Sandia
National SAND2020- 10631PE
Laboratories

Data-Driven Calibration of
Electric Power Distribution
System Models

Matthew J. Reno, and Logan Blakely

- - - - 7 ENERGY /IS4

IEEE PES Subcommittee on Big Data & Analytics for Power Systems

Sandia National Laboratories is a multimission
o 5 g o laboratory managed and operated by National
IE E E B lg D ata & A n alytl CS Tu tori al S eries Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

S (& p t cm b cr 3 O 5 2 O 2 O Energy’s National Nuclear Security

Administration under contract DE-NA0003525.



2 | Outline

» Introduction
»Overview of Data-Driven Calibration of Distribution System Models
»Use Cases

» Parameter and Topology Estimation of Low-Voltage Secondary Systems
> Phase Identification

» Identification of Service Transformer Connections
» Future Directions of Data-Driven Modeling

» Conclusions

|

T Tl



3

Introduction @)

The electric power gtid provides roughly 4000 TWh of power pet year, delivering power to critical aspects of
America’s economy, transportation, water, emergency services, telecommunications, manufacturing, defense
facilities, and residences.

Transmission System (up to 500kV) transters power throughout the U.S.
> Real-time measurements (1-3 second SCADA, PMU, etc.)

> State Estimation, Optimization, and Control

Distribution System (4kV — 35kV) connects to the customers
> Much less monitoring or control due to the size
o ~300,000 miles of transmission lines vs. ~6,000,000 miles of distribution lines

o ~20,000 substation transformers vs. ~200,000,000 service transformers

° Visibility into distribution system operations is limited, and models are prone to errors
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Electric Power Distribution Systems

Historically, distribution system model accuracy was of little concern,

rarely validated, and had limited measurements.

Many of the recent advances in smart grid technologies, proliferation of

distributed energy resources (DER), and new control strategies are on the

distribution system — electric vehicles, rooftop PV, energy storage,

microgrids, etc.

With new smart grid technologies, accurate models are critical

> Accurate PV interconnection analysis and screening

> Optimal operations and control

> Investment planning and decisions

° Improved reliability and resilience (fault location, isolation, and service

restoration)

Modern distribution system algorithms and tools are continually
improving, but their functionality is only as good as the utility’s
model of their grid.
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Distribution System Models

The distribution system has been built over many decades, historically recorded
with paper schematics for installations, upgrades, and maintenance.

Distribution System Models
> Are based on manual data entry that is prone to error and often out of date

> Contain additional complexity because they are multi-phase unbalanced with single-
phase customers. Cannot use symmetrical component single-line models from
transmission system modeling

Sources of Error
o Unlogged Or erroneous maintenance reports

° Information not initially recorded in the model

Recent additions of Advanced Metering Infrastructure (AMI), or smart meters,
provide measurements of each customer’s power consumption, and possibly
other quantities, such as voltage, that provide new insights and levels of
accuracy 1n distribution system modeling
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Common Distribution System Model Errors
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7 | Project Overview

DOE EERE Solar Energy Technologies Office (SETO) funded project “Physics-Based Data-Driven Grid
Modelling to Accelerate Accurate PV Integration”

° Physics-based — using known electrical equations and models that work with today’s power systems simulation software

(not black box)

FY19 - FY21 project to efficiently process gtid measurements and Big Data to provide a more granular
understanding of the distribution system and to substantially increase the precision and accuracy of
distribution system models — creating a fundamental change from models based on manual entry to data-

driven modeling,

Project led by Sandia National Labs, partnering
with Lawrence Livermore National Laboratory,
Electric Power Research Institute, Georgia Tech,

and CYME /Eaton
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Comparison of Distribution Modeling Methods

Conventional Methods

@anual data entry — compiling records of \

installations, upgrades, and maintenance over

decades

*Prone to errors — unlogged or erroneous
maintenance reports or entry into the model

°[ittle validation with measurements

*Often out of date with a list of changes to

\add to the model /

Physics-Based Data-Driven Modeling

éeveraging AMI data and other grid edge \

sensing to derive and validate system models
*High accuracy and fidelity — a reproduction
faithful to the original

*Granular and high resolution, multi-phase
model down to the low-voltage system

*Model dynamically adapts and automatically
updates based on system conditions
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9 Data-Driven Distribution Model Calibration

Customer Transformers
Identify which transformer
each meteris connected to
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Determinethe controls and state of
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Detailed Load Modeling

Improved spatial and temporal
resolution for phase-specific,
voltage-sensitive |load models

Phase Identification
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10 | Advantages of Different Data Sources @)
Demonstration with Utility Partners Testing with Synthetic Data
*AMI (Real Power, Reactive Power, and Voltage) *Actual measurements from customers of real and
measurements from all customers (~3500) on feeders reactive power are inserted into a distribution system

*15-minute measurement interval for a year or more model to simulate the voltages.

