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Numerical methods often provide some "built-in" a priori (uh
arbitrary, not computed) error estimate

< ChP

► C= C(u) in general depends on solution  > not computable

► Bound in predetermined  > not very flexible

► .*. useful e.g. for proving convergence, not so useful for
problem specific analysis/adaptivity
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► A posteriori error analysis1'" leverages a computed solution
to gain more information about error

► Leads to accurate and robust error estimation
► Useful for informing solver and discretization strategies as well

as to understand the behavior of errors

1M. Ainsworth and T. Oden. A posteriori error estimation in finite element analysis. John Wiley-Teubner,
2000.

2D. J. Estep, M. G. Larson, R. D. Williarns, and American Mathematical Society. Estimating the error of
numerical solutions of systems of reaction-diffusion equations. American Mathematical Society, 2000.

3Michael B. Giles and Endre SOL "Adjoint methods for PDEs: a posteriori error analysis and
postprocessing by duality". in: Acta Numerica 2002 (2002), pp. 145-236.
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Adjoint based a posteriori error analysis (ABAPEA) is

1. Accurate: error representations are theoretically exact

2. Goal oriented: error is computed in a user specified quantity
of interest (Qol)

3. Error decomposition: error estimates naturally lead to an
additive decomposition
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► V Hibert space with inner product (•,.)
► L: V —> V bounded linear operator
► Want to compute the Qol Q(u) = (V), u) for u solving

Lu = f, in Q,

u = 0, on OQ.

Approximate solution uh E Vh c V, denote e= u — uh
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Definition

The adjoint to L is the unique linear operator L* : V —> V defined by

(Lu, v) = (u, L* v), V u, v E V.

e.g. If V = R", Lu = Au for some A E Rt." and

VTA T = LITA
Tv

We now consider the associated adjoint problem: find 0 E V such
that

L* = '0, in 1-2,

= 0, on 012.

Recall Q(u) = (V), u)
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Theorem

The error in the Qol, Q(u) — Q(uh) = Q(e), is computable as

2(e) = (0, = (0, — (0, bin).

Proof

e) = (CO, = (0, Lu — Luh) = (0, — (0, Luh).
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Definition

Given a bilinear form a: Vx V —> R the adjoint bilinear form
a* : V x V —> R is defined by the relation4,5

a* (w, v) = a(v, w), V w, v E V.

Remark

Agrees with strong definition for a L(v, = (Lv, w).

4Michael B. Giles and Endre SOD. "Adjoint methods for PDEs: a posteriori error analysis and
postprocessing by duality". ln, Acta Numerica 2002 (2002), pp. 145-236.

5Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in finite
element methods: Acta Numerica. Jan. 2003.
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Compute Q(u) = u) where u solves nonlinear problem

.F(u(x)) = f(x), x in Q,

u(x) = 0, x on 0Q.

Seek a linear operator f for adjoint problem P*0=0 so that

(.F* cb, = (0, T(u) — T(uh)).

Leads to error represenation = (1;0)— (u h), (b)
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0.7 

(su + (1 — s)uh )ds v. (*)



Choice of nonlinear operator 0 Sandia
Nada.'
Labormodes

0.7
Define „Tv :=f —(su+ (1- s)uods v.o 0,

(FTC) 1 d
-.F(u)-.F(u0.F(su + (1- s)uh)ds

Jo ds
(chain rule) rl 

(9.F
—(su+ (1- s)uh)ds(u - uh) =
Ou

(*)
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Define ..Tv:= Jo
au 
—(su+ (1— s)uh)dsv.

(FTC) f 1 d
-.F(u)—.F(uh).F(su+ (1— s)uh)ds

o ds
(chain rule) rl 

a.F
= —(su+ (1— s)uh)ds(u— uh) =

o au

(*)

Remarks

► Precise interpretation of where .F is an operator is nontrivial.

► In practice don't have u (true solution) approximate u by uh in (*)
induces so-called linearization error
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► Yr = Yri product Hilbert space with inner product (.,.)

