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Why a posteriori? @)

Laboratories

Numerical methods often provide some "built-in" a priori (up,
arbitrary, not computed) error estimate

u—up < ChP

» C= C(u) in general depends on solution == not computable
» Bound in predetermined norm == not very flexible

» .. useful e.g. for proving convergence, not so useful for
problem specific analysis/adaptivity



Why a posteriori? @) i
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» A posteriori error analysis!'?'3 leverages a computed solution
to gain more information about error

» Leads to accurate and robust error estimation

> Useful for informing solver and discretization strategies as well
as to understand the behavior of errors

M. Ainsworth and T. Oden. A posteriori error estimation in finite element analysis. John Wiley-Teubner,
2000.

2p, J. Estep, M. G. Larson, R. D. Williams, and American Mathematical Society. Estimating the error of
numerical solutions of systems of reaction-diffusion equations. American Mathematical Society, 2000.

3Michael B. Giles and Endre Siili. “Adjoint methods for PDEs: a posteriori error analysis and
postprocessing by duality”. In: Acta Numerica 2002 (2002), pp. 145-236.



Why adjoint based?

Adjoint based a posteriori error analysis (ABAPEA) is
1. Accurate: error representations are theoretically exact

2. Goal oriented: error is computed in a user specified quantity
of interest (Qol)

3. Error decomposition: error estimates naturally lead to an
additive decomposition
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Abstract adjoint based analysis
Linear PDE



Abstract setting

» V/ Hibert space with inner product (-, )
» L: V- Vbounded linear operator
» Want to compute the Qol Q(u) = (v, u) for u solving
Lu=1f, inQ,
u=0, on 0.

Approximate solution uy € V}, c V, denote e= u— up,

@
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Strong adjoint operator

The adjoint to L is the unique linear operator L* : V — V defined by

(Lu,v) =(u,L*v), VuveV.

e.g. If V=R", Lu= Au for some AeR™" and
(VAT =uTATy
We now consider the associated adjoint problem: find ¢ € V such

that
L*¢p =1, inQ,
¢=0, on Q.

Recall Q(u) = (¢, u)



Error representation

The error in the Qol, Q(u) — Q(up) = Q(e), is computable as

Q(e) = <¢7 6) = (¢7 f) - (¢7 Luh)'

(,€) = (L 0, e) = (¢, Lu— Lup) = (p, ) — (&, Lup).



Adjoints for bilinear forms (@),

Given a bilinear form a: Vx V — R the adjoint bilinear form
a*: Vx V= R is defined by the relation*5

a*(w,v) =a(v,w), Vw,veV.

Remark

Agrees with strong definition for a; (v, w) = (Lv, w).

#Michael B. Giles and Endre Siili. “Adjoint methods for PDEs: a posteriori error analysis and
postprocessing by duality”. In: Acta Numerica 2002 (2002), pp. 145-236.

5Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in finite
element methods: Acta Numerica. Jan. 2003.
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Abstract adjoint based analysis

Nonlinear PDE



Defining an adjoint operator for nonlinear problems

Compute Q(u) = (1, u) where u solves nonlinear problem

F(u(x)) = f(x), xinQ,
u(x) =0, x on 0f).

Seek a linear operator F for adjoint problem F*¢ = 1) so that
(F*6,€) = (¢, F(u) - F(u)).

Leads to error represenation (v, €) = (f, @) — (F(up), ¢)



Sandia
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Choice of nonlinear operator

_ 1
Define ]:v::fo aa—f(su+(1—s)uh)dsv. (*)

— Pl u) — ) FL /01 dilsf(su +(1—s)up)ds

chain rule 18.7: —
(chain )fo = (su+ (1= s)up)ds(u = u) = Fe
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Choice of nonlinear operator e

_ 1
Define ]:vzzfo aa—]:(su+(1—s)uh)dsv. (*)
u

— Pl u) — ) FL [01 di’sf(su +(1—s)up)ds

chain rule 18.7—" =
(chain ')fo = (su+ (1= s)up)ds(u = u) = Fe

> Precise interpretation of %—f where F is an operator is nontrivial.