*Physical validation of the model is difficult and *Measurement noise is added to the simulation results

expensive. Results can be confirmed using Google of power and voltage

StreetView, satellite images, and network topology *Known errors are injected into the distribution

system model to measure the accuracy of the
algorithms to detect the model errors.
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11 | Practical Considerations for Real Data

Real data has issues such as bad data or events that should be filtered

> Data cleaning, filtering, and denoising due to failing meters or anomalous readings around outages
> Changepoint detection to filter certain events such as load transfers from other feeders, CVR events, etc..

> Handling missing data — imputation

It 1s important to replicate these 1ssues in synthetic data for algorithm development
> Analysis of utility data provides general range of the amount of frequency of missing AMI data

> Experimental testing of meters in Sandia’s AMI Lab provides expected accuracy and measurement noise

Data/metering considerations that are evaluated in synthetic data:

° Measurement Interval AMI Data Quality and Collection Recommendations.
Based on analysis of synthetic data with varying amount of error

AMI Requirement

Measurement Interval 15 - 30 minute intervals

o Data Resolution

o Meter Precision

o Meter Bias

0T o Data Resolution At least 1 decimal on voltage and
Timg: Synchromization power measurements (0.1V, 0.1kW)
° Missing data
5 o Meter Precision < 0.25% maximum noise
° Data Availability

Data Availability > 4 months of AMI data

L. Blakely, M. J. Reno, and K. Ashok, “AMI Data Quality and Collection
Method Consideration for Improving the Accuracy of Distribution System
Models,” IEEE Photovoltaic Specialists Conference (PVSC), 2019.
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12 Data-Driven Distribution Model Calibration

Customer Transformers
Identify which transformer
each meter is connected to

Setting and State Determination
Determinethe controls and state of
distributionautomationequipment

) f‘ d ay S

Parameter Estimation || 9 _
Estimate cable length and l\t*\
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Detect the state of
switches, including load
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Detailed Load Modeling
Improved spatial and temporal
resolution for phase-specific,
voltage-sensitive load models
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PV System ldentification

Background: PV systems may vary from the interconnection
plan - not interconnected, project delayed, changed size,
shading issues, gradual soiling, or module/string failures

Problem: Keeping PV interconnection databases updated is a
major challenge. Many utilities do not record parameters for
distributed PV such as their DC power rating, tilt, or azimuth.
Residential solar PV systems are generally behind-the-meter
(BTM), lacking direct measurements or observability.

For BTM PV, solar disaggregation methods can separate the
PV from the load measurements. Deep Neural Network used
to learn the signature of BTM PV to detect if there is PV,
along with its size, tilt, and azimuth.

Parameter estimation of behind-the-meter parameters that do
not have direct measurement. Partial observability requires
leveraging multiple data streams — nearby voltage
measurements, weather data, irradiance measurements, etc.

Y
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Medium-Voltage Model Calibration

Data-driven calibration of the medium-voltage primary system distribution system:

Voltage Regulator

- Estimate the regulator control

settings and tap position

Switching Capacitors

Estimate the capacitor control
settings and position

Reconfiguration Detection

Detect the state of switches and
when they changed, including
load transfers to other feeders

Meter to Transformer
Pairing

Identify which transformer each
meter is connected to
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Switching Capacitor Controls and State

Background: On the distribution system, voltage regulators and
switching capacitor banks control the voltage by switching taps or
switching on/off depending on their controls

Problem:

> Most distribution voltage regulation equipment (VRE) do not have
remote login capabilities, so verifying their settings in planning models
requires sending a crew to the device.

