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Background Information on MTBF
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 Mean-Time-Between-Failure (MTBF)

, , Total System Operational time
— Metric to evaluate or estimate the expected MTBF =

lifetime of repairable items.

Total Number of Failures

. . o _ Can also be represented as
— Defined as the probability of an individual unit of

interest, operating with full functionality for a MTBF = 1
specific length of time under specific tests or Where

stress conditions. . . 5
A: Intrinsic failure rate of a component

— MTBF of power electronic systems requires
understanding of interaction between
components, especially uncertainties with the
use of novel materials, causing dynamics in A= 2 A
thermal and electrical stress on a system in =
automotive or aviation industry.

For a given system composed of n components,




k=k+1

Genetic Algorithm (GA) Optimization Process

Form mating pool, M,

Form population, P = Py,

Form population, Py, 4

I generation number
P population number

rt
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e |nitialization

Initial solutions are randomly generated in the
predefined representation rule.

Fitness Function

Figure of merit for an individual; each individual is
assigned with a value, corresponding to a more
optimal individual.

e Selection

Ensures that individuals with higher fitness values are
more likely to survive. It forms a mating pool, M;.. The
roulette wheel and tournament selection algorithms
are commonly used techniques.
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Genetic Algorithm (GA) Optimization Process

Form mating pool, M),

Form population, Py, 4

Ik generation number
P population number

Form population, P = Py,

rt
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Crossover

New individuals are generated through crossover and
the parental genes are shared. Crossover forms a new
population, P, There are single-point crossover and
the multiple-point crossover operators.

Mutation

A process of changing genes in chromosomes in a
random manner. This maintains the diversity of the
population by flipping the selected bit value in a
chromosome.
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Synchronous Boost Converter Reliability Factors prar—=S
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HS ° Description Data Range Data Sweep Type
Min...Max
- . [ ]
L M, o It} Vis Input Voltage [200 V ... 400 V] Logarithmic
ind
fw v, Output Voltage [500 V... 1000 V] Logarithmic
o C R
+ | B [] Vo o Switching Frequency [10 kHz ... 1 MHZ] Logarithmic
o — k; Inductor Ripple Factor [5% ... 200%)] Linear
Vin -1 Cin M1 O—I“'}
— - k¢ Capacitor Ripple Factor [5% ... 10%] Linear
- o i Target Efficiency [95% ... 99.99%] Linear

Boost Converter Parameters Affecting Reliability or MTBF and Power Density

* Input & output voltage on the input and output capacitors

* Switching frequency affects transistor switching and conductor losses, and core loss (thermal stress)
* Inductor current ripple factor affects the core size and transistor stress

e Capacitor ripple factor affects the capacitor volume and temperature of operation
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Multi-Objective Optimization to Analyze Rellablllty
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Core Material Cooling Type _
Ferrite, iron powder o Natural convection, forced
HS air cooled, cold plate

Eo|

Capacitor Types
MLCC vs Film

Semiconductor Material
Si, SiC, GaN




Boost Converter Multi-Objective Optimization Flowchart

+ Parameter Identification / Design Constraints
» Design Variable Range Selection
» Boost Converter Average Model & DC Analysis (CCM)

A 4

* Gene Parameter Setup and

Initialization j

A

y

Vin: Input Voltage
V,: Output Voltage

o

Inductor Material Selection (High Flux, Kool Mp, MPP)
Capacitor Material Selection (Film, MLCC)
Semiconductor Device Selection (IGBT, SiC)

T;: Max. Junction Temp.
n: Target Efficiency

Heatsink Selection (Natural Cooling, 500 LFM, 100 LFM, Cold plate)

ke, : Current Ripple Factor
k¢: Voltage Ripple Facotr

Gene Description Data Range Data Sweep
[Min...Max] Type
Via Input Voltage [200V ...400V] Logarithmic
v, Qutput Voltage [500V..1000 Logarithmic
V]
o Switching Frequency  [10kHz ... 1 Logarithmic
MHz]
k; Inductor Ripple 5% ... 200%)] Linear
J ¢ Factor
In P ut ke Capacitor Ripple [5% ... 10%] Linear
Parameters il
3, Target Efficiency  [95%..99.99%]  Linear

A

y

» Import Component/Material Database

J High Side

y

Input ¢

Magnetic Selection
(Boost Inductor Design)

Capacitor
Selection

Semiconductor Device
Selection
T

]

