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: ‘ Geological Discontinuity

» Layers of volcanic rock

* 6 to 7 millions years

* Weathering/erosion
created canyons and
tent rocks

Kasha-Katuwe Tent Rocks National Monument
New Mexico (NM), USA




3 ‘ Geological Discontinuity: Fault

Kasha-Katuwe Tent Rocks National Monument
New Mexico (NM), USA




Geological Discontinuity: Fault

Extenswe cementation

‘/J in hanging wall
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- 3

Loma Blanca fault, Rio Grande rift
- Central NM, USA
- 70°E normal faulting

» Subsurface flow causes cementation, which
hinders fluid flow across the fault (sealing N
fault) -

Williams et al. (2017) PNAS
4




s | Geomechanical Failure Mechanisms




- | Geomechanical Failure Mechanisms

Tectonics
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A(In-situ stress)




| Geomechanical Failure Mechanisms

Tectonics + Human activity
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A(In-situ stress) + A(p, T,C)

p: Pressure
T: Temperature
c: Concentration




: | Geomechanical Failure Mechanisms

Tectonics + Human activity + Dynamics
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Fault permeability/porosity
K or ¢ ~ f(Geffective)
Frictional properties
Rate and state friction

/)] -

A(In-situ stress) + A(p,T,c) + A(Material characteristics)




» | Geomechanical Failure Mechanisms

Tectonics + Human activity + Dynamics + Architecture

Heterogeneity

i Layered * Anisotropy |
S / / system '
_ <
<4 7
Fault permeability/porosity
K or ¢ ~ f(Geffective)
Frictional properties
Rate and state friction I

A(In-situ stress) + A(p,T,c) + A(Material characteristics) i



o | Geomechanical Failure Mechanisms

Tectonics + Human activity + Dynamics + Architecture

* Heterogeneity
Layered * Anisotropy |

- I / / system )
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* Flow pathways
* Deformation
* Mineral precipitation

* Fault permeability/porosity
K or ¢ ~ f(Geffective)

* Frictional properties
Rate and state friction

A(In-situ stress) + A(p,T,c) + A(Material characteristics) i

Internal
Architecture

Bauer et al. (2015) i




| Geomechanical Failure Mechanisms

Tectonics + Human activity + Dynamics + Architecture

* Heterogeneity
» Anisotropy i

-

* Flow pathways
* Deformation
* Mineral precipitation

* Mixed polarity
« Connectivity

-

» Fault permeability/porosity
K or ¢ ~ f(Geffective)

* Frictional properties
Rate and state friction

Internal
Architecture
Bauer et al. (2015) [

A(In-situ stress) + A(p,T,c) + A(Material characteristics) i



= | Geomechanical Failure Mechanisms

Tectonics + Human activity + Dynamics + Architecture

* Mixed polarity
« Connectivity

-

* Fault permeability/porosity

* Heterogeneity
» Anisotropy

-

* Flow pathways

K or ¢ ~ f(Getrectie) Inté\i’n\al » Deformation
« Frictional properties Architect‘u\!f\e * Mineral precipitation
Rate and state friction ) Bauer et al. (2015) I
: : . |
A(In-situ stress) + A(p,T,c) + A(Material characteristics) ‘
Multiphysics coupling processes in multi-scale



Multiphysics coupling

* Poroelasticity » Thermal expansion
* Permeability/porosity » Frictional heating
changes eo- "
mechanics |
« Deformation « Convective
of reactive : heat I
surface & m transport
Fluid | 3 N Heat
flow ——H ' Transfer
\Y f/
N \ |
« Advective transport Solute « Exothermic heat

|
* Multiphase flow effect transport « Radiochemical reaction ‘



.| Subsurface energy activities

Geological
Carbon
Sequestration

Brine

g extraction

injectio .

1
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Modified figure (https://eesa.lbl.gov/wp-content/uploads/2017/02/Subsurface-Energy-Storage.jpg)




»| Subsurface energy activities

Water Treatment

Geologic Carbon and Reuse
Sequestration

Wastewater
injection

| I Produced Water  Oil and Gas

Management
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Fluid
| 1 injection '
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.| Subsurface energy activities

Geothermal
Water Treatment

Geologic Carbon and Reuse Energy
Sequestration

Produced Water ~ Oiland Gas i
Recovery \

Energy Storage




.| Geological uncertainties

Water Treatment Enhanced

Geologic Carbon = and Reuse Geothermal
Sequestration

Produced Water ~ Oiland Gas ¢
Recovery \

Energy Storage

=
=
=
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=
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Fracture
networks




’ ‘ Can Multiphysics Processes Explain the

Number of M3+ Earthquakes

: Fault/fracture characteristics
: Formation rock properties

: Regional stress states
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Mechanism Inducing Earthquakes?