° For state estimation or power flow results, knowing the state of VRE
is required, but this information is often not available in historical data

By combining distribution system state estimation (DSSE), machine
learning, and Big Data from grid edge measurements, we can identify the
1) VRE settings, and 2) the state of the VRE at a given time

Control

Type: Yoltage e
Switching Mode: Three-phase id
Initial Status: Closed A
Current Status: Closed o
Monitoring

Sensor Location: Capacitor Location e

Monitored Node: 381594681
Monitored Phases: A B C
Close at: Trip at:

| 115.0 || 125.0 |{1zuu)

Determining the Tap Position

,1_.
Controller

1
1
1
i
! Output

Input

o

Determining the Capacitor State

—p  Feeder 01
138 kV —p Feeder 02

| §§ —p Feeder 03
A h .? Switch | Switch 2 [

Load|
15/20/25 MVA $ T
138-138kV  Capacitor == (apacitor

Bank 1 Bank 2

Substation Transformer

900 kKVAr 1200 kKVAr

Determining the Settings of the Switching Capacitor I



16 | Improved Spatial and Temporal Load Modeling

Background: Distribution planning and operations
uses a2 combination of load measurements and load Improved Spatial & Temporal Resolution for Phase-
allocation methods, which have significant influence Specific Voltage-Sensitive Load Modeling
on the system performance ' - TR

Problem: 1) It is challenging to fully leverage the
increased visibility to loads provided by AMI and other
emerging data streams. 2) Even with “100%
penetration” of AMI, there are many unmetered load
in the system. 3) Reactive power measurements of
loads are rare and typically very inaccurate.

Objective: Develop improved spatial and temporal
load modeling methods leveraging AMI and other
emerging data streams that are robust to incomplete
data sets.
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18 | Secondary System Parameter and Topology Estimation @

Background: Multiple customers are generally connected to the
distribution feeder through a service transformer and a low-
voltage secondary system

Motivation: A large portion of the per-unit voltage drop/raise
occurs over the secondaries. A large number of DERs and
sensors are connected to the secondary circuits

Problem: Secondary circuits are typically not modeled or
modeled with limited detail. Manual inspections require
considerable man hours and extra resources => not cost
effective, and may be hard to perform in urban areas with wiring
underground and in buildings

Objective: Use customer meter (AMI) voltage and power
measurement to resolve secondary system parameters and

topology




19 | Secondary System Parameter and Topology Estimation

Inputs: AMI data (voltage, real and reactive powet) at

15-minute intervals for 6-months to 1-year, transformer
connection

Procedure:

1. Resolve the parameters and topology for all
transformers with 2+ customers.

2. Resolve the parameters for transformers with only a
single customer by pairing them with other single-
customer transformers.

3. Pair transformers resolved in step 1 with one another to
resolve any additional parameters between the virtual
nodes where the customers meet and the transformers.

Output: Models for each low-voltage secondary system.

Compare to utility’s unverified, manually-entered
secondary model

Feeder 1, transformer 233

(@)

E 250 B
(0]
33240 B
= customer 1
9 230 - customer 2
Oct 25 Oct 26 Oct 27 Oct 28 Oct 29 Oct 30 Oct 31
2016
. 5 T T T T T T
< l
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3 | |
Q— 0 WA
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< 2016
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=
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20 | Step | @
For all customers on a transformer, find R1, R2, X1, X2

Vi—V,=1Ip Ry + 131Xy —IpyRy; — Iy X, + €

Known Unknown
= Basic concept

= Fjt R1, R2, X1, X2 values which best fit the V1-V2 fluctuations

3_
- RMSE =0.09
——tvpa |
2= i
Primary Service R, X ol R2 =097 ;
System Transformer -
[ I B0
ﬁ I > V,p.Q é Ll R2 = 0.0056
- ! R1=0.1184
& o X2 = 0.01581
X1 =0.0068
3+ |
= For comparison to utility model — —

predicted V, - V2 (using R1, X1, R2, X2)

= Rvalues were used to compute a distance
in feet of triplex cable for various types of cable (#2, 2/0, 4/0)

T Ol B 00000 |



21 | Secondary System Example

Example voltage and load for 24-hours for the 3 Step 1: 1 and 3 are paire Vitusliode

» customers on the transformer
247 | Wl"r‘ w‘?‘lr-"i‘ﬁ‘"ﬁ"ﬁ"w‘p gi.';
246 h \ J'-' |

