a deep level,
paramagnetic defect, the conduction electron
and defect electron must have opposite spin

• At the resonance condition, electron spins "flip"
allowing previously forbidden recombination
events to occur

0 Conduction Band
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SDR at MOSFET Interfaces

• We report measurements of spin
dependent interface recombination
currents on arrays of 126 Si/Si02 MOSFETs,
with 7.5nm gate thickness

• We utilize the DCIV biasing scheme [11] to
create SDR current at MOSFET interfaces,
measuring the recombination current
from the substrate

••-

I ii Vi ,vd =

-I HI I

Virtual IIRW, October, 2020 7 14)



DCIV electrical and DCIV EDMR Results
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DCIV Electrical and DCIV EDMR Results

• It is clear from the DCIV electrical results that increased high-field
stressing leads to an increase in interface recombination

• g = 2.0053 is similar to that of common Si/Si02 interface defects, the
Pbo center (g=2.0059) and the P b1 center (g=2.0032), at this sample
orientation [12,13]

• Lowering the modulation amplitude and rotating the sample can
reveal additional information about the nature of this EDMR signal
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Low Modulation Amplitude Results
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Conclusions

• We have measured the DCIV EDMR response before and after high
field gate stressing in Si/Si02 MOSFETs

• The g-value and orientation dependence of the stress induced EDMR
response indicate that it is dominated by some combination of Pbo
and Pb1 interface defects

Questions?

sjm5750@psu.edu
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