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ABSTRACT

We extend the Monte Carlo Chord Length Sampling (CLS) and Local Realization Pre-
serving (LRP) algorithms to the /NV-ary stochastic medium case using two recently devel-
oped uniform and volume fraction models that follow a Markov-chain process for N-ary
problems in one-dimensional, Markovian-mixed media. We use the Lawrence Livermore
National Laboratory Mercury Monte Carlo particle transport code to compute CLS and
LRP reflection and transmission leakage values and material scalar flux distributions for
one-dimensional, Markovian-mixed quaternary stochastic media based on the two N-ary
stochastic medium models. We conduct accuracy comparisons against benchmark results
produced with the Sandia National Laboratories PlaybookMC stochastic media transport
research code. We show that CLS and LRP produce exact results for purely absorbing
N-ary stochastic medium problems and find that LRP is generally more accurate than
CLS for problems with scattering.

KEYWORDS: Monte Carlo, stochastic medium, Levermore-Pomraning, Chord Length Sampling, Local
Realization Preserving

1. INTRODUCTION

A primary focus in stochastic media transport has been one-dimensional, binary, Markovian-mixed
problems [1], and approximate methods such as the Atomic Mix (AM) approximation [1], Chord
Length Sampling (CLS), Local Realization Preserving (LRP) [2,3], Algorithm C (Alg. C) [2], and
Conditional Point Sampling (CoPS) [4] have been developed to handle this type of problem. The
accuracy of these approximate methods has been assessed using a set of problem parameters and
benchmarks established in Ref. [5]. The AM approximation is one of the most well-known approx-
imate methods and homogenizes the material properties within a domain for an ensemble of real-
izations. However, the method generally lacks accuracy for problems with a correlation length that
deviates significantly from zero. When using exponentially distributed chord lengths, CLS is the
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Monte Carlo equivalent of the Levermore-Pomraning (LP) closure [2,3,5] and is exact for purely-
absorbing problems. The method samples material chords on-the-fly and forgets the sampled chord
length after each particle streaming event. LRP and Alg. C are memory-enhanced versions of CLS
and are generally more accurate than CLS for problems involving scattering. CoPS uses delta
tracking [6] to sample point-based material types on-the-fly conditionally on neighboring material
points. The accuracy of CoPS is dependent on the fidelity of the conditional probability function
used, which is derived based on a “pseudo-interface” approach of generating realizations [7] and
is specific to the material-mixing type of the domain.

Research efforts have, of late, shifted significantly to expanding stochastic media transport compar-
isons beyond one dimension for AM, CLS, LRP [8] and CoPS [9] using benchmarks published by
Larmier et al. [10]. In addition, Poisson-Box Sampling (PBS) [11] is a new method developed for
multi-dimensional geometries that samples, in real-time, the material type of “Cartesian boxes”
that are generated using Poisson-distributed hyperplanes in Cartesian-coordinate directions. In
Ref. [11], two variants of PBS algorithms, analogous to CLS and LRP in one dimension (1D),
were investigated: one that committed the material type and geometric definition of the current
Cartesian box to computer memory (PBS-1) and one that committed the material type and geomet-
ric definition of the current and most recent Cartesian box to computer memory (PBS-2).

Limited previous research has been performed in expanding capabilities to more than two ma-
terials. Pautz and Franke [12] produced a set of benchmark results for N-ary Markovian-mixed
problems in 1D based on early theoretical work in material mixing [13,14]. Olson et al. [15]
has recently investigated the theory of N-ary, Markovian-mixing and has identified two models
for N-ary mixtures that contain self-consistent material-mixing statistics satisfying Markov-chain
properties and that reduce to long-established properties of binary, Markovian-mixed media [1]:
one uses a uniform sampling approach to sample the material type of successive chords while
the other uses volume fraction sampling. In this work, we use corresponding uniform and volume
fraction sampling schemes based on the models established in Ref. [15] to extend CLS and LRP
to N-ary stochastic medium problems for one-dimensional, Markovian-mixed media. We compute
reflection and transmission leakage values and material scalar flux distributions using the Lawrence
Livermore National Laboratory Mercury Monte Carlo particle transport code [16]. We compare the
accuracy of those results to benchmark results produced using the Sandia National Laboratories
stochastic media transport code called PlaybookMC, which has capabilities for N-ary geometries
and was previously used in Ref. [4] to reproduce established 1D, binary, Markovian-mixed bench-
mark suite results from Refs. [2,3,5] using the benchmark method, AM approximation, CLS, LRP,
and Alg. C to conduct accuracy comparisons against results produced using the CoPS algorithm.