Central US
Earthquakes
1973 - 2019

[e]
o
o

600 -

400 -

867 M=3 Earthquakes 1973 - 2008

2007 3642 M=3 Earthquakes 2009 - 2019

Site-specific features

- Material properties
- Geometry/orientation

- Heterogeneity
- Anisotropy

0 =
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- Earthquake
\
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Water Treatment Enhanced
and Reuse Geothermal
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s ‘ Application: 2016-2018 Pohang
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* Poroelastic coupling effects on
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‘ Application: 2016-2018 Pohang

2017 Pohang
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2 ‘ Application: 2016-2018 Pohang
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z ‘ Coupled vs. Uncoupled Systems
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Chang et al. (2020) Sci. Rep.

 In addition to regional tectonics and/or nearby natural earthquake
nucleation, human activities may induce large magnitude earthquakes
after shut-in by accumulating poroelastic stressing as well as pore
pressure along the fault.




23‘ Sequential Mechanisms

D

Phases 4 & 5
After shut-in

Pressurized region —> <— Poroelastic compression

" Elastically stressed region




. | How Does Multiphysics Affect Leakage of
contaminants in Geological Formations?

. ) Water Treatment Enhanced
Short-term ] and Reuse Geothermal
thermal/mechanical )

. Produced Water  Oil and Gas
stressing Management  4Recovery

* Long-term chemical |
reaction

» Three rock types for
nuclear waste disposal
- Argillaceous

- Crystalline
- Bedded or dome salt

« Depending on the rock
type, different dynamics or
behaviors of rock are
engaged, thus proper site
selection as well as buffer
construction are required




s ‘ Nuclear Waste Disposal: Field-scale Model

* Field-scale simulations aim for
safe disposal more than 10° years




Field-scale simulations aim for
safe disposal more than 10° years

2575 nuclear
waste packages
are emplaced in
a layered shale
system

THC coupling




2 ‘ Nuclear Waste Disposal: Field-scale Model [

e 2575 nuclear
waste packages
are emplaced in
a layered shale |
system

« THC coupling

t=103yrs . ‘ t=10%yrs

* Field-scale simulations aim for R e t=10Fyrs
safe disposal more than 106 years B N ‘

* Near-field multiphysical behaviors
of rock corresponding to local
flows or heat transfer should be
considered

129] (lodine) distribution after 103, 104, 103, 10° years
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Nuclear Waste Disposal: Near-field Model

6 Liquid pressure Liquid saturation
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As DRZ heated, precipitation occurs (decrease in Si) at early time.

During re-saturation, buffer swelling exerts normal stresses to compact
fractures in DRZ which reduced DRZ permeability:

Abswelting = 3KAS Bsw = Adesr > K~ f(AO-eff)

To see how THM process affects geochemical transport of radio-nucleoids
and ultimately support site selection as well as construction plans.

[MPa]

swelling

g




2 ‘ Nuclear Waste Disposal: Surrogate Model

Input

OF Ol
% Output
Olysi©, ®
V ”
/

Single-layer Feed-forward Neural Network




‘ Nuclear Waste Disposal: Surrogate Model

Input

% Output
@?Z o

" o

Single-layer Feed-forward Neural Network

UO2 Surface Flux (mol/m2/year)
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o,

e

ANN Test Set 100 Truth-Prediction Pairs

« Standalone model, calculating fuel
matrix degradation (FMD) rates,
provides data for training

» Trained Artificial Neural Network (ANN)
with 100 neurons provides prediction

Input: Concentration of 4 environmental
species (02(aq), CO3-, H2(aq), and Fe++),
temperature, radioactive dose rate

Output: Spent fuel degradation rate

Time (years)




‘ Nuclear Waste Disposal: Surrogate Model [@

Input <107 Shale reference case - ANN FMDM
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« Implementing surrogate FMD mechanism
into a field-scale simulation

* Inexpensive, but accurate, prediction of
fuel degradation rates of each waste

10 10 10 Timegears) 10 10 10° package

UO2 Surface Flux (mol/m2/year)




2 ‘ Future Research Plan

» Geological engineering applications

Crest Line of Yucca M

v Nuclear waste disposal

v Geological storage of
natural gas

v' Geothermal energy
exploration

v Landslides

v’ Leakage of industrial
contaminants

Depleted Fields
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Question & Answer
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