• = in17; dense subspace such that 1/i is a dense subspace
of Yri for all i

► E.g. Yr = L2(S-2) x L2(Q) and 17 = HI-(Q) x H1(Q)
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Want to evaluate Q(u) = (0, u) where u E 1/ solves

Ar(u, v) = (f, v), V V E

Ar :1/x1/->l[k has the specific structure
m

Ar( v, = E(A/i(v), wei) + a(v, w)
i= 1

is a bilinear form, ti E{1,...,n} and 1\11 : —> Yff;

Remark

Ar(.,.) abstract version of exact penalty weak form- closely related
to MHD
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For a solution/approximation pair (u/uh), define

► the matrix J cRmx"

fI ON;
(su+ (1— s)uh)ds,

Du-i

► the linearized operator Ali : r

Ali I/ =

► the bilinear forms

j=1
J

i(1/. w) = I iv, wf) = EJ..v. — E (J,v, we) .
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As established before,

(v, w) := P1(w, v) (weak definition of adjoint)
—* —*

such that (J = (v, J uw) (strong definition of the
adjoint)

Now set Al-* (0, v) := l v;(0,v)+a*(0,v)

Theorem

if 0 solves the dual problem,

Ar*(0, = v), Yve

the error in a Qol represented by Q(u) = u) is computable as

(0, = ( f; --Ar(uh, 95).
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► Model for electrically conducting fluids, e.g. liquid metals and
plasmas

► MHD for plasma valid as continuum representation of
collisional plamsa systems

► Structure of resistive MHD is Navier-Stokes + Lorentz force
coupled with low frequency Maxwell equations



Mathematical model 0 Sandia
Natmal
Lahmatones

Stationary incompressible MHD in Q c Rd convex, polygonal

--
1 

Re
+ (u • V)u + V p — ice7 x x b = f, (momentum)

V • u = 0, (continuity)

 V X (V x b) — x (u x = 0, (induction)
Rem

V • b = 0. (solenoidal involution)

► Unknowns: velocity u, magnetic field b, pressure p
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Stationary incompressible MHD in Q c Rd convex, polygonal

Re
--

1
Au + (u • V)u + Vp— (V x x b = f, (momentum)

V • u= 0, (continuity)

 V X (.7 x b) - V x (u x b) = 0, (induction)
Rem

V • b = O. (solenoidal involution)

► Unknowns: velocity u, magnetic field b, pressure p

► Nondimensionalized parameters
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Re
--

1
Au+ (u• V)u+ Pp—K(7' x x b (momentum)

7 • u = 0, (continuity)

  x (.7 x — x (u x b) = 0, (induction)
Rem

'V • b= O. (solenoidal involution)

► Unknowns: velocity u, magnetic field b, pressure p

► Nondimensionalized parameters

► Incompressible Navier-Stokes substructure
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1
Au+ (u• V)u+ Vp— K(v x b) x b = f, (momentum)

V • u= 0, (continuity)
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V • b= O. (solenoidal involution)

► Unknowns: velocity u, magnetic field b, pressure p

► Nondimensionalized parameters

► Incompressible Navier-Stokes substructure

► Three coupled nonlinear terms



Mathematical model 0 Sandia
Natmal
Lahmatones

Stationary incompressible MHD in Q c Rd convex, polygonal

Re
Au + (u • V)u + Vp— ic(7 x b) x b = f, (momentum)

V • u = 0, (continuity)

 V X (V x b) — x (u x = 0, (induction)
Rem

V • b= 0. (solenoidal involution)

► Unknowns: velocity u, magnetic field b, pressure p

► Nondimensionalized parameters

► Incompressible Navier-Stokes substructure

► Three coupled nonlinear terms

► 2d+ 2 equations only 2d+ 1 unknowns  > overdetermined
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Augment MHD system with boundary conditions,

u = g,

bxn=qxn,

on 0Q,

on 0Q.

Define in the sense of the trace operator,

1-116(Q) := fiv E H1(Q): WlaC2 E

1-4(Q) := { w E H1(Q) : (w x n)lac2 E 01.

We also define the product space,

:= 1-110-(Q) x /-4(Q) x L2(Q)
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Find U = (u, b, E such that

ArEP( U, = f. V VE

The nonlinear form Ara, is defined by

1
NEP( := —

Re
(vu, vv) + (C(u), — (Ay • v) + (q,v • u)

+ K(Y(b), — k(Z(u, b), + ;ern (V x b,p x c) + RKen,(p•b, V • c),
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Find U = (u, b, p) E such that

ArEP( U, = lf V VE

The nonlinear form Ara, is defined by

1
ATEp( U, V) := —

Re
(vu, + (C(u), v) — (p, '7 • v) + (q,v • u)