The remainder of this paper is organized as follows. We first describe the stochastic particle trans-
port equation for one-dimensional, N-ary, stochastic media and the models used for /NV-ary media
in Section 2. We then describe the extension of the Monte Carlo algorithms investigated in this
paper to N-ary media in Section 3 and briefly describe a set of benchmark problem parameters
used for this study in Section 4. We then present numerical results and accuracy comparisons in
Section 5 and conclude with a discussion and suggestions for future work in Section 6.
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2. THEORY

Transport in one-dimensional, N-ary, Markovian-mixed media in planar geometry, with isotropic
scattering, and with an isotropic boundary source and otherwise vacuum boundary conditions can
be described with the following stochastic transport equation:

a ZS ) ! / /
M—w(xa,xmw) + Sy (z,w)Y (7, p,w) = %/ dp'y(z, 1, w), (1a)
-1
(0, ) =2, >0, (10)
(L) = 0,10 < 0. (1e)

The notation is standard with the exception of the variable w representing the stochastic dependence
of the material properties.

To generate /N-ary material realizations in one-dimensional geometries, material chord lengths
can be sampled successively beginning at a boundary using the self-consistent models established
in Ref. [15]. In this work, we generate quaternary realizations using both the uniform and vol-
ume fraction sampling schemes discussed in Ref. [15]. Both models reduce to the same standard
material-mixing statistics for binary, Markovian-media established in Ref. [1] and preserve input
mean chord lengths and volume fractions for the sampled material realizations.

The uniform sampling scheme samples successive chord lengths based on a material type deter-

mined using a uniform distribution that excludes the current material the particle is in:
P(jli) = 5 @a)
1) = —— a
J N_1

where N is the number of material types in the problem, 7 is the current material type, and ¢ #
j. The uniform sampling model assumes that the material volume fractions, p;, are computed as:

A

— Na1
> A
7=0

Di ; (2b)

where A; and A; are the mean chord lengths of material 7 and j, respectively. The uniform sam-
pling scheme has no constraints on the mean chord length values. This sampling method does
not appear to be easily extensible to multi-dimensional problems for the generation of material
realizations [15].

The volume fraction sampling scheme samples successive chord lengths based on a material type
determined using a weighted probability that excludes the current material probability:

P(jli) = = - (3a)

where ¢ is the current material type and ¢ # j. The volume fractions are computed using

A.
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where the expression for the correlation length, A, is determined using Eq. (3b) along with the
requirement that the volume fractions sum to unity:

N -1
A= . (3¢)

N—-1 1
> %
=0

Because the material volume fractions must be positive, Eq. (3b) implies the constraint that A, <
A; for this sampling method. This sampling method produces 1D realizations that are statistically
equivalent to 1D realizations producible using the hyperplane-based method employed in 3D in
Refs. [10] and [11] and established for N-ary mixing in Ref. [15].

3. MONTE CARLO ALGORITHMS

Ref. [3] describes in detail the Monte Carlo Chord Length Sampling (CLS) and Local Realization
Preserving (LRP) algorithms for 1D, binary stochastic media. Ref. [2] introduces the distance
to material interface event, d; = —A;In(¢)/|u|, where £ is a uniform random number and p is
the particle direction cosine with respect to the x-axis. Here, we describe the extension of each
algorithm to /V-ary stochastic media using the two sampling schemes described in Section 2.

The particle track for each history in CLS is as follows:

1. Sample the distance to material interface, d;, with the material type sampled in proportion to
volume fraction.
(a) If using the uniform sampling scheme, compute volume fractions using Eq. (2b).

(b) If using the volume fraction sampling scheme, compute volume fractions using Eq. (3b).
2. Compute the distance to boundary, d;,, and sample the distance to collision, d..
3. Determine the particle event by computing the minimum of d;, d3, and d.. and stream particle.

(a) If the boundary is crossed, terminate particle.

(b) If the particle event is a collision event, sample the collision type. Terminate the particle
if absorbed. Otherwise, return to step 1.

(c) If the material interface is crossed, sample a new d;. Return to step 2.

1. If using the uniform sampling scheme, sample material type using Eq. (2a).
i1. If using the volume fraction sampling scheme, sample material type using Eq. (3a).

The particle track for each history in LRP is as follows:

1. Sample the distance to material interface in the forward and backward direction, d;” and d; ,
respectively, with the material type sampled in proportion to volume fraction.

