
intern: Nicholas Miller

Mentor: Clayton Hughes

1

liffr NffSit

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2020-10733PE

2 I Outline

•Introduction to oneAPI
• What is oneAPI?

• Summer project goals

• Programming
• DPC++ data movement

• SYCL runtime overheads

• Hardware configuration

•Results
• Execution time

• Device utilization

• Compilation times

Introduction to oneAPl

4 I What is oneAPl

• oneAPI is a framework for programming different
accelerators using a single language

• Programming language is DPC++ which is an
addition to SYCL

• Can be used to program GPU, CPU, and FPGA

• Includes libraries to accelerate certain applications

• oneAPI is an open specification

• In beta08 as of 9/10/20

Application or c oads

Middleware / Frameworksk

oneAPl Industry Specification

Direct Programming

Data Parallel C++

API-Based Programming

Math

Libraries

Threading

Ana4Eics/ DNN

Video
Processing

DPC++
Library

ML Comm

Low-Level Hardware Interface

XPUs

CPU' GPU FPGA OTHER ACC EL.

5 I SummerWork

•Goal was to evaluate oneAPI for programmability and performance

•Studied documentation to understand the DPC++ language

•Ported the MiniAMR proxy application to DPC++ and measured its performance on an Arria 10
development board

•Explored DPC++ constructs for performance and area optimization

Programming

7 Data Movement

•Two options for data movements:
• Buffers

• Can be created with a host pointer to make data transfers easier

• Unified Shared Memory (USM)

•Dependency tree created by compiler to find where synchronization events are needed during kernel
executions and host code execution

•Explicit memory movement can be done through destructors or function calls like
cgh.update_host(accessor);
• Can cause unintended issues with execution like below where the executions should look like the buffered
example

_ZrS 1 Stenci Lkernel _ZT514Stencil_kernel (Execution)

:I Enqueu eMapadier (Queued) niEnqueueklapD...

_ZIS145tanci_kernel _ZTS145tenoil_ke rn el (Execution)

olEnqueuerelapBuffer (Queued) nlEnqueueMapEi...

8 SYCL Runtime Overheads

°Calling the SYCL runtime to
submit a task to the FPGA
has high overheads

*Queue event is created at
buffer destructor to read the
FPGA buffer

•Queue event is blocking so
processor side execution waits

ub.40844

66.458447:36

67.45844736

68.45844736

69.45

0.45844736
Al)A A7on

_ZTS14Stencil_kemel (Sarni-lied) _ZTS14Stencil_kernel Execution)

clEnqueueReadBuffer pueued} clEnqueueReadBuffer(Execulion)

6 items selected. Slices (6)

Name v Wall Dura.tion v Self time v Average wall Duration v Occurrences v

ZTS14Stencil kernel (Queued) 21. acur rns acur rns
ZTS14Stencil kernel (Submitted) Q.

ZTS14Stericil kernel (Execution) A
0_398 ms

0.617 nis
11393 rns

11617 rns

clEnqueueReedBuifer (Queued) A
clEnqueueReedBuifer (Submitted) tit,

clEnqueueReedBuifer (Execution) A
Totals

11984 rns

11006 ms

11503 rns

2.515 ms

11984 ms

11005 ms

11503 ms

2.515 ms

0.1)07 ms 1

1393 ms 1

-0.617 nls 1

t1984 ms 1

O:006 ms 1

O_503 ms 1

0.419 ms 6

Selection start

Selection extent

4,650.593 ms

1.552 ms

9 I Hardware Description

•Pipelines created automatically for hardware

•Load Stores Units inferred from memory
access pattern

• Different Types of LSU can be inferred

• Burst Coalesced

• Cached

•Will use DSPs when appropriate

• For example f32 add operations

•Loops can be unrolled through compiler
hints

10 Memory Description

•Memory types can be controlled by memory
attributes
• Example:

[[intelfpga::bankwidth(8), intelfpga::numbanks(2)]] int a[64];

*Allows for fine grain control of BRAM and
register structures

•Cannot figure out how to specify DRAM
usage yet

•If not specified, then compiler assumes
structure automatically

Memory Attribute

intelfpga::register

intelfpga::memory("impl_type")

intelfpga::numbanks(N)

intelfpga::bankwidth(W)

intelfpga::singlepump

intelfpga::doublepump

intelfpga::max_replicates(N)

intelfpga::private_copies(N)

intelfpga::simple_dual_port

intelfpga::merge("key", "type")

intelfpga::bank_bits(bo,bi,...,bn)

Description

Forces a variable or array to be carried through the pipeline in registers.