» In practice don't have u (true solution) approximate u by up in ()
induces so-called linearization error



Nonlinear variational framework

» W =TI, #; product Hilbert space with inner product (-, )

» ¥ =TI, 7 dense subspace such that 7; is a dense subspace
of #; for all i

» Eg. # = L%(Q) x L?(Q) and ¥ = H}(Q) x H}(Q)



Nonlinear variational framework

Want to evaluate Q(u) = (¢, u) where ue ¥ solves
N(u,v)=(f,v), VYve¥

N ¥ x ¥ — R has the specific structure
N(v,w) = > (Ni(v), wg) + alv.w)
=1

) is a bilinear form, ¢;€ {1,...,n} and N;: ¥ - ¥,

N(-,-) abstract version of exact penalty weak form- closely related
to MHD




Objects for analysis

For a solution/approximation pair (u/up), define
» the matrix J € R™"

J

— 1N
jij:/(; 5 (su+ (1-s)up)ds,

» the linearized operator Nj: ¥ — W,
-_— n —
Niv =3 T
j-1

» the bilinear forms

n - n o

> T v, We,-> =2 AT v wa)-
o ‘

il W) = () = (
= =1



Adjoint objects and error representation

As established before,
» 77 (v, w) :=Ti(w, v) (weak definition of adjoint)
> 7; such that (T v, w) = (v, 7;W> (strong definition of the
adjoint)
Now set N (¢, v) := £ 77 (6, v) + a* (¢, v)

Theorem

if ¢ solves the dual problem,
./\—/'*(qb, v) = (1, v), Vve ¥,

the error in a Qol represented by Q(u) = (¢, u) is computable as

(1, e) = (f,0) =N (un, 9).
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Adjoint based analysis for MHD
Theoretical results



What is MHD?

» Model for electrically conducting fluids, e.g. liquid metals and
plasmas

» MHD for plasma valid as continuum representation of
collisional plamsa systems

» Structure of resistive MHD is Navier-Stokes + Lorentz force
coupled with low frequency Maxwell equations



Mathematical model

Stationary incompressible MHD in Q c R? convex, polygonal

1
—ﬁAu+(u~V)u+ Vp—k(Vxb)xb=Ff (momentum)
V-u=0, (continuity)
LVx(be)—an(ux b) =0, (induction)
Ren
V-b=0. (solenoidal involution)

» Unknowns: velocity u, magnetic field b, pressure p



Mathematical model

Stationary incompressible MHD in Q c R? convex, polygonal

—‘“J«Au+(u~v)u+ Vp-r(Vxb)xb=Ff (momentum)
vV-u=0, (
' (

(

continuity)

3 V x (Vxb)-rVx(uxb)=0, (induction)

H“J,‘;

V-b=0. (solenoidal involution)

» Unknowns: velocity u, magnetic field b, pressure p

» Nondimensionalized parameters
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Mathematical model

Stationary incompressible MHD in Q c R? convex, polygonal

1
—R—Au+(u~v)u+ Vp-r(Vxb)xb=Ff (momentum)
e

V-u=0, (continuity)

K

(

(
RV % (Vxb)-kVx(uxb)=0, (induction)
€m
V-b=0. (solenoidal involution)

» Unknowns: velocity u, magnetic field b, pressure p
» Nondimensionalized parameters
>

» Three coupled nonlinear terms



Mathematical model

Stationary incompressible MHD in Q c R? convex, polygonal

1
—R—Au+(u~v)u+ Vp—k(Vxb)xb=Ff (momentum)
e

K
Ren

V x (7 xb) - KV x (ux b) =0,

(

V-u=0, (continuity)
(induction)
(

V-b=0. (solenoidal involution)

v

Unknowns: velocity u, magnetic field b, pressure p

» Nondimensionalized parameters

» Three coupled nonlinear terms

v

2d+ 2 equations only 2d + 1 unknowns == overdetermined



Boundary conditions and relevant subspaces

Augment MHD system with boundary conditions,

u=g, on 012,
bxn=gqgxn, on 0f).