+ k(Y (b), v) — k(Z(u, b), + ;ern x b, x + RKen,(p•b, V' • c),

► Nonlinear operators

C(u) := (u • V)u, Y(b) := x x b, Z(u,b):= x (u x b)
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Find U = (u, b, p) E such that

ArEP( U, = ( f. V), V VE

The nonlinear form Ara, is defined by

1
ATEp( U, V) := —

Re
(Vu, V + (C(u), v) — (p, V • v) + (q,v • u)

+ k(Y (b), v) — k(Z(u, b), + Rkern (Vr x b, V x + Rken, (Vr•b,V • c),

► Nonlinear operators

C(u) := (u• V)u, Y(b) := x x b, Z(u, := V x (u x b)

► Penalty term
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► First 7 terms of EP weak form arise from multiplying MHD

equations by test functions and performing integration by

parts

► Rem b, V • c) , enforces the solenoidal involution

► Existence and uniqueness of discrete problem proven under
certain assumptions on data6

6Max D. Gunzburger, Amnon J. Meir, and Janet S. Peterson. "On the existence, uniqueness, and finite
element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics". In:
Mathematics of Computation 56.194 (1991), pp. 523-523.



Matching up with theoretical derivations or,

For the exact penalty weak form, we have that

where

and

3

MEP( U, = E(NEp,;(U), Ve1) + aEp(U, V),
iS1

(NEP,i(U), V2) = (Z(u, b), c),

(NEP,2(U), Vi) = (3) (b) , v),

(NEP,3(U), 1/4) = (C(u), v),

1
aEP(U, V) = —

Re
(Vu, Vv) - (p, V • v) + (q, V • LI)

x b, X + —
Rem

(v • b, 'V • c).
Rem



Averaged entries C.) 1. 6:tnatolies

As outlined in the theoretical error analysis, the entries
, „.* ,* * —* —
n v2 = J 12 V2 = Z,bc, j 21 = y v and J31 V1 = C

* 
v are,

Zu* c= 1(u+ uh) x (V' x c),
*

Zbc= A(b+ bh) x (p x c),

Y*v= (—(v x (b+ bh) x v)+ x ((b+ bh) x v)),

e v=1((vu + uh)T v— ((u+ uh) • v) v— (v • (u+ uh))v),

while the remaining ju entries are zero
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The weak dual problem is therefore be stated as: find
(1) = (0,0,7) E such that

.ArEp(1), V) = (xli, V), V VE

with

A Ep(4), V) = FTel (v + + (V • v,7)— (V • cb, q)

+
Re Re
 (vx0,vxc)+(7•0,v•c)

,„ n, 

- (Y* CP, (Y*,13, 1/) (Y*1,0, .
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Theorem (Chaudhry, Rappaport, Shadid, 2020)

For a given Qol represented by = [TP„, 11)b, IP pi
T 
, the error

E = [eu, eb, EA
T 

in the numerical approximation of the Qol satisfies

(W,E)=V0)—[17
e
(Vuh, '70) ((Uh • '7)14,0)

— (ph, V' • 0+ ic((v x + (V • uh,7)

+ —
Rem 

x Oh, x 13) + K,(7 x (/h ),P)

—(V • bh, V •i(3)1Rem
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Estimator n (kV, E) where,

= Emom ECM] + EMI

and

Emom = (t.,43'n)— (Fiel (vuh,v0h)-E ((Lin • v)uh,c1)h) — (Ph,v • Oh)

+ ic((v x bh) x bh, 00),

E„h = —(7 • uh,7h),

EA4 = 
Rem 

x bh,V x 130+ k(V (Uh x h 1 3 )_h,,, h, — 
Rem 

kv • uh,V • Nhl •
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► Models the one-dimensional flow of a conducting fluid in a
channel7

► analytic solution u = [ux, 0] b = [bx, 1] p

GRe(cosh(Ha/2) — cosh(Hay)) 
Lix(Y) =

2Hasinh(Ha/2)

Bx(Y) 
G(sinh(Hay) —2sinh(Ha/2)y)

2ksinh(Ha/2)

p(x) = —Gx— kC2,

► G = —2̀2 arbitrary pressure dropdx

71VIiiller Ulrich and Bailer Leo. Magnetofluiddynamics in Channels and containers. Springer, 2010.