(a) If using the uniform sampling scheme, compute volume fractions using Eq. (2b).

(b) If using the volume fraction sampling scheme, compute volume fractions using Eq. (3b).
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2. Compute the distance to boundary, d,, and sample the distance to collision, d..
3. Determine the particle event by computing the minimum of d;, dy, and d. and stream particle.

(a) If the boundary is crossed, terminate particle.

(b) If the particle event is a collision event, sample the collision type. Terminate the particle
if absorbed. Otherwise, adjust the distance to interface in the forward and backward
direction to account for the change in angle after scattering, and switch d;” and d; in the
event of backscattering. Return to step 2.

(c) If the material interface is crossed, sample a new d;" and set d; to zero. Return to step 2.

1. If using the uniform sampling scheme, sample material type using Eq. (2a).
ii. If using the volume fraction sampling scheme, sample material type using Eq. (3a).

4. BENCHMARK SUITE DESCRIPTION

We consider a planar geometry benchmark suite corresponding to Egs. (1a)—(1c) involving an
isotropic angular flux incident on a quaternary stochastic medium. The problem parameters in-
vestigated in this paper are adapted from the benchmark suite described in Ref. [5] for planar
geometry. Table 1 shows the cross section parameters used for each of the twelve problems inves-
tigated (three case numbers times four case letters), where >, ; [cm~ '] and ¢; = Ysi/%:,; are the
total cross section and scattering ratio, respectively, for material i € {0, 1,2, 3}. A slab thickness
of L = 10 cm is used for all cases.

Table 1: Benchmark Suite Cross Section Parameters

Case Number | > 2 it i3 Caseletter | ¢¢ ¢ ¢ c3
1 10/99 100/11 10/99 100/11 a 1.0 0.0 1.0 0.0
2 2/101 200/10 2/101 200/101 b 0.0 1.0 0.0 1.0
3 10/99 100/11 2/101 200/101 c 09 09 09 09
d

00 0.0 00 0.0

Tables 2 and 3 show the volume fractions, p;, and mean chord lengths, A; [cm], for material
i € {0,1,2,3} for each case for the uniform and volume fraction sampling schemes, respectively.
Table 3, which gives values for the volume fraction sampling scheme, also shows the correlation
length A, [cm] for each case. Because the volume fraction sampling scheme has a constraint that
limits the mean chord lengths allowed, the two sampling schemes in this paper are evaluated using
consistent volume fractions.

For the parameters used for the uniform sampling scheme, shown in Table 2, we use mean chord
lengths inspired by the mean chord lengths in the benchmark suite in Ref. [5]. In Table 2, we also
show the derived material volume fractions computed from the mean chord lengths using Eq. (2b).

For the parameters used for the volume fraction sampling scheme, we use the same set of material
volume fractions as for the uniform sampling scheme. However, using the same set of mean
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chord lengths as for the uniform sampling scheme would result in a violation of the constraint
imposed by Eq. (3c) that A, < A;. Therefore, we compute the derived mean chord lengths from
the material volume fractions using Eq. (3b) by choosing an arbitrary correlation length for each
case number. Note that although the same volume fractions are used for both material sampling
schemes, each model uses different sets of mean chord lengths except for the “2” cases for which
using a correlation length of A, = 303/80 cm with the volume fractions listed for Case 2 for
the volume fraction sampling scheme yields the same mean chord lengths used for the uniform
sampling.

Table 2: Benchmark Suite Material Parameters for Uniform Sampling

Case Derived Material Mean
Number Volume Fraction Chord Length
Po b1 b2 ps3 Ao Ay Ay As
1 9/110 1/110  9/11 1/11 99/100 11/100 99/10 11/10

\S}

1/4 1/4 1/4 1/4 101720 101/20 101/20 101/20
3 99/1120 11/1120 101/224 101/224|99/100 11/100 101/20 101/20

Table 3: Benchmark Suite Material Parameters for Volume Fraction Sampling

Case Material Derived Mean Correlation
Number Volume Fraction Chord Length Length
Po b1 b2 Y2 Ao Ay Ay As A,
1 9/110 1/110  9/11 1/11 110/101  110/109 112 11/10 1
2 1/4 1/4 1/4 1/4 101720 101/20  101/20 101/20| 303/80
3 99/1120 11/1120 101/224 101/224{1680/1021 1680/1109 112/41 112/41 3/2