Define in the sense of the trace operator,

Hy(Q) := {we H'(Q) : wlpg =0}
H:(Q) := {we H'(Q) : (wx n)|sq = 0}.

We also define the product space,

P = Hy(Q) x HL(Q) x L2(Q)



Exact penalty problem

Find U= (u, b, p) € & such that
NEP(Uv\/):(f;V)a V\/Gc@,
The nonlinear form Ngp is defined by
1
NEP(U7 V) = ﬁ(vua VV) + (C(U), V) - (p7 V- V) + (q7 V- u)

+ 1(Y(b),v) - (Z(u, b), c) + Riem(v x b,V x ) + Riem(v.b,v-c),
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Exact penalty problem

Find U= (u, b, p) € & such that
NEP(Ua\/):(f;V)a V\/Gc@,
The nonlinear form Ngp is defined by
1
NEP(U7 V) = ﬁ(vua VV) + (C(u)7 V) - (p7 V- V) + (q7 V- u)

+k(Y(b),v) - k(Z(u,b),c) + L(v x b,V x c) + L(V b,V -c),
Rem Rem

» Nonlinear operators
C(u):=(u-V)u, Y(b):=(Vxb)xb, Z(ub):=Vx(uxb)

» Penalty term



Exact penalty and MHD @

> First 7 terms of EP weak form arise from multiplying MHD
equations by test functions and performing integration by
parts

» 5--(V-b,V-c), enforces the solenoidal involution

» Existence and uniqueness of discrete problem proven under
certain assumptions on data®

6Max D. Gunzburger, Amnon J. Meir, and Janet S. Peterson. “On the existence, uniqueness, and finite
element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics”. In:
Mathematics of Computation 56.194 (1991), pp. 523-523.



Matching up with theoretical derivations

For the exact penalty weak form, we have that

3
Nep(U, V) = Y (Ngp i(U), Vi) + aep( U, V),

P
where
(Nep1(U), V2) = (Z(u, b), c),
(Nep2(U), V1) = (Y(b), v),
(Nep3(U), V1) = (C(u),v),
and



Averaged entries

és*outlin_eﬂ*in tﬁi theoreiigal error anaIy_sLs, the eit*ries .
TJuVe=2,c, TixVo=2pc, T51V1i=Y vand J3;V1=C vare,
Z,c= T(u+up) x (Vxc),
Z,c=-3(b+bp) x (Vxc),
Y'v=1(~(Vx(b+by)xv)+Vx((b+by)xv)),
Cv= H(Vu+ Vup) Tv—((u+up) - V) v— (V- (u+up))v),

- - - —% -
while the remaining J,-j entries are zero



Exact penalty adjoint problem

The weak dual problem is therefore be stated as: find
b= (¢,0,7) € & such that

N*EP(q)aV):(WvV)a VVeZ

with

*

Nip(®,V) = 2 (V0,99) + (€ 6,4) + (V- vm) - (- 6,0)
+Riem(vxﬁavxc)+Riem(v'ﬂ7v'c)

-K (7’¢, c) -K (?Zﬁ, v) -K (?Z,@, c) )



Error representation for exact penalty

Theorem (Chaudhry, Rappaport, Shadid, 2020)
For a given Qol represented by W = [¢u,¢b,wp]T, the error

i L .
&= [em €p, ep] in the numerical approximation of the Qol satisfies

(V,E)=(f ¢)- [ (Vup, V) + ((up- V)un, @)