» 'l kA 1 '.'!{'L'f

.‘?245 L ‘ih f‘v\"l wa ‘!i".wl ] R1=0.043 R1=0.043

"ol T e oF

I

243 v ]
242 1 1 1 L L
W] 5 10 15 20
hr 1 3

Step 2: Virtual Node and 2 are paired

246.13V virtual node 1 ]

\ R1 =0.043 R2 =0.018 R1=0.043
l ‘ I m ! .1{ X1 = 0.014 X1 = 0.006 X1 =0.014
Tt i | gl Wk M' * ~172 ft. ~72 ft. ~172 ft.
IR e L T | \
"o 5 10 1'5 245.93V 246.02V 245.89
Time(hours) hr
1 2 3

Parameter Estimation Results

Length (ft) Length (ft) Length
- 0. 043 0. 014 172 0. 0425 0. 0129 170 1. 18% 1.18%
0.018  0.006 72 0.0175  0.0053 70 2.7% 2.7%

0.043  0.014 172 0.0425  0.0129 170 1.18% 1.18%



22 | Transformer 233 on Feeder |

Distribution System

Parameter Estimation Imagery node DSPE vs. Model

@ customer 156 /7

O  customer 500 ,’.

virtual node 1

R1=0.066 R2=0.070£

X1=0.011Q  X2=0.0110 &
%'1« ’ -7
7 -7
// ///
// /’/
o e T

20 40 60 80 100 120
utility secondary model distance [ft]

customer 156 customer 500

DSPE results match utility model well, consistent with #2 wire.




23 | Transformer 30| on Feeder 2

Distribution System

Parameter Estimation Imery/ Model

-~

DSPE vs. Model

virtual node 1 @
008l O  customer45 q:x\\ L7
: @ customer 595 X
@ customer 595, corrected model “
0.07 .
S '
8 4
c L #
R2=0.0820 R1=0.0130 g 005 .
- N - # '\( -
X2—0008.(.2 X1-OOOO$2 g 0.04 /// rﬂ%sﬂ /,’
w / .
a o
0 0. g
D - - -
0.02 / .,/;1;@@
0.01
100 150
utility secondary model distance [ft]
customer 45 customer 595

DSPE results indicate error in utility model: customer 595’s meter is
actually at the bottom of the utility pole, not at the house.




24 | Transformer 322 on Feeder |

virtual node 4
virtual node 1 R Vi e 3

R1=0.081Q R2=0.1372 |

X1=0.0290 X2=0.0690 \ w' a2
R1=0.01602 R2=0.0880
X1=0.00692 \ X2=0.01802
customer 69 customer 92 customer 560 customer 815 customer 895
015F [ @ customer69 ///
@ customer92 R
© customer 560 [ )i .
@ customer815 ///
S @ customer 895 2 y o)
g 01°f 7
g & .
2 «
.é ’?89’&:’ o
p o
B 005} 0 = /— . . oi
o Wi DSPE results consistent with utility
s //’/ ’,/’/’ .
T model for several customers with
’ ’Z/” i -
g, ., . . complicated topology.
0 50 100 150 200 250

utility secondary model distance [ft]



25 | Step 2

Pair customers on transformers with only one customer with other solo customers

> Topology 1s always parallel — step 3 virtual node is on primary

° Should always be additional resistance beyond the transformer due to the customer being located away

from the transformer

virtual node
R1=0.069¢ R2=0.0691}
X1=0.1150 X2=0.1150
trans.145 trans.35
10kVA 10kVA
R1=0.07612 R2=0.0671)
X1=-0.02702 X2=-0.01012

! !

customer 159

transformer 355

1001t

customer 331

m ]
transformer 145

0.07 |

o

(=

&
T

=4

=}

a
T

DSPE resistance [(2]
=] =]
o (=}
w S

customer 159
customer 331

¥

74 -

s o, -
’ \1 = -
e
_ =

T gpvie

<@ 7
Q‘\‘// =
’

20 40 60 80 100

utility secondary model distance [ft]

120
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Step 3 (

Pair transformers with one another, run parameter estimation on virtual nodes created in
step 1
° Topology is always parallel — step 2 virtual node 1s on primary

> Most likely scenario 1s that virtual node from step 1 1s at transformer low side and any
found impedance will be due to transformer impedance