S. RESULTS AND ANALYSIS

In this section, we present reflection and transmission leakage values and material-dependent scalar
flux distributions for the one-dimensional, quaternary, Markovian-mixed media benchmark suite
defined in Section 4. The benchmark results used to conduct accuracy comparisons were produced
using the Sandia National Laboratories PlaybookMC research code [4]. The Monte Carlo CLS
and LRP leakage and scalar flux results presented in this paper were produced using the Lawrence
Livermore National Laboratory Mercury Monte Carlo particle transport code [16]. (As additional
verification, the Mercury results were compared with CLS and LRP values produced using Play-
bookMC and found to agree to within one standard deviation.) The material-dependent scalar flux
distributions were tallied in 100 bins of size Az = 0.1 cm. All results were produced using 107
particle histories. We compute the relative error for each benchmark case using

T — Tapprox
Ep = ——=, 4)
T
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where z is the benchmark result and ., is the result produced using the approximate method.
We compute the root mean squared relative error, mean absolute relative error, and maximum
absolute relative error across the entire benchmark suite for the reflection and transmission results

of each approximate method:
1
RMSEp = , | v B3, (5a)

; (5b)

Max|Eg| = max |Eg, |, (5¢)

where NV, is the total number of cases not including purely absorbing results and g, is the relative
error of case 7. Note that purely absorbing results were excluded entirely from the computation of
these error metrics since the CLS and LRP algorithms are exact (to within statistical uncertainty)
for purely absorbing problems.

Table 4 shows the mean reflection and transmission values produced using the benchmark (Bench)
approach, CLS, and LRP for both the uniform and volume fraction sampling schemes. The stan-
dard error of the mean (10) on the last digit is shown in parentheses. Table 4 shows that for purely-
absorbing problems (“d” cases), CLS and LRP produce exact results within statistical uncertainty.
Results produced using the uniform sampling scheme agree with results produced using the vol-
ume fraction sampling scheme for all “2” cases for which the same set of material probabilities
and mean chord lengths are used. Table 5 shows the computed error metrics of each method for
the benchmark suite. The relative errors of the purely absorbing leakage results (“d” cases) were
not included in these computations. Table 5 shows that LRP is generally more accurate than CLS
in computing reflection and transmission leakage values for this set of benchmark problems.

Material-dependent scalar flux distributions were produced for each problem using both sampling
schemes. Figures 1 and 2 show the material-dependent scalar flux distributions for Case 1d using
the uniform sampling scheme and Case 3c using the volume fraction sampling scheme, respec-
tively, where the standard deviations in the flux distributions are less than 1.5% for all spatial
bins. Figure 1 shows that for a purely-absorbing problem, Case 1d, CLS and LRP produce exact
material-dependent scalar flux distributions. Figure 2 illustrates that for a problem with scattering,
LRP generally produces more accurate scalar flux distributions than CLS due to the algorithm’s
local memory of the sampled chord length. Although generally more accurate, the scalar flux dis-
tributions produced by LRP are not always more accurate than CLS at all points in space. Full
characterization of the relative accuracy of the flux distributions produced by CLS and LRP for
N-ary stochastic medium problems requires further investigation in future work.

6. CONCLUSIONS

In this paper, we extended the Monte Carlo Chord Length Sampling (CLS) and Local Realization
Preserving (LRP) algorithms to /N-ary stochastic materials for one-dimensional, Markovian-mixed
media using uniform and volume fraction sampling schemes based on the models established in
Ref [15]. We demonstrated that CLS and LRP can be successfully extended to N-ary stochastic
media by computing mean reflection and transmission leakage results and scalar flux distributions
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Table 4: Mean Leakage Results

Sampling Scheme

Case

Bench

Reflection
CLS

LRP

Bench

Transmission

CLS

LRP

Uniform

1b
1c
1d

0.2942(1)
0.2230(1)
0.4260(1)
0.0000(0)

0.2318(1)
0.1748(1)
0.3023(2)
0.0000(0)

0.2748(1)
0.1925(1)
0.3625(2)
0.0000(0)

0.2231(1)
0.1084(1)
0.2148(1)
0.08914(9)

0.2073(1)
0.1336(1)
0.2197(1)

0.2207(1)
0.1244(1)
0.2294(1)

0.08891(9) 0.08918(8)

2a
2b
2c
2d

0.04482(7)
0.6522(2)
0.4225(2)
0.0000(0)

0.03153(6)
0.5748(2)
0.3140(2)
0.0000(0)