—(pr, V- @) + k((V x by) x by, @) + (V - up, )

o RL(V x b,V x B) + k(V x (up x by), B)
€m

K
" (v.b.v-3)]|
+Rem(v hy V ﬂ)



Error estimator @i,

Estimator n ~ (W, E) where,
n= Emom + Econ + EMa

and
Erom = (1:01) (= (70 961 + (- ) 89) - (95 61)

+ k((V x by) x bh.(f)h)),

Econ= 4(v “Up, ﬂ—h)’
vy =~ (7 % by, ¥ x B,) + K(T x (u x b1), By) ~ =

R,em(v & bh7 \% :Bh)
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Adjoint based analysis for MHD

Numerical results



Hartmann problem description

> Models the one-dimensional flow of a conducting fluid in a
channel”
; ; T T
» analytic solution u = [uX,O] , b= [bx, 1] )

GRe(cosh(Ha/2) — cosh(Hay))

ux(y) = 2Ha sinh(Ha/2) ’
_ Glsinh(Hay) - 2sinh(Ha/2)y)
Bi(y) = 2k sinh(Ha/2) 7

p(x) = ~Gx— rB/2,

__4dp :
» G =— arbitrary pressure drop

"Miiller Ulrich and Biihler Leo. Magnetofluiddynamics in Channels and containers. Springer, 2010.



Discretization and Qol

» Lagrange space finite element space of
order g:
P9:={ve C(Q): YK e Th, Uk e PI(K)}
» Product space satisfies the LBB stability
condition

THERS

.11 11
* Q=[] % [-44]
» lq. the characteristic function on .
W = [1g,,0,0,0,0] " T
Qol Q(U) = (V,U) = (1q., ux)

v

v

"Daniele Boffi, Franco Brezzi, Michel Fortin, et al. Mixed finite element methods and applications. Vol. 44.
Springer, 2013.



Hartmann results

_ Error estimate _ n
Eff. = True error  ~— (V,E)

# Elements | True Error | Eff. E.si Econ Em
1600 2.76e-04 | 1.00 | 4.53e-06 | -2.28e-04 | 5.00e-04
6400 6.98e-05 | 1.00 | 1.29e-06 | -6.23e-05 | 1.31e-04
14400 3.11e-05 | 1.00 | 6.05e-07 | -2.86e-05 | 5.91e-05
25600 1.75e-05 | 1.00 | 3.49e-07 | -1.63e-05 | 3.35e-05

(B2, P*,P") for (u,b,p).

# Elements | True Error | Eff. Eivom Econ Enm
1600 -2.25e-04 | 1.02 | 1.08e-06 | -2.27e-04 | 4.79e-06
6400 -6.13e-05 | 1.04 | 1.04e-06 | -6.23e-05 | 2.18e-06
14400 -2.81e-05 | 1.04 | 5.98e-07 | -2.86e-05 | 1.13e-06
25600 -1.60e-05 | 1.04 | 3.76e-07 | -1.64e-05 | 6.81e-07

(P2, P2, P!) for (u, b, p).



Hartmann results

_ Error estimate _ n
Eff. = True error  ~— (W,E)

# Elements | True Error | Eff. Eisin Esn Em
1600 2.76e-04 | 1.00 | 4.53e-06 | -2.28e-04 | 5.00e-04
6400 6.98e-05 | 1.00 | 1.29e-06 | -6.23e-05 | 1.31e-04
14400 3.11e-05 1.00 | 6.05e-07 | -2.86e-05 | 5.91e-05
25600 1.75e-05 | 1.00 | 3.49e-07 | -1.63e-05 | 3.35e-05

(P2, PL,PY) for (u, b, p).

