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3 I Introduction

The electric power grid provides roughly 4000 TWh of power per year, delivering power to critical aspects of
America's economy, transportation, water, emergency services, telecommunications, manufacturing, defense
facilities, and residences.

Transmission System (up to 500kV) transfers power throughout the U.S.
o Real-time measurements (1-3 second SCADA, PMU, etc.)

o State Estimation, Optimization, and Control

Distribution System (4kV — 35kV) connects to the customers
Much less monitoring or control due to the size

O —300,000 miles of transmission lines vs. —6,000,000 miles of distribution lines
. —20,000 substation transformers vs. —200,000,000 service transformers

O Visibility into distribution system operations is limited, and models are prone to errors
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4 I Electric Power Distribution Systems

Historically, distribution system model accuracy was of little concern,

rarely validated, and had limited measurements.

Many of the recent advances in smart grid technologies, proliferation of

distributed energy resources (DER), and new control strategies are on the

distribution system — electric vehicles, rooftop PV, energy storage,

microgrids, etc.

With new smart grid technologies, accurate models are critical

o Accurate PV interconnection analysis and screening

o Optimal operations and control

Investment planning and decisions

• Improved reliability and resilience (fault location, isolation, and service
restoration)

Modern distribution system algorithms and tools are continually

improving, but their functionality is only as good as the utility's

model of their grid.
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5 Distribution System Models

The distribution system has been built over many decades, historically recorded
with paper schematics for installations, upgrades, and maintenance.

Distribution System Models

Are based on manual data entry that is prone to error and often out of date

- Contain additional complexity because they are multi-phase unbalanced with single-
phase customers. Cannot use symmetrical component single-line models from
transmission system modeling

Sources of Error

Unlogged or erroneous maintenance reports

Information not initially recorded in the model

Recent additions of Advanced Metering Infrastructure (AMI), or smart meters,
provide measurements of each customer's power consumption, and possibly
other quantities, such as voltage, that provide new insights and levels of
accuracy in distribution system modeling
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6 Common Distribution System Model Errors
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7 Project Overview

DOE EERE Solar Energy Technologies Office (SETO) funded project "Physics-Based Data-Driven Grid
Modelling to Accelerate Accurate PV Integration"

Physics-based — using known electrical equations and models that work with today's power systems simulation software
(not black box)

FY19 - FY21 project to efficiently process grid measurements and Big Data to provide a more granular
understanding of the distribution system and to substantially increase the precision and accuracy of
distribution system models — creating a fundamental change from models based on manual entry to data-
driven modeling.

Project led by Sandia National Labs, partnering
with Lawrence Livermore National Laboratory,
Electric Power Research Institute, Georgia Tech,
and CYME/Eaton
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8 I Comparison of Distribution Modeling Methods

Conventional Methods

Manual data entry — compiling records of

installations, upgrades, and maintenance over
decades

Prone to errors — unlogged or erroneous
maintenance reports or entry into the model

Little validation with measurements

Often out of date with a list of changes to
add to the model

Physics-Based Data-Driven Modeling

Leveraging AMI data and other grid edge
sensing to derive and validate system models

High accuracy and fidelity — a reproduction
faithful to the original

Granular and high resolution, multi-phase
model down to the low-voltage system

Model dynamically adapts and automatically

updates based on system conditions



9 1
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10 Advantages of Different Data Sources

Demonstration with Utility Partners

AMI (Real Power, Reactive Power, and Voltage)
measurements from all customers (-3500) on feeders

15-minute measurement interval for a year or more

-Physical validation of the model is difficult and
expensive. Results can be confirmed using Google
StreetView, satellite images, and network topology.

Feeder 3

Testing with Synthetic Data

•Actual measurements from customers of real and
reactive power are inserted into a distribution system
model to simulate the voltages.

•Measurement noise is added to the simulation results
of power and voltage

°Known errors are injected into the distribution
system model to measure the accuracy of the
algorithms to detect the model errors.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

- Commercial
  Residential

pvl

1



11 I Practical Considerations for Real Data

Real data has issues such as bad data or events that should be filtered
- Data cleaning, filtering, and denoising due to failing meters or anomalous readings around outages

Changepoint detection to filter certain events such as load transfers from other feeders, CVR events, etc..

