SAND2020- 10733PE

Evaluation of oneAPI for
FPGAs

Intern: Nicholas Miller

Mentor: Clayton Hughes

—_— — @EERdY NISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
1 Administration under contract DE-NA0003525.

2 | Outline

*Introduction to one API
e What is oneAPI?

* Summer project goals

*Programming
e DPC++ data movement
* SYCL. runtime overheads

¢ Hardware configuration

*Results
* Execution time

* Device utilization

¢ Compilation times

Introduction to oneAPI

What is oneAPI

* oneAPI is a framework for programming different Application Workloads

accelerators using a single language Middleware / Frameworks

* Programming language is DPC++ which is an

= oneAPI Industry Specification
addition to SYCL ysp

Direct Programming API-Based Programming

* Can be used to program GPU, CPU, and FPGA Libraries

Math Threading Library

* Includes libraries to accelerate certain applications Data Parallel C++ T I
L omm

y . 5 Video
* oneAPI 1s an open specification Processing

* In beta08 as of 9/10/20

FPGA OTHER ACCEL.

s | Summer Work

*Goal was to evaluate oneAPI for programmability and performance
*Studied documentation to understand the DPC++ language

*Ported the MiniAMR proxy application to DPC++ and measured its performance on an Arria 10
development board

*Explored DPC++ constructs for performance and area optimization

Programming

Data Movement

*Two options for data movements:
* Buffers

¢ Can be created with a host pointer to make data transfers easier

* Unified Shared Memory (USM)

*Dependency tree created by compiler to find where synchronization events are needed during kernel
executions and host code execution

*Explicit memory movement can be done through destructors or function calls like
cgh.update_host(accessor);

* (Can cause unintended issues with execution like below where the executions should look like the buffered
example

_ZTE145tencil_kernel ... _ZT514Stencil_kernel (Execution)

clEnqueueMapBuffer (Queaued) clEngueueMapB...

_ZTS5145tencil_kemel ... _ZT5145tencil_kernel (Execution)

clEnqueueMapBuffer (Queued) clEnqueueMapsb...

8 | SYCL Runtime Overheads

*Calling the SYCL runtime to

submit a task to the FPGA I
h as hl gh ove rh ea d S B6 45844736 _ZTS145tencil_kemel (Submitied) _ZT5145tencil_kemel (Execution)
67 45844736 clEngueusReadBuffer (Quevad) clEnqueusReadBuffer (Execution)
. 58.45844736 T
*Queue event is created at 69.45
0.45844736
buffer destructor to read the iyl
FP GA buffer @ items selected. Slices (6)
Name ¥ Wall Duration ¥ Selitime ¥ Average Wall Duration ¥ Occurrences ¥
. . ZT5145tencil_kernel (Queued) G 0,007 ms 0,007 ms 0.007 ms 1
e Queue event 1s blOCkll’lg SO ZTS14Stencil kemel (Submitted) @, 0398ms 0.398ms 0398 ms 1
. . . ZT5145tencil kernel (Execution) @ 0.617 ms 0.617 ms 0617 ms 1
processor Slde executlon Walts clEnqueueReadBufier (Queued) Q@ 0.984 ms 0.984 ms 0984 ms 1
clEnqueueReadBuifer (Submitted) Q 0.006 ms 0.008 ms 0.006 ms 1
clEnqueueReadBuifier (Execution) Q& 0.503 ms 0.503 ms 0503 ms 1
Totals 2.515 ms 2.515 ms 0.419ms 6
Selection start 4,650,598 ms

Selection extent 1.552 ms

9 I Hardware Description

*Pipelines created automatically for hardware

°L.oad Stores Units inferred from memory i ’) " (w

access pattern | ~ | | — {
* Different Types of LSU can be inferred Feecbick foe

* Burst Coalesced

* (Cached @

“Will use DSPs when appropriate o [®
* For example 32 add operations %)

*Loops can be unrolled through compiler e |
hints

0o I Memory Description

*Memory types can be controlled by memory
attributes

* Example:
[[intelfpga::bankwidth(8), intelfpga::numbanks(2)]] int a[64];

*Allows for fine grain control of BRAM and
register structures

*Cannot figure out how to specify DRAM
usage yet

°If not specified, then compiler assumes
structure automatically

intelfpga::

intelfpga::

intelfpga::

intelfpga::

intelfpga::

intelfpga::

intelfpga::

intelfpga::

intelfpga:

intelfpga::

intelfpga::

Memory Attribute

register

memory(“impl_type")

numbanks(N)

bankwidth(W)

singlepump

doublepump

max_replicates(N)

private_copies(N)

:simple_dual_port

merge("key", "type")

bank_bits(bo,b1,...,bn)

Description

Forces a variable or array to be carried through the pipeline in registers.