Forces a variable or array to be implemented as embedded memory. The
optional string parameter impl_type can be BLOCK_RAM or MLAB.

Specifies that the memory implementing the variable or array must have N
memory banks.

Specifies that the memory implementing the variable or array must be W
bytes wide.

Specifies that the memory implementing the variable or array should be
clocked at the same rate as the accesses to it.

Specifies that the memory implementing the variable or array should be
clocked at twice the rate as the accesses to it.

Specifies that a maximum of N replicates should be created to enable
simultaneous reads from the datapath.

Specifies that a maximum of N private copies should be created to enable
concurrent execution of N pipelined threads.

Specifies that the memory implementing the variable or array should have
no port that services both reads and writes.

Merge two or more variables or arrays in the same scope width-wise or
depth-wise. All variables with the same key string are merged into the
same memory system. The string type can be either width or depth.

Specifies that the local memory addresses should use bits (bo,bi,...,bn) for
bank-selection, where (bo,bi,...,bn) are indicated in terms of word-
addressing. The bits of the local memory address not included in
(bo,b1,...,bn) will be used for word-selection in each bank.

12 Iterations of Design

•Combined Memory Transactions
• The optimization that provided the largest performance boost was to combine all the variable computations

in a block into a single communication and computation step
• This reduced the number of calls to the SYCL runtime by 40x

•Reduced Local Memory
• Only stores one variable (1000 elements) at a time in BRAM at any given time

•Flattened Arrays
• Flattened all arrays to 1D accessors to make buffer creation and destruction faster

•Buffering
• Buffers the SYCL runtimes to create overlap between kernel execution and command communication

Reference
Direct

Translation
Combined

Transactions

Reduced
Local

Memory

Flattened
Arrays

Buffering

13 I Buffered SYCL runtime calls

•By calling the SYCL runtime for the kernel it queues and submits it while

calculation

•This works only if the execution of the kernel is long enough to cover up

ZT

_ZTSI4Stenoil_kernel (Submitted}

ZTS14Stencil_kernel (Submitted)

_ZTS145tericil_kernel (Submitted)

ZTS14Steincil_kernel (Submitted)

_ZTS14Sten ciLkernel (Submitted)

_ZTS14Stencil_kemel (Submitted)

_ZTS14StenciLkernel (Submitted)

_ZTS 1 4S tenni l_k eme I (Su bmitted)

_ZTS14Stencilkernel (Submitted)

_ZTS14Stencil_kennel (Submitted)

ZT5145tencil_kernel (Submitted)

_ZTS 1 4Sten ci l_k emel (Submitted)

_ZTS14Stencil_kernel (Submitted)

ZTS 1 4Stenc l_k eme I (Su bm itted)

_ZTS14Stencil_kernel (Submitted)

_ZTS14Stennil_kemel (Submitted)

_ZTS14Siencil_kernel (Submitted)

ZTS14Stencil_kemel (Submitted)

the FPGA works on the stencil

the SYCL runtime overheads

-

N

E
N

N
E

14 I Experimental Setup

•Run on the Intel Devcloud system

•Submitted to node by OpenPBS scheduler

•Increased number of blocks in a run to compare for the buffering tests

CPU 2 x Intel(R) Xeon(R) Gold 6128 CPU ® 3.40GHz

FPGA Family Arria 10

FPGA Device 10AX115S2F4512SGES

System Memory 196 GB

Base Parameters No Parameters

--num_refine 4 --max_blocks 9000 --num_objects 1 --object
Increased Blocks Parameters 2 0 -1.71 -1.71 -1.71 0.04 0.04 0.04 1.7 1.7 1.7 0.0 0.0 0.0 -

-num_tsteps 25

15 I Performance

Slowdown Compared to Processor

Buffered Unrolled 8

Buffered Unrolled 4

Buffered Unrolled 2

Buffered Multiple Blocks

2.512880758

2.474778626

2.478456712

3.097539437

36.84519024

40

Buffered Base 13.04108709

Flattened Arrays 13.07619917

Reduced Local Memory 33.3626835

Combined Memory Transactions

0 5 10 15 20 25 30 35

16 Utilization

Buffered Unrolled 8

Buffered Unrolled 4 -

Buffered Unrolled 2

Buffered

Flattened Arrays

Reduced Local Memory

Combined Memory Transactions

Base

Device Resource Usage

10% 20% 30% 40% 50% 60% 70% 80% 90%

• DSPs • MLABs RAMs • FFs •ALUTs

•

17 Compile Times

Buffered Unrolled 8

Buffered Unrolled 4

Buffered Unrolled 2

Buffered

Compile Wall Time

0 20 40 60 80 100 120 140 160 180

Compile Time (m)

