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High Field Stressing in SiO,

* Several physical mechanisms have been proposed for the generation
of high field stress induced defects in Si/SiO, devices [1]—[3]

* Very little evidence [4] exists as to the chemical and physical identity
of such defects

* Here, we present electrically detected magnetic resonance (EDMR)
measurements of spin-dependent recombination (SDR) currents at
the Si/SiO, interface of MOSFETSs



Background- Electron Paramagnetic Resonance

* The parent technique of EDMR is electron paramagnetic resonance (EPR)
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Background: The EPR Measurement
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Background: EDMR
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EDMR overcomes EPR
limitations by changing
the way the magnetic
resonance signal is
detected



Spin Dependent Recombination (SDR) Current

Here, we measure the EDMR signal through an
SDR current

Conduction Band

SDR is best understood from the SRH model for
recombination in deep level defect sites [10]. :
B o

In order for an electron to fall into a deep level,
paramagnetic defect, the conduction electron

and defect electron must have opposite spin Valance Band
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At the resonance condition, electron spins “flip’
allowing previously forbidden recombination
events to occur



SDR at MOSFET Interfaces

* We report measurements of spin
dependent interface recombination

currents on arrays of 126 Si/SiO, MOSFETSs,
with 7.5nm gate thickness

* We utilize the DCIV biasing scheme [11] to
create SDR current at MOSFET interfaces,
measuring the recombination current
from the substrate

Ve = V=V




DCIV electrical and DCIV EDMR Results
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DCIV Electrical and DCIV EDMR Results

* It is clear from the DCIV electrical results that increased high-field
stressing leads to an increase in interface recombination

* g =2.0053 is similar to that of common Si/SiO, interface defects, the
P, center (g=2.0059) and the P, center (g=2.0032), at this sample
orientation [12,13]

* Lowering the modulation amplitude and rotating the sample can
reveal additional information about the nature of this EDMR signal



EDMR Amplitude (arb. units)

Low Modulation Amplitude Results
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Conclusions

* We have measured the DCIV EDMR response before and after high
field gate stressing in Si/SiO, MOSFETs

* The g-value and orientation dependence of the stress induced EDMR
response indicate that it is dominated by some combination of P,
and P, interface defects

Questions?
sim5750@psu.edu
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