Core Database

C

Transistor Database

Low Side

Boost Converter Multi-Objectives Flowchart

Output

Capacitor Database

,\Import database
J/

A —
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o

Core Database Transistor Database

44 transistors

3,551 core sizes

N

Capacitor Database

1

2,532 capacitors



Multi-Objective Optimization: Inductor Design

Gene Description Data Range Data Sweep
e [Min...Max] Type
/’ Ve InputVoltage  [200V..400V] Logarithmic
. o ¥, QuiputVoltage  [500V .. 1000  Logarithmic
’
’
g fue  SwitchingFrequency  [10kHz..1  Logarithmic
’ MHz]
kg Inductor Ripple [5% ... 200%] Linear
Factor
ke Capacitor Ripple [5% ... 10%] Linear
Factor
B Target Efficiency  T9%%  99,99%] Linear
\
Wire

Selection

For Kool My,
MPP, High Flu

Wire AWG selecte
on frequency

D)

d based \

Number of strains
needed based on wire

resistance, temperature

rise, ampacity, RMS

rrent
— Magnetic Design
B N
2(Energy)10* Compute every possible
= \_) inductor design that
By, X ] X K,

m *J x Ky satisfy the requirement

— 4
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Notes

N1 — Wire selection database included to
select appropriate wire gauge and provide
dimensions

N2 — Area product used to down-select
available cores from the database

N3 — Total of 3,551 core selection list with
upto 4 stacked cores

Select inductor from the
minimum cost function




Input

Capacitor
Selection

|4

Output

Multi-Objective Optimization: Capacitors
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Gene Description Data Range Data Sweep
[Min...Max] Type

V. Input Voltage [200V¥...400Y] Logarithmic

DETROIT, MGHGNN OCTOBER11-15

% Output Voltage [500V...1000  Logarithmic

v Pid

Vin: Input Voltage X
Cin: Required Input Cap.
V,: Output Voltage
C,:Required Output Cap.
k¢: Voltage Ripple Factor

« Parasitic Model

» Voltage De-rating

» Capacitor
Compensation
Cost Function
Capacitor Database

\: i-2532 J

Met
Constraints?

(Min(C ost[Total Loss, Volume])]

Factor

ki Capacitor Ripple [5% ... 10%] Linear
Factor

Vi
fow  Switching Frequency  [10kHz.. 1 Logarithmic
MHzl
3 Inductor Ripple  [5% .. 200%] Linear ‘

] Target Efficiency  [95% ... 99.99%] Linear

\ Film type capacitors MLCC type capacitors

Required capacitor value <> Notes
calculated based on the

ripple requirement . Capacitor Database @p

\, =l

Apply appropriate voltage
de-rating and capacitance
based on capacitor
material type

B 10 8 08
" " 603 08
5 Mo o 08
1 ¥ 503 1000 08
{1 a0s 10 125
18 805 n 125
i) 05 2 125
20 805 B 125
21 805 500 15
2 805 500 15
2 a5 500 18
2 50 0
) 500 2
6 Mo s 500 7 125
2w 27 125
5 a5 500 0 125 125 2 s
2% a0 500 1 125 125 2 a2

capac?tors tha’_c rnet_at the \-—9 Find the capacitor with For MLCC

electrical specifications P ——— .
o function and Film

N1 - voltage de-rating for MLCC is 2 times
the rated whereas 1.5 for film

N2 — MLCC capacitor sizes vary from 0402
to 2225 and film capacitor sizes vary
largely based on MKP/MFP from TDK

N3 — Total of 2,532 capacitor selection list
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Multi-Objective Optimization: Transistors
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Transistor package type

@ Transistor Database —

ngh Side Gene Description Data Range Data Sweep
Semiconductor Device ’ Il Type
Selection ,¢’ Vi Input Voltage [200V..400V] Logarithmic
r /’ ¥ OutputVoltage  [S00V .. 1000 Logarithmic
Cd
s ’
Low Side . - fow  SwitchingFrequency  [10kHz..1  Logarithmic
v A Rtz]
- -~ k InductorRipple (5% ... 200%] Linear
Vys,stress: Device Switching Voltage b Factor -
lgs stress: Device Switching Current ke Caparitor Ripple [5% . 10%] Vinigar
lgs rms: Device RMS Current Factor
fsw: Switching Frequency 7 Torget Efficiency  [95% ... 99.99%] Linear
» Loss Model
» Thermal Model
» Cost Function N
i P;;*ce Database Calculate the minimum
s i-42 .
F IGBT voltage and current rating
v or based on the operating
Heatsink and SiC conditions
Selection
MOSFETSs <
v
>
| Vohme Calenlanion ) ‘ind datasheet based
N model for switching and
\ %
N l conduction losses
\\
\\
\\
Constraints? S —@
\\
\