Discretization and Qol L

► Lagrange space finite element space of
order q:
Pq := {v E C(Q) : HKE Th, V1K E Pq (K)}

► Product space satisfies the LBB stability
condition

► Q [ 2

► QC' x [ 14,U
► ]LQ, the characteristic function on

► W = [1_Qc, 0, 0, 0, 0] 7-

► Qol 2(U) = , (1) = (42c, ux)

Qc

Th

7Daniele Boffi, Franco Brezzi, Michel Fortin, et al. Mixed finite element methods and applications. Vol. 44.
Springer, 2013.



Hartmann results fi reitonaLl

Eff. = Error estimate _  True error - (11,E)

# Elements True Error Eff. Emom Econ EA4

1600 2.76e-04 1.00 4.53e-06 -2.28e-04 5.00e-04

6400 6.98e-05 1.00 1.29e-06 -6.23e-05 1.31e-04

14400 3.11e-05 1.00 6.05e-07 -2.86e-05 5.91e-05

25600 1.75e-05 1.00 3.49e-07 -1.63e-05 3.35e-05

op2, pl, pl ) for (u, p) .

# Elements True Error Eff. Emom Econ EM
1600 -2.25e-04 1.02 1.08e-06 -2.27e-04 4.79e-06

6400 -6.13e-05 1.04 1.04e-06 -6.23e-05 2.18e-06

14400 -2.81e-05 1.04 5.98e-07 -2.86e-05 1.13e-06

25600 -1.60e-05 1.04 3.76e-07 -1.64e-05 6.81e-07

(P2,P2,P1) for (u, b, p).
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Eff.. Error estimate _  True error - (11,E)

# Elements True Error Eff. Emom Econ EA4

1600 2.76e-04 1.00 4.53e-06 -2.28e-04 5.00e-04

6400 6.98e-05 1.00 1.29e-06 -6.23e-05 1.31e-04

14400 3.11e-05 1.00 6.05e-07 -2.86e-05 5.91e-05

25600 1.75e-05 1.00 3.49e-07 -1.63e-05 3.35e-05

(p2, pl) for (u, b, p).

# Elements True Error Eff. Emom Econ EM
1600 -2.25e-04 1.02 1.08e-06 -2.27e-04 4.79e-06

6400 -6.13e-05 1.04 1.04e-06 -6.23e-05 2.18e-06

14400 -2.81e-05 1.04 5.98e-07 -2.86e-05 1.13e-06

25600 -1.60e-05 1.04 3.76e-07 -1.64e-05 6.81e-07

OP2,1112, P1) for (u, b, p).
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Eff.. Error estimate _  True error - (11,E)

# Elements True Error Eff. Emom Econ EM
1600 2.76e-04 1.00 4.53e-06 -2.28e-04 5.00e-04

6400 6.98e-05 1.00 1.29e-06 -6.23e-05 1.31e-04

14400 3.11e-05 1.00 6.05e-07 -2.86e-05 5.91e-05

25600 1.75e-05 1.00 3.49e-07 -1.63e-05 3.35e-05

(P2,IP,P1) for (u, b, p).

# Elements True Error Eff. Emo,r, Econ EM
1600 -2.25e-04 1.02 1.08e-06 -2.27e-04 4.79e-06

6400 -6.13e-05 1.04 1.04e-06 -6.23e-05 2.18e-06

14400 -2.81e-05 1.04 5.98e-07 -2.86e-05 1.13e-06

25600 -1.60e-05 1.04 3.76e-07 -1.64e-05 6.81e-07

(P2,P2,P1) for (u. b. p) .
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2d Elem. True Error EfF. Emom Econ EA4
1600 1.23e-06 1.21 3.97e-07 -4.15e-06 5.24e-06
6400 1.46e-07 1.47 9.23e-08 -5.07e-07 6.29e-07
14400 4.97e-08 1.63 3.84e-08 -1.40e-07 1.83e-07
25600 2.47e-08 1.73 2.07e-08 -5.44e-08 7.64e-08

(IP3,IP2,IP2) for (u. b,p)
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2d Elem. True Error EfF. Emon, Econ EA4
1600 1.23e-06 1.21 3.97e-07 -4.15e-06 5.24e-06
6400 1.46e-07 1.47 9.23e-08 -5.07e-07 6.29e-07
14400 4.97e-08 1.63 3.84e-08 -1.40e-07 1.83e-07
25600 2.47e-08 1.73 2.07e-08 -5.44e-08 7.64e-08
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2d Elem. True Error Eff. Emom Econ EM
1600 1.23e-06 1.00 2.75e-07 -4.39e-06 5.34e-06
6400 1.46e-07 1.00 5.97e-08 -5.60e-07 6.46e-07
14400 4.97e-08 1.00 2.35e-08 -1.63e-07 1.89e-07
25600 2.47e-08 1.00 1.22e-08 -6.65e-08 7.90e-08