Forces a variable or array to be implemented as embedded memory. The
optional string parameter impl_type can be BLOCK_RAM or MLAB.

Specifies that the memory implementing the variable or array must have N
memory banks.

Specifies that the memory implementing the variable or array must be W
bytes wide.

Specifies that the memory implementing the variable or array should be
clocked at the same rate as the accesses to it.

Specifies that the memory implementing the variable or array should be
clocked at twice the rate as the accesses to it.

Specifies that a maximum of N replicates should be created to enable
simultaneous reads from the datapath.

Specifies that a maximum of N private copies should be created to enable
concurrent execution of N pipelined threads.

Specifies that the memory implementing the variable or array should have
no port that services both reads and writes.

Merge two or more variables or arrays in the same scope width-wise or
depth-wise. All variables with the same key string are merged into the
same memory system. The string type can be either width or depth.

Specifies that the local memory addresses should use bits (bo,b1,...,bn) for
bank-selection, where (bo,b1,...,bn) are indicated in terms of word-
addressing. The bits of the local memory address not included in
(bo,b1,...,bn) will be used for word-selection in each bank.

12 | Iterations of Design

*Combined Memory Transactions

* The optimization that provided the largest performance boost was to combine all the vatiable computations
in a block into a single communication and computation step

* This reduced the number of calls to the SYCL runtime by 40x

*Reduced Local Memory
* Only stores one variable (1000 elements) at a time in BRAM at any given time

*Flattened Arrays
* Flattened all arrays to 1D accessors to make buffer creation and destruction faster

*Buffering

* Buffers the SYCL runtimes to create overlap between kernel execution and command communication

Reduced
Local
Memory

Flattened
Arrays

Direct Combined
Translation Transactions

Buffering

Reference

3 | Buffered SYCL runtime calls

calculation

*By calling the SYCL runtime for the kernel it queues and submits it while the FPGA works on the stencil

|_zT

_ZTS14Stencil_kernel (Submittad)
_ZTS14Stencil_kemnel (Submitted)
_ZTS14Stencil_kemel (Submitted)

_ZTS14Stencil_kemel (Submitted)

*This works only if the execution of the kernel is long enough to cover up the SYCL runtime overheads

_ZTS145tencil_keme! (Submitied)

_ZTS145tencil_kemel (Submitted)

_ZTS14Stencil_kernel (Submitted)

_ZTS145tencil_kemel (Submitted)

_ZTS14Stenci_kemel (Submitted)

_ZTS14Stencil_kernel (Submitted)
_ZT514Stencil_kemel (Submitted)
_ZTS14Stencil_kemel (Submitted)

Cl
=l
=
=20
(A |
E=Erm
|
=EresET
s
e T
[
| FTsmsiencikem..
_ _ZTS14Stencil_kemel (Submitted)
B
EEESOEe—)
e
It
s Sl

_ZTS 145tencil_kemel (Submitted)
_ZTS14Stencil_kernel (Submitted)
_ZT5145tencil_kernel (Submitted)

_ZTS14Stencil_kernel (Submitted)

_ZTS145tencil_kernel (Submitted)

14 | Experimental Setup

*Run on the Intel Devcloud system

*Submitted to node by OpenPBS scheduler

*Increased number of blocks in a run to compare for the buffering tests

CPU

FPGA Family
FPGA Device
System Memory
Base Parameters

Increased Blocks Parameters

2 x Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz

Arria 10
10AX115S2F4512SGES
196 GB
No Parameters

--num_refine 4 --max_blocks 9000 --num_objects 1 --object
20-1.71 -1.71 -1.71 0.04 0.04 0.04 1.7 1.7 1.7 0.0 0.0 0.0 -
-num_tsteps 25

s 1 Performance

Slowdown Compared to Processor

Buffered Unrolled 8 2.512880758

Buffered Unrolled 4 2.474778626

Buffered Unrolled 2 2.478456712

Buffered Multiple Blocks

3.097539437

Buffered Base 13.04108709

Flattened Arrays 13.07619917

10 15 20 25 30 35 40

o
(8]