° In some cases, step 1 virtual node will be away from transformer

o Serial connection between customers

o Parallel connection that meets before the transformer

° It 1s important to derive the additional impedance to fully resolve the secondary circuit

Transformer size 25 37.5 75
(kVA)

Assumed resistance 1.5% 1.5% 1.2% 1.3% 1.16% 0.96% 1% 0.87%



27 | Transformers 415 and 416

Distribution System

Parameter Estimation Imageryi iadel DSPE vs. Model

0181 | @ customer22 O unadjusted |
@® customer 356 @ adjusted
virtual node 0.16 customer 425
3 @® customer 325
A o — 0.14 @® customer 883 1
R1=0.0500 R2=0.069 =
X1=0.0770 X2=0.1150 g B2 | °
m -4
Aans.415 trans.41N ® 01} #
15kVA 10kVA . $ &
final virtual node, - ‘g transformer416. o 1 008+ /’
trans 415 R2=0.085¢2 y lfll_-l . -
— ( [4)] P o
X2=-0.0160 3 o8| P
1 e - d -0
0.04 e ey
LT e TS
final virtual node, 002} 7 }\/0,‘”,“— oy =
trans 416 //:’1:::110\’"‘76‘
0 a===" L L L
0 50 100 150

utility secondary model distance [ft]

Customers 325 and 883 (on transformer 416) had a virtual node away from
the transformer, which is accounted for by pairing transformer 415 with
416.

1 L e OB "



28 | Results for Entire Feeders

150 1 T T T T

m—— Feeder 1

m— Feeder 2
Feeder 3

— — —100ft of #2

100

number of customers

0 0.05 0.1 0.15 0.2 0.25 0.3
DSPE found resistance [{2]

Customers often vary significantly from a simple 100ft of #2 assumption:
up to three times this value was common.



29 | Parameter Estimation Results

The results for the test circuit (1209 residential customers):
o Error is defined as Estimated Value — Actual Value

Distribution of % errors in R and X Distribution of % errors in length

250

140

I Resistance
[ JReactance

120

200

100

150
80 |

100 | i

Number of customers
Number of customers

40 t

50 E
20 F
0 . | | | 0

-10 -8 -6 -4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10 12
Percentage Errorin R Percentage Error in Length

| R%Error | X%Error | Length (ft)_
1.2064 % 2.6187% 1.26
1.5400%  3.284% 1.4
1.653%  3.5010% 1.5




30 | Sensitivity Analysis

Amount of Data _
Fec?der1,t‘ransforrlner233‘ ‘ Data ReSOlUt'IOn

0.074
s cUSTOMET 156 +5% - Feeder 1, transformer 233
L — t 500| | -, T T
0.072 customer 8
£ 0.07 £
g W 4 0.0700 B [
) +5% © 0.065 [
5 0.068 lél_l
@ 2 006 : . . : .
£ 0.066 J 5% 10 5 2 1 05 02 0.1
o e voltage resolution [in V]
1%}
© 0.064 S
3 — customer 156
0.062 1\ 1 5% = 0.07 [ s customer 500 =
k7]
(2]
0.06 1 L L L L . | © 0.0865
“796 2000 4000 6000 8000 10000 12000 14000 17023 o
number of data points 8 0.06 - L I 1 |
2 1 0.5 0.25 0.12 0.08 0.04
Random Erro I’S real power resolution [in kW]
A 11 Ul . =
10 : ‘ : : =
3
§ 5 1 § 007
o 7]
g 0 .AWW ?
= ® 0.065
o
X 51 1 E
; ‘ ; ‘ 2 006
-10 no meas. 1 0.5 0.25 0.12 0.08 0.04

-
o

8 6 4 2 0
random error [% of average V, W, kVar]

* Over all customers, found that ~8,000 data points (<3 months of 15-

min data) was sufficient to accurately derive parameters and topology.
* Need about 2V and 0.25kW or better resolution; low kVAr sensitivity
 Random errors in measurements => random errors in DSPE

reactive power resolution [in kVAr]
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Unknown AMI Power Factor (@)

Utilities may not record reactive power measurements from

AMI 5 Mclaanl Atl)sollutcla Elrrolr wlrt Il°erlcenlta‘c|1e I?evliatlionl in XIR raltiol
Parameter estimation can still be performed without reactive 4| — s R
power, if the X/R ratio of the conductors is known (based o} meedanee .
on cable type) 35 |