0.03886(6)
0.6041(2)
0.3630(2)
0.0000(0)

0.1318(1)
0.2019(1)
0.1561(1)
0.1099(1)

0.1304(1)
0.2737(1)
0.1690(1)

0.1314(1)
0.2469(1)
0.1735(1)

0.10998(9) 0.11011(9)

3b
3c
3d

0.05457(7)
0.6203(2)
0.4351(2)
0.0000(0)

0.03563(6)
0.5437(2)
0.3241(2)
0.0000(0)

0.04467(7)
0.5669(2)
0.3646(2)
0.0000(0)

0.1031(1)
0.1663(1)
0.1325(1)
0.0837(1)

0.1017(1)
0.2228(2)
0.1468(1)
0.0836(1)

0.10249(9)
0.2054(1)
0.1516(1)
0.08360(8)

Volume Fraction

la
1b
1c
1d

0.2880(1)
0.2362(1)
0.4324(2)
0.0000(0)

0.2192(1)
0.1797(1)
0.2896(1)
0.0000(0)

0.2478(1)
0.2202(1)
0.3786(1)
0.0000(0)

0.1974(1)
0.09913(9)
0.1882(1)
0.07820(8)

0.1811(1)

0.1893(1)

0.12879(9) 0.10724(9)
0.1961(1) 0.2048(1)
0.07827(7) 0.07857(8)

2a
2b
2c
2d

0.04451(7)
0.6520(2)
0.4225(2)
0.0000(0)

0.03156(6)
0.5746(2)
0.3140(1)
0.0000(0)

0.03874(6)
0.6041(2)
0.3625(2)
0.0000(0)

0.1318(1)
0.2022(1)
0.1559(1)
0.1101(1)

0.1304(1) 0.1315(1)
0.2739(1) 0.2470(1)
0.1691(1) 0.1736(1)
0.1100(1) 0.1103(1)

3b
3c
3d

0.04405(6)
0.6745(1)
0.4633(2)
0.0000(0)

0.02866(5)
0.5915(2)
0.3421(1)
0.0000(0)

0.03654(5)
0.6288(2)
0.4019(2)
0.0000(0)

0.03434(6)
0.1169(1)

0.06312(8)
0.02680(5)

0.03361(6) 0.03409(6)
0.1794(1) 0.1496(1)
0.07836(8) 0.07677(8)
0.02679(5) 0.02679(5)

for a benchmark suite adapted from that in Ref. [5], and we conducted accuracy comparisons us-
ing benchmark values produced using Sandia National Laboratories’ research code PlaybookMC.
We showed that CLS and LRP produce exact results for purely absorbing cases and that LRP is
generally more accurate than CLS using both the uniform and volume fraction sampling schemes.
In future work, we hope to extend these /N-ary stochastic medium capabilities in CLS and LRP to
multi-dimensional problems.
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Table 5: Mean Leakage Relative Error

Reflection Transmission
Sampling Scheme | Error Metric | CLS LRP | CLS LRP

RMS Er | 0.246 0.131 | 0.189 0.135
Uniform Mean|Ep| | 0.235 0.125 | 0.137 0.105
Max|Eg| | 0.347 0.181 | 0.356 0.235

RMS Er | 0.257 0.122 | 0.253 0.150
Volume Fraction Mean|ER| | 0.245 0.116 | 0.186 0.117
Max|Eg| | 0.349 0.170 | 0.535 0.280
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Volume Fraction-Based Sampling - Case 3c - Material 0
T T T T

3.0 Volume Fraction-Based Sampling - Case 3c - Material 1

2.5

— Bench
---Cs | 2.0
20} \ e LRP
O 1.5
15} N

2.5 P

()
o1 ()

L0} DA

0.5 TR

0.0 L L I I

Volume Fraction-Based Sampling - Case 3c - Material 3

3.0 3.0

25k,
20k a

1.5+ ~

b (x)
¢3(x)

1ot s

05t R S

0.0

Figure 2: Case 3c material-dependent scalar flux distributions using the volume fraction
sampling scheme

paper describes objective technical results and analysis. Any subjective views or opinions that
might be expressed in the paper do not necessarily represent the views of the U.S. Department
of Energy or the United States Government. This research was performed using funding received
from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs. The authors ac-
knowledge helpful discussions with Scott McKinley and Matt O’Brien on the implementation of
the Local Realization Preserving algorithm in Mercury.