# Elements | True Error | Eff. Ervom Econ Enm
1600 -2.25e-04 | 1.02 | 1.08e-06 | -2.27e-04 | 4.79e-06
6400 -6.13e-05 | 1.04 | 1.04e-06 | -6.23e-05 | 2.18e-06
14400 -2.81e-05 | 1.04 | 5.98e-07 | -2.86e-05 | 1.13e-06
25600 -1.60e-05 | 1.04 | 3.76e-07 | -1.64e-05 | 6.81e-07

(P2, P2, P!) for (u, b, p).




Hartmann results

Eff. = Error estimate _

n
True error  ~ (W,E)

# Elements | True Error | Eff. Eisin Esn Em
1600 2.76e-04 | 1.00 | 4.53e-06 | -2.28e-04 | 5.00e-04
6400 6.98e-05 | 1.00 | 1.29e-06 | -6.23e-05 | 1.31e-04
14400 3.11e-05 | 1.00 | 6.05e-07 | -2.86e-05 | 5.91e-05
25600 1.75e-05 | 1.00 | 3.49e-07 | -1.63e-05 | 3.35e-05

(P2a ]Plv]P}l) for (u7 b> p)

# Elements | True Error | Eff. Ervom Econ Enm
1600 -2.25e-04 | 1.02 | 1.08e-06 | -2.27e-04 | 4.79e-06
6400 -6.13e-05 | 1.04 | 1.04e-06 | -6.23e-05 | 2.18e-06
14400 -2.81e-05 | 1.04 | 5.98e-07 | -2.86e-05 | 1.13e-06
25600 -1.60e-05 | 1.04 | 3.76e-07 | -1.64e-05 | 6.81e-07

(P2, P2, P!) for (u, b, p).




Hartmann results

@

2d Elem. | True Error | Eff. Emom Econ Enm
1600 1.23e-06 | 1.21 | 3.97e-07 | -4.15e-06 | 5.24e-06
6400 1.46e-07 | 1.47 | 9.23e-08 | -5.07e-07 | 6.29e-07
14400 4.97e-08 | 1.63 | 3.84e-08 | -1.40e-07 | 1.83e-07
25600 2.47e-08 | 1.73 | 2.07e-08 | -5.44e-08 | 7.64e-08

(P*,P2,P?) for (u, b, p)
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Hartmann results

@

2d Elem. | True Error | Eff. Emom Econ Enm
1600 1.23e-06 | 1.21 | 3.97e-07 | -4.15e-06 | 5.24e-06
6400 1.46e-07 | 1.47 | 9.23e-08 | -5.07e-07 | 6.29e-07
14400 4.97e-08 | 1.63 | 3.84e-08 | -1.40e-07 | 1.83e-07
25600 2.47e-08 | 1.73 | 2.07e-08 | -5.44e-08 | 7.64e-08

(P3, P2, P?) for (u, b, p)

2d Elem. | True Error | Eff. Eisria Eani Eum
1600 1.23e-06 | 1.00 | 2.75e-07 | -4.39e-06 | 5.34e-06
6400 1.46e-07 | 1.00 | 5.97e-08 | -5.60e-07 | 6.46e-07
14400 4.97e-08 1.00 | 2.35e-08 | -1.63e-07 | 1.89e-07
25600 2.47e-08 | 1.00 | 1.22e-08 | -6.65e-08 | 7.90e-08

(P3,P2,P?) for (u, b, p) using true soln in adjoint
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Hartmann results
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2d Elem. | True Error | Eff. Emom Econ Enm
1600 1.23e-06 | 1.21 | 3.97e-07 | -4.15e-06 | 5.24e-06
6400 1.46e-07 | 1.47 | 9.23e-08 | -5.07e-07 | 6.29e-07
14400 4.97e-08 | 1.63 | 3.84e-08 | -1.40e-07 | 1.83e-07
25600 2.47e-08 | 1.73 | 2.07e-08 | -5.44e-08 | 7.64e-08

(P3, P2, P?) for (u, b, p)

2d Elem. | True Error | Eff. Eisria Eani Eum
1600 1.23e-06 1.00 | 2.75e-07 | -4.39e-06 | 5.34e-06
6400 1.46e-07 | 1.00 | 5.97e-08 | -5.60e-07 | 6.46e-07
14400 4.97e-08 1.00 | 2.35e-08 | -1.63e-07 | 1.89e-07
25600 2.47e-08 | 1.00 | 1.22e-08 | -6.65e-08 | 7.90e-08

(P2, P2, 1P?) for (u, b, p) using true soln in adjoint
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Magnetic lid driven cavity @ .