- Handling missing data — imputation

It is important to replicate these issues in synthetic data for algorithm development
O Analysis of utility data provides general range of the amount of frequency of missing AMI data

O Experimental testing of meters in Sandia's AMI Lab provides expected accuracy and measurement noise

Data/metering considerations that are evaluated in synthetic data:
n Measurement Interval

o Data Resolution

Meter Precision

Meter Bias

Time Synchronization

Missing data

Data Availability

L. Blakely, M. J. Reno, and K. Ashok, "AMI Data Quality and Collection
Method Consideration for Improving the Accuracy of Distribution System
Models," IEEE Photovoltaic Specialists Conference (PVSC), 2019.

AMI Data Quality and Collection Recommendations.
Based on analysis of synthetic data with varying amount of error

AM! Requirement

Measurement Interval

Data Resolution

Meter Precision

Data Availability

15 - 30 minute intervals

At least 1 decimal on voltage and
power measurements (0.1V, 0.1kW)

< 0.25% maximum noise

> 4 months of AMI data



12 I
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1 3 I PV System Identification

Background: PV systems may vary from the interconnection
plan - not interconnected, project delayed, changed size,
shading issues, gradual soiling, or module/string failures

Problem: Keeping PV interconnection databases updated is a
major challenge. Many utilities do not record parameters for
distributed PV such as their DC power rating, tilt, or azimuth.
Residential solar PV systems are generally behind-the-meter
(BTM), lacking direct measurements or observability.

For BTM PV, solar disaggregation methods can separate the
PV from the load measurements. Deep Neural Network used
to learn the signature of BTM PV to detect if there is PV,
along with its size, tilt, and azimuth.

Parameter estimation of behind-the-meter parameters that do
not have direct measurement. Partial observability requires
leveraging multiple data streams — nearby voltage
measurements, weather data, irradiance measurements, etc.

PV System
Locations?

Size?
Tilt?

Azimuth?
Volt-var?



14 I Medium-Voltage Model Calibration

Data-driven calibration of the medium-voltage primary system distribution system:

Voltage Regulator

Estimate the regulator control
settings and tap position

Estimate the capacitor control
settings and position

,

Detect the state of switches and
when they changed, including
load transfers to other feeders
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15 I Switching Capacitor Controls and State

Background: On the distribution system, voltage regulators and
switching capacitor banks control the voltage by switching taps or
switching on/off depending on their controls

Problem:

Most distribution voltage regulation equipment (VRE) do not have
remote login capabilities, so verifying their settings in planning models
requires sending a crew to the device.

o For state estimation or power flow results, knowing the state of VRE
is required, but this information is often not available in historical data

By combining distribution system state estimation (DSSE), machine
learning, and Big Data from grid edge measurements, we can identify the
1) VRE settings, and 2) the state of the VRE at a given time

Determining the Settings of the Switching Capacitor I
Control

Type: Noltage 

Switching Mode: Three-phase

Initial Status: Closed v

Current Status: Closed

Monitoring

v

Sensor Location: Capadtor Louttion

Monitored Node: 381591881

Monitored Phases: 2 A 2 8 C

Close at: Trip at:

115.0 125.0 (120y)

Determining the Tap Position

Input

Conti oller

Output

Determining the Capacitor State

138 kV

Substation Transformer

15/20/25 MVA

138-13.8 kV

 ► I et-der

 ► Feeder 02

 10. [ceder 03

Switch I Switch 2
•
L

Capacitor °14‘ Tcapacitor
Bao vAnkkl r Bank 290 

1200 kVAr
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16 I Improved Spatial and Temporal Load Modeling

Background: Distribution planning and operations
uses a combination of load measurements and load
allocation methods, which have significant influence
on the system performance

Problem: 1) It is challenging to fully leverage the
increased visibility to loads provided by AMI and other
emerging data streams. 2) Even with "100%
penetration" of AMI, there are many unmetered load
in the system. 3) Reactive power measurements of
loads are rare and typically very inaccurate.

Objective: Develop improved spatial and temporal
load modeling methods leveraging AMI and other
emerging data streams that are robust to incomplete
data sets.