° As a side note, using the correct X/R of the cable improves the 30

parameter estimation results — 1.0% MAE vs. 1.5% MAE g s

° Accuracy is very sensitive to having the correct X/R ratio o0 |
It also only works if the X/R is low and power factor is i
high. Errors are large for parameter estimation across o
transformers if we do not have reactive power 5 i '
measurements. 0 L0 0 B o o e e e s e e

©HBODPALDHODP NP NN, P
NIV AN S LA R R I R N

Percentage of True X/R ratio

H o % b D
NP NN
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|

Problem Statement: Given a set of customers, identify the correct phasing for each customer

- Phase Identification methods generally fall into
three categories, hardware-based, power-based, . ]
or voltage-based methodologies

- ~40 publications on phase identification methods

Percentage of Total Publications by Method Type

Voltage-based

Power-based

Is the customer
connected to A,
B, or C?

Hardware-based
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Hardware Methods:
(uPMU devices, Signal injection)
Advantages:
- Highly accurate and well-established
Disadvantages:
- Expensive equipment
- Large numbers of man-hours are required

Literature Review Methods and Required Data

V - Voltage

P - Real Power

Q - Reactive Power
H - Hardware

SE - State Estimation

=
(o)}

(=
i

=
N

=
o

()

Power-Based Methods:
(Load summing methods, Salient features)
Advantages:
- Most utilities record this data
- Do not require extensive man-hours
- Disadvantages:
- Often sensitive to less than 100% AMI coverage
- Recent work shows these methods to be less
accurate in general than hardware-based or
voltage-based methods

Voltage-Based Methods:
(Correlations between customers)
Advantages:

Number of Methods

(o0]

P H
Data Stream

- Robust to less than 100% AMI coverage
- Shown to be more accurate in general than power-
based methods
- Do not require extensive man-hours
- Disadvantages:
- Fewer utilities are currently recording this data
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Conceptually we understand from experience and the physical design of the system, that
customers connected to the same wire (Phase A, Phase B, or Phase C) probably vary together.

Phase A

Phase B

Phase C

Advanced Metering Infrastructure (AMI) meters provide timeseries voltage measurements at each residence
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An ensemble algorithm using spectral clustering
is used to create a co-association matrix which
is used to group customers by phase

Repeat

Testing with Differing Percentages of Mislabeled Customers
for each 100 ] !
i gs \
sliding ]
window X
80 \
\
\
\
\
- \
S \
= \
oy \
e \
\
g 40 \
\
\
\
\
\
20 4 \
\
\
\
— Substation CC “
01 == Voting o e e
1 5 10 15 20 25 30 35 40 45 50 60 70 80 % 100
Percentage of Customers with Incorrect Injected Phase Labels
Assignment of
predicted phases to
each customer

S

Choose how to assign final predicted phases based on
the availability (and trust) in existing utility phase
labels
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Apply spectral clusteringto  Use the cluster set information to Use the adjacency matrices (Adj;) from each Divide the co-association matrix by the
a cleaned window of data create an adjacency matrix, Adj, window in time to update the co-association matrix of customer window counts
Customers matrix Customers Customers
Number of Clusters (k) = 5 34567 89 < < < 34567289 12345678910
Spectral Clustering Sets: 000O0OOO O = = s 1000000000 10 10 9 10 10 1010 9 10 ¢
ky={12} 000O0OGOGO O § e 3 0000000O0DO 9 910 10 1010 9 10 |2
0
k, ={3,5)} o.oooooQ 2 N i 34000008, 8999980980 Normalized
ky = (7.8} e o.oooog 320000884 999989 NE ==, association
3 ’ 0 00O 013 40000883 101010910% Matrix
ey =146} . o0o000[3 Adj, [+ |Adjiws[#-+++| adjy [ 0000[HS 1010 9 10 {3 &
ks ={9,10} l.deated cells for this 10 o 7300 10 9 100/
window shown in green 0 ol ' s 9 10
This process is repeated for all available windows 9 (4 9 9 K
(10 windows in this example) 10 10 10
Normalized Co-Association Matrix Apply spectral clustering to Majority Vote Based on
Biistomere obtain the final sets Utility Labels
123 4 5 678 9 10 Final Number of Clusters = 3
10 0 0 000 0 O ¥
00 0 000 0 0 fv final, final, final;
03804 0 00 0 0 =8 f4 If Using
c
050200 0 o0 B g. fma11 — { 1,2 } Labels
L 2_’fina12={3,4,5,6} m—> B
00 0 ° Il nal = {7,89,10}
0703 0 [ final; =789, ABC ABC ABC
0.2 0.2 B Assigned  Assigned  Assigned
0.6 = Phase A Phase B Phase C