> Fluid lid driven cavity BCs ™ e
for uy (right) lid

» Set bxn=[-1,0] xnon 90

> Discontinous lid velocity S poslp i
= u,e HY27(0Q) vali

» Polynomial regularization of
lid velocity®

iop(¥) = C(x=3)° (x+ 1)’

8Michael W. Lee, Earl H. Dowell, and Maciej J. Balajewicz. A study of the regularized lid-driven cavity's
progression to chaos. Nov. 2018.
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Ren=0.1 Ren =0.5 Ren=5.0

» Increasing Re,, = flow is weakend

» Multiple interlocked eddies appear

» Results agree qualitatively with non-regularized problem®
9Edward G. Phillips, Howard C. Elman, Eric C. Cyr, John N. Shadid, and Roger P. Pawlowski. “A Block

Preconditioner for an Exact Penalty Formulation for Stationary MHD". In: SIAM Journal on Scientific
Computing 36.6 (2014).
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Remarks
» No analytic solution for (V, E), use high resolution reference
solution on 400 x 400 mesh using (P3,1P2,P?) for (u, b, p)
.11 1
> Qci=[-3,3] [0, 3]
» Qol Q(U) = (1q,, b,) average induced by in upper middle



Adjoint results for Re=2000

# Elements | True Error | Eff. Emom Econ Em
1600 -8.01e-05 | 1.10 | -3.65e-05 | -5.70e-05 | 5.63e-06
3600 -2.04e-05 | 0.98 | -5.69e-06 | -1.66e-05 | 2.25e-06
6400 -5.92¢-06 | 0.96 | -1.84e-06 | -5.06e-06 | 1.19e-06
10000 -2.07e-06 | 0.96 | -8.17e-07 | -1.91e-06 | 7.41e-07

(P2,P%,P) for (u, b, p)
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Adjoint results for Re=2000

# Elements | True Error | Eff. E i E o Em
1600 1.31e-06 | 0.78 | -1.58e-06 | -3.47e-06 | 6.08e-06
3600 1.51e-06 | 0.96 | -1.91e-07 | -5.29e-07 | 2.17e-06
6400 1.02e-06 | 0.98 | -3.87e-08 | -1.28e-07 | 1.17e-06
10000 6.94e-07 | 0.99 | -1.07e-08 | -4.04e-08 | 7.38e-07

(P3, P, P?) for (u,b,p)
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Well posedness for the MHD adjoint problem



Reformultaion @i,

» Appeal to the standard theory of saddle point problem-1!
X:= H3(Q) x H:(Q) and M:= [%(Q) so that & = X x M.

> define the bilinear form a: Xx X - R by
1 —
a((¢.8). (v.0)) = 7=(Veh. VW) + (C¢.v)
e
K K
+R—%(Vxﬂ7VXC)+R—em(Vﬁ>V'C)
—-K (y*ﬂb, C) -k (Erﬂa V) - K (2218’ C) )
and the mixed form b: Xx M — R by

b((v,c),7) =—(m,V-v).

10 Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements. Springer, 2011.

susanne C. Brenner and L. Ridgway. Scott. The mathematical theory of finite element methods.
Springer, 2011.



Reformultaion 11

Weak exact penalty adjoint problem equivalent to: find
((¢,3),m) € Xx M such that

{a((cp,m,(v,c))+b<<v,c),p>=<w,v>, V(v €) € X,
b(((b,ﬁ).(}) = (’(/Jpa q)a Vq e M.