Min(Cost[Total Loss]) J

Find the appropriate
temperature rise based

Find the transistors &

\"9 heatsink volume with the

on the thermal resistance

J

minimum cost function

<> Notes

N1 — Peak voltage stress and RMS and
peak current stress on both transistors

N2 — Temperature rise calculated based on
the datasheet thermal resistance

N3 — Total of 42 transistor selection list

N4 — Cooling type selection explained in
the next slide
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Multi-Objective Optimization: Cooling System

ngh Side Gene Description Data Range Data Sweep
Semiconductor Device . finaxl =
Seleotion ,,’ Via Input Voltage [200V..400V] Logarithmic
r /’ ¥ OutputVoltage  [S00V .. 1000 Logarithmic
0
Low Side o : = : p— . -
I’ 7 i~ Tl B e— Cooling Type Databa
Vs stress: Device Switching Voltage & “meﬁe (5% 200%] tinear
lgs stress: Device Switching Current ) pacitor Ri i 2
I ‘ l;s rms: Device RMS Current ] te b Fam;:wme (5% - 205 et Thermal Resistance (C/W)
fsw: Switching Frequency n Target Efficiency  195% . 99.99%) Linear 10000 10 1 0.1 0.01 0
» Loss Model 1 - / /
» Thermal Model c
* Cost Function = s l/r
» Device Database Semiconductor 9 [ / — 500 LFM
.« 42 . 100 gr
Device Selection 3 // / | — 1000 LEM
} > 0l 1 A | — ColdPlate
) A\ 4 - //
Heatsink @ 1 /
| Selection _ = /
Find required thermal 2 : |
¢ For natural resistance of the cooling i
4 H .
Volume Calculation ) conveetlon, | sysembyTiee i Thermal Resistance vs Volume
\ \ forced air, Y,
N
. cold plate <> Notes
\\\
N
\\
3 .
: . Find the approximated N1 — Total power loss from IGBT or SiC
Constraints? N | b Tt
N LVO ume by cooling type MOSFET model
. Find the transistors &

he.an'"k volume with the N2 — Natural Convection, forced air
minimum cost function

[ Min(Cost[Total Loss]) J cooling (500 LFM & 1000 LFM) and cold
plate
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Boost Converter Co-Optimization Analysis #1

x104
= | T T ——— p——— Sy——Rpp——
L M, t ® o Liquid Cooling «=—_. /7T
ind 2\
2 B % " i«
( 6 6 6 \ % Natural Cooling Solution o
O
" O Natural Cooling Best Solution E
18} ¥ ¥ 500 LFM Cooling Solution
vV —_|c M. lo : —_ 500 LFM Cooling Best Solution
" " = w x, O ¢ 1000 LFM Cooling Solution
) g 16 o O 1000 LFM Cooling Best Solution
o 5 8 Cold Plate Solution
W 14l o O Cold Plate Best Solution o
E 8 Forced Air Cooling =
=, % % —————— (1000 LFM) -
. . ) . ) PR _ Forced Air Cooling E
Capacitor material type fixed ¢ Cooling varies from 1 & % L “" (500 LEM)
L] - - L’ n
to film natural cooling, forced Q g
Magnetic material type fixed air cooling, and cold o8 | 3 /—/"& ______ Natural Cooling 9
to High Flux plate 3 | , , . . a
Semiconductor material type o 50 100 150 200 250
fixed to SiC MOSFETs Power Density (kW/L)




Boost Converter Co-Optimization Analysis #2

O

Capacitor material type fixed
to film

Magnetic material type fixed
to High Flux

Cooling fixed to forced air
cooling (1000 LFM)

mS -
O

Semiconductor material
varies from IGBT and
SiC

MTBF (hours)
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25 x10% : : . : . .
20000 -c®o . o % IGBT Solution
W R S 0 |GBT Best Solution
" ® % SiC Solution
2l .| ©O SiC Best Solution
" Y
% ””” i \q
15} g, ¢ % .
l"_-."'-;}\ %\
IGBT _____ ] ﬁ% N\
\ LY
I‘"'z:ﬁ;\@f"(‘?
0_5 1 1 1 L 1 [l 1
0 10 20 30 40 50 60 70 80

Power Density (KW/L)



Boost Converter Co-Optimization Analysis #3

L., M, °_|E}

. [

I
3)

Cooling tixed to torced air
cooling (1000 LFM)
Magnetic material type fixed
to High Flux

Semiconductor material type
fixed to SiC MOSFETs

i M, [0 E}]c‘

: —_ o
Y

O

(bS]

co I — Rload [] vo

e Capacitor material type

varies between film and
MLCC

x10%
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-
$)