16 | Utilization

Device Resource Usage

Buffered Unrolled 8

Buffered Unrolled 4

Buffered Unrolled 2

Buffered

Flattened Arrays

Reduced Local Memory
Combined Memory Transactions

Base

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
mDSPs mMLABs mRAMs mFFs mALUTs

17

Compile Times

Compile Wall Time

Buffered Unrolled 8
Buffered Unrolled 4
Buffered Unrolled 2

Buffered

20 40 60 80 100 120 140 160
Compile Time (m)

o

180

18 I Conclusions

*Greatly reduced development time and digital logic knowledge needed compared to HDL
*Best case design showed 2.4x slowdown compared to single core reference with ~22% BRAM usage
*Low transparency in device interactions

*Unable to fully customize hardware

(suonssan®

Appendix

21 | Base Stencil

1 for (int in = 0; in < sorted_index [num_refine + 1]; in++) {

2 bp = &blocks [sorted_list [in].n];

3 for (var = 0; var < var_max; var++) {

1 sycl::range<l> num_array{ static_cast<size_t >((x-block_size + 2) x
5 (y-block_size + 2) % (z_block_size + 2)) };

6 //create a buffer that goes to the fpga

7 doublex inputArray = new double[(x_block_size + 2) *

8 (y-block_size + 2) % (z_block_size + 2)];

9 //create a buffer that comes from the fpga

10 doublex outputArray = new double[(x_block_size + 2) x*

11 (y-block_size + 2) % (z_block_size + 2)];

12 //flatten the 4d array to a 1d array for the buffer

13 for (int i = 0; i <= x_block_size + 1; i++4)

14 for (int j = 0; j <= y-block.size + 1; j++)

15 for (int k = 0; k <= z_block_size + 1; k++)

16 inputArray [k + (z_block_size + 2) * (j + (y_-block_size + 2) * i)]
17 = bp—>array [var][i][j][k];

18 sycl:: buffer<double, 1> input_buffer (inputArray, num_array);

19 {

20 sycl:: buffer<double, 1> output_buffer (outputArray, num_array);
21 fpga_kernel (input_buffer , output_buffer);

22 }//output_buffer detructor called here

23 //write the data back to the block array

24 for (int 1 = 1; i <= x_block_size; i++4)

25 for (int j = 1; j <= y-block_size; j++)

26 for (int k = 1; k <= z_block_size; k++)

27 bp—>array [var|[i][]j][k] = outputArray [k + (z_.block_size + 2) x
28 (j + (y-block_size + 2) * i)];

29 }//input_buffer detructor called here

30 }

22

Base Kernel

15

29
30
31
32
33

void fpga_kernel(sycl:: buffer<double, 1>& input_buffer ,
sycl:: buffer<double, 1>& output_buffer) {
//Device queue submit
queue_event = device_queue.submit ([&](sycl:: handler& cgh) {
//Create FPGA side accessors to the buffers
auto accessor_in =
input_buffer.get_access<sycl::access::mode:: read_write >(cgh);
auto accessor_out =
output_buffer. get_access<sycl::access::mode:: discard_write >(cgh);
cgh.single_task <class Stencil_kernel >([=]() {
double work[12][12][12];
double local_array [12][12][12];
for (int i = 0; i <= 11; i++)
for (int j = 0; j <= 11; j++)
for (int k = 0; k <= 11; k++)
local_array [i]|[j][k] = accessor_in[i][j][k];
for (int i = 1; i <= 10; i++)
for (int j = 1; j <= 10; j++)
for (int k = 1; k <= 10; k++)
work [i][j][k] = (
local_array [i — 1][j][k] +
local_array [i][j — 1][k] +
local_array [i][j][k — 1] +
local_array [i][j][k] +
local_array [i][j][k + 1] +
local_array [i][j + 1][k] +
local_array [i + 1][j][k]) / 7.0;
for (int 1 = 1; i <= 10; i++)
for (int j = 1; j <= 10; j++)
for (int k = 1; k <= 10; k++)
accessor_out [i][j][k] = work[i][]j][k];