Existence and uniqueness equivalent to

1. The bilinear forms a(,-) and b(-,-) are bounded on their
respective domains

2. The form a(-,-) is coercive
3. The form b(-,-) satisfies the inf-sup condition: 35 > 0 such

that b
inf Sup ((V7C))q) 2
9eM (v,c)ex ” (Va C) ”X”q“M



Sketches of the proofs of well-posedness

We consider

a((¢)7/6)7(vv C)) = 30((¢7/6)7(V7 C)) + al((QL)mB)v (Vv C))

where

2((9,8), (0)) = == (V6,7) + = (Vx B,V x )

K
+R—Cm(vﬁ7vc)/

a1((6,8),(v.€)) = (C"p,v) (¥ ¢,c)
— & (?Zﬂ, v) - & (22,3, c) ;

The form a;(+,-) is bounded on X.




Sketches of the proofs of well-posedness

S:=u+up t:=b+ by

Sketch for a single term:
[[es-dax=3 [1[(09)76- (s 7)) - (V-5)]- ek
= [ 187 (vs)v=vT(Ve)s- (V- 5)(@- v)]x

< % Ueplaslislalvl s + bl ls] el is + 19 - sl - ]

s%[nqﬁnuusu IVles + 1@ lsllsloe Ivlis + V3l sla] @] oe vl

< 2 (I@lllsla vl + sl l@lavix +V3lsli| ¢l [vl2)
3\f7

——lslil@llv]s,



Sketches of the proofs of well-posedness

Putting terms together

a1((¢,8),(v,0)) < W(MSIMNI v +&v2]cl1 ]t ] ]
ff

[vislel] B+

V2] el ﬁll)

< (i\sl |pl1]v]s +

fHCHlHSHlHﬂHl + | tlisv2| (v, C)x(d)ﬁ)x)

sw(shmax{m ’f}uvc)\xw B)lx+ 11l (v ) x1 (6, B) Ix )

< o[ (v, )| x[ (&, 8)]x,




Sketches of the proofs of well-posedness @) i

Lemma
There exists a constant a. > 0 such that whenever

ky 3V3 3kV2

i tj1|>0

o S I T
and

>0

then

a((¢.8),(.8)) 2 acl (. B) % ¥(,8) € X.



Sketches of the proofs of well-posedness

2(6:0).(6.0)> 22 10[E + 225 1813 - 52((6.9). (9.6
>(k1 183, |1)|¢>|1 (kz“ V2 |1)|ﬂ|1 B2 el

“\Re

> (-2 otz + s 2l )
-2 (112 + 1612)

- (&[22 3“f|t|1])n¢>n%

[ » . /D) e IR 9] \

[ K2 T IRV £ ‘; 2
= =M — ||Is - t |

| 5.2 5 1211 A Hli }Hﬁ”l-



Summary @) i

Laboratories

» Developed adjoint framework for nonlinear weak forms
1. Mean value theorem for integrals in Hilbert spaces
2. Standard definitions and properties of strong/weak adjoint
» Applied framework to exact penalty form of (resistive) MHD
1. Coupling provides nontrivial linearization
2. Define adjoint directly to weak form due to solenoidal
constraint (V- B =0)
> Proved well-posedness under assumptions on system
parameters: Re, Rep,, k. Not valid in the case of ideal MHD



Possible future research @)

Laboratories

Extend analysis to transient MHD and more complex physics

2. Explore other stabilization methods e.g. divergence cleaning
or compatible discretizations

3. Use adjoint analysis on a coarse grid to inform a decoupled
iterative algorithm for solving MHD?2

Thank you! Any questions?

12Max D. Gunzburger, Amnon J. Meir, and Janet S. Peterson. “On the existence, uniqueness, and finite
element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics”. In:
Mathematics of Computation 56.194 (1991), pp. 523-523.