REFERENCES

[1] G. C. Pomraning. Linear Kinetic Theory and Particle Transport in Stochastic Mixtures.
World Scientific (1991).

[2] G. B. Zimmerman and M. L. Adams. “Algorithms for Monte Carlo Particle Transport in
Binary Statistical Mixtures.” Trans Am Nucl Soc, volume 63, p. 287 (1991).

[3] P. S. Brantley. “A Benchmark Comparison of Monte Carlo Particle Transport Algorithms for
Binary Stochastic Mixtures.” J Quant Spectrosc and Rad Transfer, volume 112, pp. 599-618
(2011).



Benchmark Comparisons of Monte Carlo Algorithms for One-Dimensional N-ary Stochastic Media

[4] E. H. Vu and A. J. Olson. “Conditional Point Sampling: A Novel Monte Carlo Method for
Radiation Transport in Stochastic Media.” Trans Am Nucl Soc, volume 120 (2019).

[5] M. L. Adams, E. W. Larsen, and G. C. Pomraning. “Benchmark Results for Particle Transport
in a Binary Markov Statistical Medium.” J Quant Spectrosc and Rad Transfer, volume 42,
pp- 253-266 (1989).

[6] E. R. Woodcock, T. Murphy, P. J. Hemmings, and T. C. Longworth. “Techniques Used in
the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of
Complex Geometry.” In Proceedings of the Conference on the Application of Computing
Methods to Reactor Problems, ANL-7050. Argonne National Laboratory, Chicago, IL (1965).

[7] S.D. Pautz, B. C. Franke, A. K. Prinja, and A. J. Olson. “Solution of Stochastic Media Trans-
port Problems using a Numerical Quadrature-Based Method.” In International Conference
on Mathematics and Computational Methods Applied to Nuclear Science and Engineering
(M&C 2013). Sun Valley, Idaho, May 5-9, 2013, on CD-ROM (2013).

[8] P. S. Brantley and G. B. Zimmerman. “Benchmark Comparisons of Monte Carlo Algorithms
for Three-Dimensional Binary Stochastic Media.” Trans Am Nucl Soc, volume 117, pp. 765—
768 (2017).

[9] A.J.Olson and E. H. Vu. “An Extension of Conditional Point Sampling to Multi-Dimensional
Transport.” In The International Conference on Mathematics and Computational Methods
Applied to Nuclear Science and Engineering (M&C2019). Portland, Oregon, August 25-29,
2019 (2019).

[10] C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, and A. Mazzolo. ‘“Monte Carlo Particle
Transport in Random Media: The Effects of Mixing Statistics.” J Quant Spectrosc and Rad
Transfer, volume 117, pp. 270-286 (2017).

[11] C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, and A. Mazzolo. “Poisson-Box Sampling
Algorithms for Three-Dimensional Markov Binary Mixtures.” J Quant Spectrosc and Rad
Transfer, volume 206, pp. 70-82 (2018).

[12] S. D. Pautz and B. C. Franke. “The Levermore-Pomraning and Atomic Mix Closures for
N-ary Stochastic Materials.” In M&C 2017 - International Conference on Mathematics and
Computational Methods Applied to Nuclear Science and Engineering. Jeju, Korea, April 16-
20, 2017, on USB (2017).

[13] R. Sanchez. “Linear Kinetic Theory in Stochastic Media.” J Math Phys, volume 30, pp.
2498-2511 (1989).

[14] O. Zuchuat, R. Sanchez, I. Zmijarevic, and F. Malvagi. “Transport in Renewal Statistical
Media: Benchmarking and Comparison with Models.” J Quant Spectrosc and Rad Transfer,
volume 51, pp. 689-722 (1994).

[15] A.J. Olson, S. D. Pautz, D. S. Bolintineanu, and E. H. Vu. “Theory and Generation Methods
for N-ary Stochastic Mixtures with Markovian Mixing Statistics.” In M&C 2021 - Interna-
tional Conference on Mathematics and Computational Methods Applied to Nuclear Science
and Engineering. Raleigh, North Carolina, April 11-15, 2021 (2021, accepted).

[16] P. S. Brantley, R. C. Bleile, S. A. Dawson, M. S. McKinley, M. J. O’Brien, M. Pozulp, R. J.
Procassini, D. Richards, A. P. Robinson, S. M. Sepke, and D. E. Stevens. “Mercury User
Guide: Version 5.22.1.” Lawrence Livermore National Laboratory Report LLNL-SM-560687
(Modification #19) (2020).