1)

23

Combined Memory Stencil

ok W

=]

o0 =1

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

for (int in = 0; in < sorted_index[num_refine + 1]; in+4+4) {
bp = &blocks [sorted_list [in].n];
sycl ::range<1l> num_array{ static_cast<size_t >(var_max * (x_block_size + 2) x
(y-block_size + 2) * (z_block_size + 2)) };
//create a buffer that goes to the fpga
double* inputArray = new double[varmax * (x_block_size + 2) *
(y-block_size + 2) = (z_block_size + 2)];
//create a buffer that comes from the fpga
doublex outputArray = new double|[varmax * (x_block_size + 2) =%
(y-block_size + 2) % (z_block_size + 2)];
//flatten the 4d array to a 1d array for the buffer
for (var = 0; var < var_max; var++)
for (int i = 0; i <= x_block_size + 1; i++)
for (int j = 0; j <= y-block_size + 1; j++)
for (int k = 0; k <= z_block_size + 1; k++)
inputArray [(var * (x_block._size + 2) % (y_.block_size + 2) x
(z-block_size + 2)) + (k + (z-block_size + 2) *
(i + (y-block_size + 2) % i))] = bp—array[var|[i][]j][k];
sycl:: buffer<double, 1> input_buffer (inputArray, num_array);
{
sycl :: buffer<double, 1> output_buffer (outputArray, num_array);
fpga_kernel (input_buffer , output_buffer);
}
//write the data back to the block array
for (var = 0; var < var_max; var++)
for (int i = 1; i <= x_-block.size; i++)
for (int j = 1; j <= y-block_size; j++)
for (int k = 1; k <= z_block_size; k++)
bp—array [var][i][j][k] = outputArray[(var * (x_block_size + 2) =
(y-block_size + 2) * (z_-block_size + 2)) +
(k + (z-block_size + 2) * (j + (y-block_size + 2) x 1))];

Combined Memory Kernel

1 void fpga_kernel(sycl:: buffer<double, 1>& input_buffer ,

2 sycl:: buffer<double, 1>& output_buffer) {

3 //Device queue submit

4 queue_event = device_queue.submit ([&](sycl:: handler& cgh) {

b) //Create FPGA side accessors to the buffers

6 auto accessor_in =

7 input_buffer.get_access<sycl::access::mode:: read_write >(cgh);

8 auto accessor_out =

9 output_buffer. get_access<sycl::access::mode:: discard_write >(cgh);
10 cgh.single_task<class Stencil_kernel >([=]() {

11 //create a local copy of the array data for increased performance
12 double local_array [40][12][12][12];

13 for (int var = 0; var < 40; var++)

14 for (int 1 = 0; 1 <= 11; i++)

15 for (int j = 0; j <= 11; j++)

16 for (int k = 0; k <= 11; k++)

17 local_array [var|[i][]j][k] =

18 accessor_in [(var * (12) % (12) * (12)) + (k + (12) =
19 (G + (12) * i)];

20 for (int var = 0; var < 40; var++)

21 for (int i = 1; i <= 10; i++)

22 for (int j = 1; j <= 10; j++)

23 for (int k = 1; k <= 10; k++)

24 accessor_out [(var = (12) * (12) = (12)) + (k + (12) =
25 G+ (12) + i))] = (

26 local_array [var][i — 1][j][k] +

27 local_array [var|[i][j — 1][k] +

28 local_array [var|[i][j][k — 1] +

29 local_array [var][i][j][k] +

30 local_array [var|[i][j][k + 1] +

31 local_array [var|[i][] + 1][k] +

32 local_array [var|[i + 1][j][k]) / 7.0;

33 | 31

34 })s

35 }

Reduced Memory Kernel

1 void fpga_kernel(sycl:: buffer<double, 1>& input_buffer ,

2 sycl:: buffer<double, 1>& output_buffer) {

3 //Device queue submit

1 queue_event = device_queue.submit ([&](sycl:: handler& cgh) {

5 //Create FPGA side accessors to the buffers

6 auto accessor_in =

7 input_buffer.get_access<sycl::access::mode:: read_write >(cgh);

8 auto accessor_out =

9 output_buffer. get_access<sycl::access::mode:: discard_write >(cgh);
10 cgh.single_task<class Stencil_kernel >([=]() {