MTBF (hours)

ot
o

\~~
-~
-~

-~
---———---
-

®

MLCC Solution
MLCC Best Solution
Film Solution

Film Best Solution

Film
A=50kW/L
————————— >
100 120

Power Density (kW/L)




Boost Converter Co-Optimization Analysis #4

—
M, [o—{i-
—

<
||
Il
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it}

Capacitor material type fixed

to film

Cooling fixed to forced air

cooling (1000 LFM)

Semiconductor material type

fixed to SiC MOSFETs

(bS]

Magnetic material

varies from High Flux,

MPP, and Kool Mp

MTBF (hours)

g
(3]
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™
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X104 ,ldo‘ ' . '
23 °, o B
= 221
o om o ->1 3, € ——
P, |2 ‘/' I o '\‘
QR ! = AZ5 kW/L
- - - =205
2o K‘ o
| %b = F =
® % Power Density (KW/L)
o . High Flux 4
MPP Solution . Kool My ===~ 1 MPP
MPP Best Solution Ly :
¢ Kool Mu Solution ‘i, i
O Kool Mu Best Solution Qi
*  High Flux Solution ?(— -->|
O High Flux Best Solution A=10 kW/L
10 20 30 40 50 60 70 80
Power Density (kW/L)




Boost Converter Co-Optimization Analysis #4
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L., M, °_|E}

<
||
Il
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in in M1 o &
'—

Capacitor material type fixed
to film

Cooling fixed to forced air
cooling (1000 LFM)
Semiconductor material type
fixed to SiC MOSFETs

‘/|+-->T\‘

A=S kW/L

35 40 tk

Power Density (kW/L)
High Flux 4
MPP Solution ; R
& MPP Best Solution . '
 Magnetic material 1Ll * Kool Mu Solution Kv |
. . (o] i o ;
varies from High Flux, ool Mu Best Solution x O
% High Flux Solution -->"
MPP, and Kool Mu O High Flux Best Solution A=10 KW/L

0 g 5 1 1 L 1 L 1
0 10 20 30 40 50 60 70 80

Power Density (kW/L)




Synchronous Boost Converter Candidate Designs

5 kW Synchronous Boost Converter Candidate Design Specifications

Operating Condition

Variable P1 (Kool Mp) P2 (MPP) P3 (High Flux)
Input, Vin 400V 400V 400V
Output, Vo 500V 500V 500V

Tnmin — linmax 7.47-17.78A 9.9-15.35A 10.74-14.57A
£ 47.37 kHz 48.7 kHz 47.87 kHz
Duty Cycle 20.81% 20.8% 21.4 %
L 78.8°C 75.19°C i@
Inductance 169 uH 310 pH 462 pH
Input Capacitors Output Capacitors
Model # B32641B6682J Model # B32774X8305
Capacitance 3x6.8 nF Capacitance 4x3 uF
Boost Inductor
AWG/Strands 23 AWG/10 23 AWG/10 23 AWG/10
Model # 0077717A7 CO055716A2 CO058110A2
Fill Factor 20% 17.7% 24%
Turns Number 52 46 78
Loss (W/C) 10.53W/10.8W 10.89W/7.09W 7.84 W/8.8 W
Temp. Rise 48.6 °C 35°C 90 96 °C
Low Side Semiconductor Device
Model # C2M0040120D | C2M0040120D | C2M0040120D
Loss 2.09W/3.45W/1 | 2.69W/3.13W/1 | 2.88 W/2.98
(Ton/Toft/Cond) 33W 33W W/1.37TW
High Side Semiconductor Device
Model # C2M0040120D | C2M0040120D | C2M0040120D
Loss 5.82W/2.28W/5 | 4.68W/2.5W/5. 2.88 W/2.98
(Ton/Toft/Cond) .05W 05W W/1.37 W
Total Efficiency 99.16% 99.2% 99.2 %

PAT. PENDNG ¢

QRS

IEEE ENERGY CORVERSION CONGRESS & BEXPO
C’—\ Y ,/.f;\ s B

%ﬁ._

5 kW Synchronous Boost Converter Prototype
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Experimental Results and Simulation Comparison

Kool Mp
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High Flux
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Conclusion and Future Work
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Conclusion

* Genetic algorithm used to analyze multi-objective (MTBF vs power density)
optimization.

* Inductor design, capacitor selection, heatsink selection, semiconductor selection
vary depend on the operating point and input genes.

« MTBF and power density analysis based on several combinations.

* Candidate design for each inductor material evaluated and tested in experiment.
Future Work

* Can be applied to different core shapes, e.g. EE, El, UU, etc.

* Need to consider gate driver and other ancillary ICs into the volumetric calculation.
* More robust cooling system optimization method is required for higher fidelity.
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