•

18 Conclusions

•Greatly reduced development time and digital logic knowledge needed compared to HDL

•Best case design showed 2.4x slowdown compared to single core reference with —22% BRAM usage

•Low transparency in device interactions

•Unable to fully customize hardware

1

1

I
I
I

r
I.

21 Base Stencil

1 for (int in = 0; in C sorted_index [num_refine + 1] ; in++) {
2 bp = &blocks [sorted_list [in].n];
3 for (var = 0; var < var_max ; var++)
4 sycl range<1> num_array{ static_cast <size_t >((x_block_size + 2) *
5 (y_block_size + 2) * (z_block_size + 2)) };
6 //create a buffer that goes to the fpga
7 double* inputArray = new double [(x_block_size + 2) *
8 (y_block_size + 2) * (z_block_size + 2)];
9 //create a buffer that comes from the fpga
10 double* outputArray = new double [(x_block_size + 2) *
11 (y_block_size + 2) * (z_hlock_size + 2)];
12 //flatten the 4d array to a ld array for the buffer
13 for (int i = 0; i <= x_block_size + 1; i ++)
14 for (int j = 0; j <= y_block_size + 1; j++)
15 for (int k = 0; k C= z_block_size + 1; k++)
16 inputArray [k + (z_bloc,k_size + 2) * (j + (y_block_size + 2) *
17 = bp—>array [var][i][j][k];
18 sycl buffer <double , 1> input_buffer (inputArray num_array);
19
20 sycl :: buffer <double , 1> output_buffer (outputArray , num_array);
21 fpga_kernel(input_buffer , output_buffer);
22 }Houtput_buffer detructor called here
23 //write the data back to the block array
24 for (int i = 1; i <= x_block_size ; i++)
25 for (int j = 1; j <= y_block_size ; j++)
26 for (int k = 1; k <= z_block_size ; k++)
27 bp—>array [var] [i] [j] [k] = outputArray [k + (z_block _size + 2) *
28 + (y_block_size + 2) * i)];
29 }//input_buffer detructor called here
30 }

•

22 Base Kernel

1 void fpga_kernel (sycl :: buffer <double , 1>& input_buffer ,
2 sycl buffer<double , 1>& output_buffer
3 //Device queue submit
4 queue_event = device_queue . submit ([&](sycl :: handler& cgh)
5 //Create FPGA side accessors to the buffers
6 auto accessor_in =
7 input_buffer . get_access<sycl :: access : : mode: : read_write >(cgh);
8 auto accessor_out =
9 output_buffer . get_access<sycl :: access : : mode: : discard_write >(cgh);
10 cgh. single_task <class Stencil_kernel >([=]() {
11 double work [1 2] [1 2] [1 2];
12 double local_array [1 2] [1 2] [1 2];
13 for (int i = 0; i <= 11; i++)
14 for (int j = 0; j <= 11; j++)
15 for (int k = 0; k <= 11; k++)
16 local_array [i] [k] = accessor_in [i][k];
17 for (int i = 1; i <= 10; i++)
18 for (int j = 1; j <= 10; j++)
19 for (int k = 1; k <= 10; k++)
20 work[i][j][k] = (
21 local_array [i — 1]] [k] +
22 local_array [i][j — 1] [k] +
23 local_array [i][j] [k — 1] +
24 local_array [i][j] [k] +
25 local_array [i][] [k 1] +
26 local_array [i][j + 1] [k] +
27 local_array [i 1] [j] [k]) / 7.0;
28 for (int i = 1; i <= 10; i++)
29 for (int j = 1; j <= 10; j++)
30 for (int k = 1; k <= 10; k++)
31 accessor_out [i] [j] [k] = work [i] [j][k];
32 });
33 }