11 //create a local copy of the array data for increased performance
12 double local_array [12][12][12];

13 for (int var = 0; var < 40; var++)

14 for (int i = 0; i <= 11; i++)

15 for (int j = 0; j <= 11; j++)

16 for (int k = 0; k <= 11; k++)

17 local_array [i][j][k] =

18 accessor_in [(var * (12) = (12) * (12)) + (k + (12) =
19 G+ (12) *)15

20 for (int i = 1; i <= 10; i++)

21 for (int j = 1; j <= 10; j++)

22 for (int k = 1; k <= 10; k++)

23 accessor_out [(var = (12) = (12) = (12)) + (k + (12) =
24 (3 +(12) = i))] = (

25 local_array[i — 1][j][k] +

26 local_array [i][j — 1][k] +

27 local_array [i][j][k — 1] +

28 local_array [i][j][k] +

29 local_array [i]|[j][k + 1] +

30 local_array [i]|[j + 1][k] +

31 local_array[i + 1][j][k]) / 7.0;

32 1)

33 1)

31}

26 | Flattened Stencil

1 for (int in = 0; in < sorted_index|[num_refine + 1]; in++) {

a bp = &blocks [sorted_list [in].n];

3 sycl::range<l> num_array{ static_cast<size_t >(var_max =*

1 (x_block_size + 2) * (y_block_size + 2) * (z_block_size + 2)) };
5

6 sycl :: buffer<double , 1> input_buffer (bp—>array, num_array);

7 fpga_kernel (input_buffer);

s}

9}

Buffered Stencil

1 std::vector<sycl:: buffer<double, 1>> input_buffer;

2

3 for (int in = 0; in < sorted_index[num_refine + 1]; in++4) {

4 bp = &blocks|[sorted_list [in].n];

5 input_buffer.push_back(sycl:: buffer<double, 1>(bp—>array,

6 sycl ::range<l>(static.cast <size_t >(var.max % (x_block_size + 2) =x
7 (y-block_size + 2) % (z_block_size + 2)))));

8 fpga_kernel (input_buffer [in]);

9 1

27

Buffered Kernel

1 void fpga_kernel(sycl:: buffer<double, 1>& input_buffer) {

2 //Device queue submit

3 queue_event [kernelCounter % 2| = device_queue.submit ([&](sycl:: handler& cgh)
1

5 //Create accessors

6 auto accessor_in =

7 input_buffer.get_access<sycl::access::mode:: read_write >(cgh);

8 cgh.single_task<class Stencil_kernel >([=]() {

9 double local_array [12][12][12];

10 #pragma unroll X //replace X with the number of unrolls 0, 2, 4, or 8
11 for (int var = 0; var < 40; var++) {

12 for (int i = 0; i <= 11; i++)

13 for (int j = 0; j <= 11; j++)

14 for (int k = 0; k <= 11; k++)

15 local_array [i][j][k] = accessor_in[(var = (12) = (12) =
16 (12)) + (k + (12) * (j + (12) = i))]:

17 for (int 1 = 1; i <= 10; i++)

18 for (int j = 1; j <= 10; j++)

19 for (int k = 1; k <= 10; k++4)

20 accessor_in [(var % (12) % (12) = (12)) + (k + (12) =«
21 (3 + (12) = i))] = (

22 local_array[i — 1][j][k] +

23 local_array[i][j — 1][k] +

24 local_array [i][j][k — 1] +

25 local_array [i][j][k] +

26 local_array [i][j][k + 1] +

27 local_array [i][j + 1][k] +

28 local_array[i + 1][j][k]) / 7.0;

29 }

30 1)

31 1)

32)

28 | Full Pipeline

for (int i = 1; i <= 10; i++)
for (int j = 1; j <= 10; j++)
for (int k = 1; k <= 10; k++)
accessor_in [(var = (12) * (12) = (12)) + (k + (12) =
(3 + (12) = i))] = (
local-array[i - l][_]][k] +
local_array [i][j — 1][k] +
local_array [i|[j][k — 1] +
local _array [i][]j][k] +
local_array [i][j][k + 1] +
local_array [i][j + 1][k] +
local_array [i + 1][j][k]) / 7.0;

29 I Memory System

double local_array [12][12][12];