1Improved Spatial Et Temporal Resolution for Phase-
Specific Voltage-Sensitive Load Modeling

W
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18 I Secondary System Parameter and Topology Estimation

Background: Multiple customers are generally connected to the
distribution feeder through a service transformer and a low-
voltage secondary system

Motivation: A large portion of the per-unit voltage drop/raise
occurs over the secondaries. A large number of DERs and
sensors are connected to the secondary circuits

Problem: Secondary circuits are typically not modeled or
modeled with limited detail. Manual inspections require
considerable man hours and extra resources => not cost
effective, and may be hard to perform in urban areas with wiring
underground and in buildings

Objective: Use customer meter (AMI) voltage and power
measurement to resolve secondary system parameters and
topology

7r !i v
I 
ia



19 I Secondary System Parameter and Topology Estimation

Inputs: AMI data (voltage, real and reactive power) at
15-minute intervals for 6-months to 1-year, transformer
connection

Procedure: 
Resolve the parameters and topology for all
transformers with 2+ customers.

Resolve the parameters for transformers with only a
single customer by pairing them with other single-
customer transformers.

Pair transformers resolved in step 1 with one another to
resolve any additional parameters between the virtual
nodes where the customers meet and the transformers.

Output: Models for each low-voltage secondary system.
Compare to utility's unverified, manually-entered
secondary model

Feeder 1, transformer 233
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20 Step I

For all customers on a transformer, find R1, R2, X1, X2

— V2 = IR1R1 — 1R2R2 — 1x2x2 E

Known Unknown
• Basic concept

• Fit R1, R2, X1, X2 values which best fit the V1-V2 fluctuations

3

2

Primary

System

Service

Transformer

V R,X

R,X

R,X

-2

-3

• For comparison to utility model

• R values were used to compute a distance
in feet of triplex cable for various types of cable (#2, 2/0, 4/0)

-3 -2 -1 0 1 2

predicted V1 - V2 (using R1, X1, R2, X2)
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21 I Secondary System Example

Example voltage and load for 24-hours for the 3
customers on the transformer

24B  
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12 245

3
244 -
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5

le 15

10 15

lime(hours)
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Step 1: 1 and 3 are paire

R1 = 0.043

X1 = 0.018

—172 ft.

Step 2: Virtual Node and 2 are paired
246.13V

245.93V e"...."...°F°

Parameter Estimation Results
1

R1 = 0.043

X1 = 0.014

—172 ft.

Virtual Node

R2 = 0.018

X1 = 0.006

—72 ft.

246.02V

2

Meter #

MiErr
M'E'r

R X Length (ft) R X Length (ft) R Length
0.043 0.014 172 0.0425 0.0129 170 1.18% 1.18%
0.018 0.006 72 0.0175 0.0053 70 2.7% 2.7%
0.043 0.014 172 0.0425 0.0129 170 1.18% 1.18%

R1 = 0.043

X1 = 0.018

—172 ft.

3

virtual node 1

R1 = 0.043

X1 = 0.014

—172 ft.

245. 89

3



22 I Transformer 233 on Feeder I

Distribution System
Parameter Estimation
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23 I Transformer 301 on Feeder 2

Distribution System
Parameter Estimation

customer 45

virtual node 1

R2=0.082.? R1=0.013Q

X2=0.008Q X1=0.000H?

customer 595

Imagery/Model
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DSPE results indicate error in utility model: customer 595's meter is
actually at the bottom of the utility pole, not at the house.
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24 I Transformer 322 on Feeder I

virtual node 4
virtual node 1

R141.02211
X1=6.06011

R14.06111 R24.13711
X1=0.02911 X2=0 06911

R2.13211
X2=0.01811

R14.01611
X1=0.00611

virtue! node 2

R2=0.088n
X2=0.01812

Z 1 \
customer 69 customer 92 ctstomer 560 customer 815 customer 895

0.15

,c=

(63

0_
(/)

0.05

• customer 69
• customer 92

0 customer 560

• customer 815

• customer 895

Z

4
4.is`

1/

vre

2-11314-

„.•-• -416,Ntre
-/

50 100 150 200 250

utility secondary model distance [ft]

DSPE results consistent with utility
model for several customers with
complicated topology.



25 Step 2

Pair customers on transformers with only one customer with other solo customers
Topology is always parallel — step 3 virtual node is on primary

Should always be additional resistance beyond the transformer due to the customer being located away
from the transformer

virtual node

R1=0.0699

x1=0.1159

trans.145tr 

10kVA

R2=0.069i_?

X2=0.1 159

N Ttrans.355

10kVA

R1=0.076C2 R2=0.067?