■

23 Combined Memory Stencil

1 for (int in = 0; in < sorted_index [num_refine + 1]; in++) {
2 hp = &blocks [sort ed _lis t [in].n];
3 sycl range<l> num_array{ static_cast csize_t >(var_max * (x_block_size + 2)
4 (y_block_size + 2) * (z_block_size + 2)) };
5 //create a buffer that goes to the fpga
6 double* inputArray = new double [var_max * (x_block_size + 2)
7 (y_block_size + 2) * (z_block_size + 2)] ;
8 //create a buffer that comes from the fpga
9 double* outputArray = new double [var_max * (x_block_size + 2)
10 (y_block_size + 2) * (z_block_size + 2)] ;
11 // flatten the 4d array to a ld array for the buffer
12 for (var = 0; var < var_rnax ; var++)
13 for (int i = 0; i <= x_block_size + 1; i++)
14 for (int j = 0; j <= y_block_size + 1; j++)
15 for (int k = 0; k <= z_block_size + 1; k++)
1G inputArray [(var * (x_block_size + 2) * (y_block_size + 2)
17 (z_block_size + 2)) + (k (z_block_size 2) *
18 (j (y_block_size + 2) * i))] = bp—>array [var] [i][j][k];
19 sycl buffercdouble , 1> input _buffer (inputArray , num_array);
20
21 sycl buffercdouble , 1> output_buffer (outputArray , num_array);
22 fpga_kernel (input_buffer output_buffer);
23
24 //write the data back to the block array
25 for (var = 0; var < var_max ; var++)
2G for (int i = 1; i <= x_block_size ; i++)
27 for (int j = 1; j <= y_block_size ; j++)
28 for (int k = 1; k <= z_block_size ; k++)
29 bp—>array [var] [i [j [k] = outputArray [(var (x_block_size + 2)

30 (y_block_size + 2) * (z_block_size + 2)) +
31 (k (z_block_size 2) * + (y_block_size 2) * i))];
32 }

•

24 Combined Memory Kernel
1 void fpga_kernel(sycl buffer<double , 1>& input_biiffer ,
2 sycl buffer<double , 1>& output_buffer){
3 //Device queue submit
4 queue_event = device_queue . submit ([&](sycl :: handler& cgh)
5 //Create FPGA side accessors to the buffers
6 auto accessor_in =
7 input_buffer . get_access<sycl :: access : : mode : : read_write >(cgh);
8 auto accessor_out =
9 output_buffer . get_access <sycl :: access : : mode: : discard_write >(cgh);
10 cgh. single_task <class Stencil_kernel >([=]()
11 //create a local copy of the array data for increased performance
12 double local_array [4 0] [1 2][1 2] [1 2];
13 for (int var = 0; var < 4 0; var++)
14 for (int i = 0; i <= 1 1; i++)
15 for (int j = 0; j <= 1 1; j++)
16 for (int k = 0; k <= 1 1; k++)
17 local_array [var] [i][j] [k] =
18 accessor_in [(var * (1 2) * (12) * (1 2)) + (k + (1 2)
19 + (1 2) * i))];
20 for (int var = 0; var < 4 0; var++)
21 for (int i = 1; i <= 10; i++)
22 for (int j = 1; j <= 1 0; j++)
23 for (int k = 1; k <= 1 0; k++)
24 accessor_out var * (12) * (1 2) (1 2)) + (k + (12)
25 + (12) * i))] =(
26 local_array [var][i — 1] [j][k] +
27 local_array [var] [i] [j — 1] [k] +
28 local_array [var][i] [j] [k — 1] +
29 local_array [var][i] [j [k] +
30 local_array [var] [i] [j [k + 1] +
31 local_array [var][i] [j 1] [k]
32 local_array [var][i + 1] [j][k]) / 7.0;
33 });
34 });
35 }