10




38 | Phase ldentification - Results

Testing Circuits - Sandia:
- Synthetic Data:
- EPRI Ckt 5 - 1379 Residential Meters

- Achieved 100% accuracy under rigorous testing scenarios

- Utility Data:
- 1055 Residential Meters from a utility in the Northeastern
US.
- Predicted 143 customers (~13%) to be on a different phase EPRI Gk &
from the original utility model

Testing Circuits - CYME:
- Synthetic Data:

L

- Achieved >99% accuracy on all systems Network Nodes | AMI | Substation Tafine
EPRI’s CKT5 3003 N{gt;;s Reguéators Regu(l)ators
- Utility Data: T PR T T i :
- 209 Residential Meters from a utility in the Northeastern US. o e T e o (e 1

- Predicted 35 customers to be on a different phase from the
original utility model, 29 from one lateral and 6 from
individual transformers

1: Figure Citation: J. Fuller, W. Kersting, R. Dugan, and S. C. Jr., “Distribution Test Feeders,” IEEE PES AMPS DSAS Test Feeder Working Group, 2013. [Online]. Available: http:/sites.ieee.org/pes-testfeeders/.
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Phase ldentification - Results

Original Utility
Labeling

£

Proposed
Algorithm ;
Predictions = !

£

Purple and Orange marked meters are
incorrectly labeled in the original
utility model

S —

Actual Labeling
Verified in
Street View

o §

39

(@)

T Ol B 00000 |
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Phase lIdentification - Results

Left-hand transformer labeled in the
utility model as Phase A, but predicted
to be Phase C by our phase identification
algorithm

Right-hand transformer is the next
Phase C transformer to the North
(labeled and predicted to be C) is
clearly connected to the same wire as
the left-hand transformer

Not shown, the next Phase C
transformer to the south is also
connected to the same wire
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Note the group of Phase B (green) ESC-GIS eigenvectors ¢ phase A (Initial)
customers clustered with the majority o ~{emeleleing.
Phase C (red) customers in the right-hand

cluster
0.200

0.175
This lateral was identified by the phase 0.150

identification algorithm as incorrect and 3133

the predicted labeling of Phase C was 0.075
verified by the utility. 0.050

0.025
0.000

0.03

The utility reported that they had planned to move the lateral to Phase B from Phase C and
changed the labeling in the model but did not physically move the lateral. Thus the 29
customers on that lateral remain on Phase C as predicted by the phase identification
algorithm and shown in the figure.

Figure Credit: Francis Therrien - CYME | Eaton
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Problem Statement: Given AMI data from a set of customers, group the customers by transformer

?

-
f’

Cust 1

AMI
Timeseries
Data

Unknown Customer

AMI
Timeseries
Data

?

- Ny, °
- —
- |? ~

Cust 4

AMI
Timeseries
Data

\\

Cust 3

Which
transformer is
this meter
connected to?

AMI
Timeseries
Data

g

e,
= F
. -

e




43 | Meter to Transformer Task — Error Flagging Methodology

Correlation Coefficient analysis is used to flag
transformer with customer connection labeling
errors

9

— >

L S L
VTV

Repeat for
each
Transformer

Flag
Transformer

Cust 4
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A significant concern with distribution system model Utility Data Testing
validation is the false positive case, where a
methodology injects new errors into a model

Original Utility Labeling

Synthetic Data Testing

L a0
AT
o 901 —— 0% Max Noise o 7 n
| . ot - e -
g — — — 0.1% Max Noise o / 35 g
. . /
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" e
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D 100+ o
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£ 5 E
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0 L0
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Google Earth
©2018 Coogle
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A pairwise linear regression model is fit
between customers to estimate the
goodness of fit, reactance distance, and
resistance distance for the customers