(11P3,1P2,P2) for (u, b, p) using true soln in adjoint
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2d Elem. True Error Eff. Emon, Econ EA4
1600 1.23e-06 1.21 3.97e-07 -4.15e-06 5.24e-06
6400 1.46e-07 1.47 9.23e-08 -5.07e-07 6.29e-07
14400 4.97e-08 1.63 3.84e-08 -1.40e-07 1.83e-07
25600 2.47e-08 1.73 2.07e-08 -5.44e-08 7.64e-08

(IP3,1P2,IP2) for (u, b, p)

2d Elem. True Error Eff. Emom Econ EM
1600 1.23e-06 1.00 2.75e-07 -4.39e-06 5.34e-06
6400 1.46e-07 1.00 5.97e-08 -5.60e-07 6.46e-07
14400 4.97e-08 1.00 2.35e-08 -1.63e-07 1.89e-07
25600 2.47e-08 1.00 1.22e-08 -6.65e-08 7.90e-08

(P3,IP2,IP2) for (u, b, p) using true soln in adjoint



Magnetic lid driven cavity 0 Sandia
Nada.'
Labormodes

► Fluid lid driven cavity BCs
for u, (right)

► Set b x n = [-1,0] n on 01-2
► Discontinous lid velocity

E H1/2-6 (0Q)

► Polynomial regularization of
lid velocity8

utop(x)= C(x— 
1 )2 

(x+ 
1 
) 
2

v=1

lid

no slip
walls

p = 0
1

A

1

8Michael W. Lee, Earl H. Dowell, and Maciej J. Balajewicz. A study of the regularized lid-driven cavity's
progression to chaos. Nov. 2018.



Magnetic lid driven cavity velocity profiles 0 N'darl 
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Rem = 0.1 Rem = 0.5 Rem = 5.0

► Increasing Re,  > flow is weakend

► Multiple interlocked eddies appear

► Results agree qualitatively with non-regularized problem9

9Edward G. Phillips, Howard C. Elman, Eric C. Cyr, John N. Shadid, and Roger P. Pawlowski. "A Block
Preconditioner for an Exact Penalty Formulation for Stationary MHD". In: SIAM Journal on Scientific
Computing 36.6 (2014).
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Remarks

► No analytic solution for (W,E), use high resolution reference
solution on 400 x 400 mesh using (P3,P2 ,IF'2) for (u, b, p)

►Qc H4, x [0, fl

► Qol Q(U)= (42,, by) average induced by in upper middle



Adjoint results for Re=2000 C)NaAmal

# Elements True Error Eff. Emom Econ EA4

1600 -8.01e-05 1.10 -3.65e-05 -5.70e-05 5.63e-06
3600 -2.04e-05 0.98 -5.69e-06 -1.66e-05 2.25e-06
6400 -5.92e-06 0.96 -1.84e-06 -5.06e-06 1.19e-06

10000 -2.07e-06 0.96 -8.17e-07 -1.91e-06 7.41e-07

(p2, pl p
i) for (u, b, p)
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Adjoint results for Re=2000

# Elements True Error Eff. Emom Econ EA4

1600 1.31e-06 0.78 -1.58e-06 -3.47e-06 6.08e-06
3600 1.51e-06 0.96 -1.91e-07 -5.29e-07 2.17e-06

6400 1.02e-06 0.98 -3.87e-08 -1.28e-07 1.17e-06

10000 6.94e-07 0.99 -1.07e-08 -4.04e-08 7.38e-07

(IP3,1P1,11°2) for (u, b, p)



Outline 0 Sandia
Natonal
Laboratones

Adjoint based analysis for MHD

Well posedness for the MHD adjoint problem
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► Appeal to the standard theory of saddle point problem1"1
X:= HRS2) x /-e_(Q) and M := L2 (Q) so that = X x M.

► define the bilinear form a:XxX—>R by

a((0, 0), (v, c)) = —Re (.7°' 
V v) + (C 4), v)

+—

Rem

, 
x (3, x + —

Rem 
(v • 0, • c)

(Y* (1). C.) — (2*,13, V) — (Y;p3,

and the mixed form b:Xx M —> R by

b((v, c), 7r) = —(7 , V • v) .

10Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements. Springer, 2011.

11Susanne C. Brenner and L. Ridgway. Scott. The mathematical theory of finite element methods.
Springer, 2011.
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Weak exact penalty adjoint problem equivalent to: find

((c / (3) , 7r) E Xx M such that

{a((0,13), (v, c)) b((v, = (1P v),

b((c/), 0), q) = (Op, q),

V (v, c) E X,

Vq E M.

Existence and uniqueness equivalent to

1. The bilinear forms a(•,•) and b(• ,.) are bounded on their

respective domains

2. The form a(•,-) is coercive

3. The form b(., •) satisfies the inf-sup condition: ],3 > 0 such

that
b((v, c), q)

inf sup >3.
crA4(v,C)Ex 11(v, c)bdqbvi
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We consider

a((003), (v, c)) = ao((4), 0), (v, c)) + ai((c/), 0), (v, c))

where

ao(((/), 0), (v, c)) = 
1

e
(vO, vv) + 

Rem 
(v x v x c)

R

+ 
Rem 

(V•0, • c) ,

ai((d),0), (v, c)) = (C*0, — (y c)
- (Y:13, V) - (Y0, .

Lemma

The form ai(•,.) is bounded on X.



Sketches of the proofs of well-posedness 0 1.15aates

Definition

s:= u+ uh, t:= b+ bh •
Sketch for a single term:

1,2 1C*4). vldx = 1:2 1[(V s)T ((s • 0)0) - (V' s)(/)]. vldx

= 2 ffil(1)T(vs)v- vT(vc1,)s - (7' -.5)(4). v)Iclx

• [11011e 11s11111 + 110111114o II + II • s11110 • v11]

• [110110 114111 VII + 110111110 o 11 VII + N/Ils11111011e 11 v110]

• (11011111s11111vIli + 11s111114)11111vb + N/Ils111114)11111v111)

3" 
11511111011111v111,2



Sketches of the proofs of well-posedness

Putting terms together

ai((003), (v, c)) 32
.\/ 

MsMill0Mill + iclIc11111t111114)111

k-\/ icN/
11c1111101110111)

'Y(
3-\/

141114411101+
K 
2
-\/ 

Mcildsh + c)1144),O)Mx)2

7(1 sh max {3 \/,  .\/} 11(v, 01)(11(4),O)Mx+ 01x11(0,0)11x)2 2

ad(v, c) (0,0) x,
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Lemma

There exists a constant a, > 0 such that whenever

and

then

[3 11 .\/3kRe
—y —

2 
s 1+  1th] > 0,

4

k2K K.\/

Re2m 2

3h V

4
tI >

a( (01 0), ((/), 0)) (01 /3)1130 V (0, () E X.



Sketches of the proofs of well-posedness

4(003),(0,

> 
(

Re 

k1 -y3

2

k k2k
> Oa Hal-((003), (003))1

-yK\ 

-y3

2

.\//

0)) 11.1)a + 2~ Re Ren,

k2K0
1141
)

11011 + 
(

Re 2
11•5111)110a. M44 111010111

( ki>
Re

0,30 k2K K 
\/)

2 7
11s111 110aIlsh 11011i +2 Re 2 

) (

-y3ic th Oa + 114,a)4 11

= (
Re 
k1 7 31c\/ 11011) Mc/4i[3°2 4 lish +

k2K 3K N/

Re

[KN.

2
Msh + 4 1])Oa .
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► Developed adjoint framework for nonlinear weak forms
1. Mean value theorem for integrals in Hilbert spaces
2. Standard definitions and properties of strong/weak adjoint

► Applied framework to exact penalty form of (resistive) MHD
1. Coupling provides nontrivial linearization
2. Define adjoint directly to weak form due to solenoidal

constraint (v • B = 0)

► Proved well-posedness under assumptions on system
parameters: Re, Rem, K. Not valid in the case of ideal MHD
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1. Extend analysis to transient MHD and more complex physics

2. Explore other stabilization methods e.g. divergence cleaning
or compatible discretizations

3. Use adjoint analysis on a coarse grid to inform a decoupled
iterative algorithm for solving MHD12

Thank you! Any questions?

12Max D. Gunzburger, Amnon J. Meir, and Janet S. Peterson. "On the existence, uniqueness, and finite
element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics". In:
Mathematics of Computation 56.194 (1991), pp. 523-523.