25 Reduced Memory Kernel
1 void fpga_kernel(sycl buffer<double , 1>& input_buffer ,
2 sycl :: buffer <double , 1>& output_buffer) 1
3 //Device queue submit
4 queue_event = device_queue . submit ([&](sycl :: handler& cgh)
5 //Create FPGA side accessors to the buffers
6 auto accessor_in =
7 input_buffer . get_access<sycl :: access : : mode :: read_write >(cgh);
8 auto accessor_oiit =
9 output_buffer . get_access<sycl :: access :: mode: : discard_write >(cgh);
10 cgh. single_task <class Stencil_kernel >([=]()
11 //create a local copy of the array data for increased performance
12 double local_array [1 2][1 2] [1 2];
13 for (int var = 0; var < 4 0; var++)
14 for (int i = 0; i <= 11; i++)
15 for (int j = 0; j <= 1 1; j++)
16 for (int k = 0; k<= 1 1; k++)
17 local_array][j][k] =
18 accessor_in [(var * (12) (12) (1 2)) + (k + (12) *
19 (j + (12) * i))];
20 for (int i = 1; i <= 1 0; i++)
21 for (int j = 1; j <= 1 0; j++)
22 for (int k = 1; k <= 1 0; k++)
23 accessor_out [(var * (12) * (1 2) * (1 2)) + (k + (12) *
24 (j + (12) * i))] = (
25 local_array — 1] [j][k] +
26 local_array j — 1][k] +
27 local_array i] [j] [k — 1] +
28 local_array [i] [j] [k] +
29 local_array [i] [j][k + 1] +
30 local_array [i][j + 1][k] +
31 local_array + 1][j][k]) / 7.0;
32 });
33 });
34 }

■

26 Flattened Stencil
1 for (int in = 0; in < sorted_index [nurn_refine + 1] ; in++) {
2 bp = &blocks [sorted_list [in] . n] ;
3 sycl :: range<l> num_array{ static_cast csize_t >(var_max *
4 (x_block_size + 2) * (y_block_size + 2) * (z_block_size + 2)) };
5 {
6
7
8
9 } }

sycl :: buffer <double , 1> input_buffer (bp—>array , num_array);
fpga_kernel (input_buffer);

Buffered Stencil

1 std :: vector<sycl :: buffer <double , 1>> input _buffer ;
2
3 for (int in = 0; in < sorted_index [nurn_refine + 1]; in++) {
4 bp = &blocks [sorted_list [in].n] ;
5 input _buffer . push_back(sycl :: buffer <double , 1>(bp—>array ,

6 sycl :: range<1>(static_cast csize_t >(var_rnax * (x_block_size + 2) *
7 (y_block_size + 2) * (z_block_size + 2)))));
8 fpga_kernel (input_buffer [in]);

9

•

27 Buffered Kernel

1
2
3
4

void fpga_kernel (sycl buffercdouble , 1>&]{
//Device queue submit
queue_event [kernelCounter % 2] = device_queue . submit ([8d(sycl :: handler& cgh)

5 //Create accessors
6 auto accessor_in =
7 input_buffer . get_access<sycl :: access : : mode : read_write >(cgh);

cgh. single_taskcclass Stencil_kernel >([=]()
9 double local_array [1 2] [12][12];
10 #pragma unroll X // replace X with the number of unrolls 0 , 2, 4, or 8
11 for (int var = 0; var < 40; var++) {
12 for (int i = 0; i <= 11; i++)
13 for (int j = 0; j <= 11; j++)
14 for (int k = 0; k C= 1 1; k++)
15 local_array [i][j] [k] = accessor_in [(var * (12) * (12) *
16 (1 2)) (k + (12) * + (1 2) * i n];
17 for (int i = 1; i C= 10; i++)
18 for (int j 1; j C= 1 0; j++)
19 for (int k = 1; k <= 10; k++)
20 accessor_in [(var * (1 2) * (1 2) (12)) + (k + (12)
21 + (12) * i n] = (
22 local_array [i — 1] [[lc] +
23 local_array [i][j — 1] [k]
24 local_array i [[k — 1] +
25 local_array [i] [[k] +
26 local_array i] [j][k + 1] +
27 local_array [] [j 1] [k] +
28 local_array l][j] [k]) / 7.0;
29 }
30 });
31 1);
32 }

28 I Full Pipeline
for (int i = 1; i <= 10; i++)

for (int j = 1; j C= 10; j++)
for (int k = 1; k <= 10; k++)

accessor_in [(var * (12) * (12) (12)) + (k + (12)
(j + (12) * i))] = (
local_array [i — 1][j] [k]
1oca1_array [i][j — 1] [k] H-
local_array [i][j][k — 1] +
local_array [i] [j][k] +
local_array [i][j][k + 1]

[i][j + 1] [k] +
local_array [i + 1][j][k]) / 7.0;

 •WANIN III.-
0 0110111 0

ORA liyaRgaCREA0 2

•

29 M emory System

LD

LD

double local_array [12] [12] [121;

Bank 0

Rephcate 0

Copy 0

v

Replicate I

Copy 0

Rep[icate 2

Copy 0 411

■