Vi=V2=PiR1 + Q1X1 — PRy, — Q2X;
Fit regression model to calculate
- measure of fit, MSE or R?
- Reactance Distance (X; + X3)
- Resistance Distance (R; + R3)
- X and R represent the ‘distance’ from the AMI
meters to the nearest point the two meters are
electrically connected (@)

When the regression fit (@) is good there are two
options: Customerson the same transformer (left),
single customers on transformers (right)

The difference in these two cases is evidentin the
reactance distance (X; + X5)

‘ .\ ‘
/QN +

\m

M%\' "3/”

v oy

Customer 1 Customer 2
VP, Q4 V,Py,Q4

The regression fit ( @ ) is poor if there is physics, like
voltage drop due to other customers on the
transformer (right), or topology, like across phases
(left)

|



Meter to Transformer Task - Pairing Methodology and Results

* R%?=0.999
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This method works well in the base case (unmanipulated data)
however an ongoing research challenge is adapting this method to
work in the under the various data issues mentioned in previous

Meter to Transformer Pairing Accuracy

—Customer Grouping Accuracy
—Transformer Accuracy
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slides
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Many innovations in Al and machine learning have not yet been applied to the power systems domain
As improvements and breakthroughs happen in other domains, those concepts can be adjusted and applied to solve power
systems problems
Similarly, lessons learned from other domains can be used to avoid similar situations

Integration of Physics-based Constraints into Al
- Leverage existing knowledge (physical laws, power flow, etc) in Al-based

algorithms N
- Achieve more accurate results and faster training High §
=
]
on
- SNL Project — “REDLY: Resilience Enhancements through Deep Learning Yields” b g
. 2 Theory-guided
- loss = ‘model-based’loss + physics-based’loss gl = ks e st
Y S
- loss = lossyqatq (Xb; yc) + (HlOSSKCL (Xc) + alossgy, (Xc)) 5 é
(Kirchoff’s Current Law) (Kirchoff’s Voltage Law) 2
S
[(}]
35
E 1 . bl AI d U . f . Low Data Science Models
xplainable Al and Uncertainty .Quant.l ication — — e
- Understand Why a partlcular prdlCthﬁ/dCClSlOﬂ was glveﬂ A. Karpatne et al., “Theory-guided Data Science: A New Paradigm for
- Understand the error bounds on predictions/decisions e O o, 2318 2991 2000, o2

- SNL Project - “Opening the ‘Black Box’: An Experimentally-V alidated
Explainable Machine L earning Framework”
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Distributed, AI-based Controls using Fog Computing

- Create resilient systems in the event of communication loss

- Accelerate systems with low latency because processing happens
physically close to sensors

- SNL Project — “HEDGES: High-Security Edge Computing for Smart Sensor
Systems”

Semi-Supervised, Few-Shot Learning, or
Synthetically-Generated Training Data

- Learn with few or no examples of critical events
- Generate realistic new data from existing samples

- SNL Project — “Semi-Supervised Bayesian 1ow-Shot
Learning for Explosive Device Characterization”

Thousands

jouwieu| / 8100

Reliable Connectivity Clouqd Location Awareness
Computing Power cale Mobility Support
Data Longevity el Geo distribution
Data Storage Responsive

Interactive
Delay litter
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| $8820y

<
S

oy

Billions

—
®
3
2
- ]
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A. Yousefpour et al., “All One Needs to Know About Fog Computing and Related Edge
Computing Paradigms: A Complete Survey,” J. Syst. Archit., vol. 98, pp. 289-330, Sep. 2019.
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O There are many promising applications of Big Data and Machine Learning in power
systems.

o It 1s an exciting time to be at this intersection — new algorithms, large datasets, computing power

O There are many challenging problems yet to be solved with some fascinating future
research directions in big data and machine learning:

° Integration of Physics-based Constraints into machine learning algorithms

° Explainable Al and Uncertainty Quantification

° Distributed Al-based Controls using Fog Computing

> Semi-supervised, Few-shot learning, or Synthetically Generated Training Data

O Best results require integration between Big Data experts and power system experts
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Questions?

@ Sandia National Laboratories

Electric Power Systems Research Group

Matthew Reno Logan Blakely
R&D S&E, Electrical Engineering R&D S&E, Computer Science
mjreno@sandia.gov Iblakel@sandia.gov

@)
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