X1=-0.0279 X2=-0.0109

customer 159 customer 331
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o
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26 I Step 3

Pair transformers with one another, run parameter estimation on virtual nodes created in
step 1

c' Topology is always parallel — step 2 virtual node is on primary

° Most likely scenario is that virtual node from step 1 is at transformer low side and any
found impedance will be due to transformer impedance

In some cases, step 1 virtual node will be away from transformer
Serial connection between customers

° Parallel connection that meets before the transformer

0 It is important to derive the additional impedance to fully resolve the secondary circuit

Transformer size
(kVA)

3 5 10 15 25 37.5 50 75

Assumed resistance 1.5% 1.5% 1.2% 1.3% 1.16% 0.96% 1% 0.87%



27 I Transformers 4 I 5 and 4 I 6

Distribution System
Parameter Estimation

final virtual node,
trans 415

virtua l node

R1 11.115011 R2).0694
X1=0.07711 X2=0.115

"rnineA15 trans 41 ir
15kVA 10kVA

R2=0.085?

X2=-0. 016!?

1
final virtual node,

trans 416

Imagery/Model
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0.14

8 0.12
co
V) 0.1

II' 0.08

0 0.06

0  
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DSPE vs. Model
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• customer 356

cu stomer 425
• customer 325
• customer 883

Air

0 unadjusted

• adjusted

0 50 100 150

utility secondary model distance [ft]

Customers 325 and 883 (on transformer 416) had a virtual node away from
the transformer, which is accounted for by pairing transformer 415 with
416.

t t



28 I Results for Entire Feeders

150  

'cr) 1 00

E
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0.05 0.1 0.15 0.2

DSPE found resistance [Q]

Feeder 1

Feeder 2

Feeder 3

— — — 100ft of #2

0.25 0 3

Customers often vary significantly from a simple 100ft of #2 assumption:
up to three times this value was common.



29 I Parameter Estimation Results

The results for the test circuit (1209 residential customers):
° Error is defined as hstimated Value — Actual Value
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30 I Sensitivity Analysis

0.074
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Feeder 1, transformer 233
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Data Resolution
Feeder 1, transformer 233
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voltage resolution [in V]
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1 0.5 0.25 0.12 0.08 0.04

real power resolution [in kW]

•
0 07 - 
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0_

5

no meas 0.5 0.25 0.12 0.08 0.04

reactive power resolution [in kVAr]

• Over all customers, found that -8,000 data points (<3 months of 15-
min data) was sufficient to accurately derive parameters and topology.

• Need about 2V and 0.25kW or better resolution; low kVAr sensitivity
• Random errors in measurements => random errors in DSPE



31 I Unknown AMI Power Factor

Utilities may not record reactive power measurements from
AMI

Parameter estimation can still be performed without reactive
power, if the X/R ratio of the conductors is known (based
on cable type)
o As a side note, using the correct X/R of the cable improves the
parameter estimation results — 1.0% MAE vs. 1.5% MAE

o Accuracy is very sensitive to having the correct X/R ratio

It also only works if the X/R is low and power factor is
high. Errors are large for parameter estimation across
transformers if we do not have reactive power
measurements.
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33 Phase Identification - Introduction

Problem Statement: Given a set of customers, identify the correct phasing for each customer

- Phase Identification methods generally fall into
three categories, hardware-based, power-based,
or voltage-based methodologies

- -40 publications on phase identification methods

Percentage of Total Publications by Method Type

Power-based
25.0%

Voltage-based

25.0%

Is the customer
connected to ,

, or ?

7P

Hardware-based
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Hardware Methods:
(µPMU devices, Signal injection)

Advantapes•
- Highly accurate and well-established

Disadvantages:
- Expensive equipment
- Large numbers of man-hours are required

16

in 14
-a
o
-C 12
4.J
0

2 lo

o

Literature Review Methods and Required Data

V + Sub

V + Top

V - Voltage
P - Real Power
Q - Reactive Power
H - Hardware
SE - State Estimation

P Only

P H SE

Power-Based Methods:
(Load summing methods, Salient features)

Advantages:
- Most utilities record this data
- Do not require extensive man-hours

Disadvantages:
Often sensitive to less than 100% AM! coverage
Recent work shows these methods to be less
accurate in general than hardware-based or
voltage-based methods

Voltage-Based Methods:
(Correlations between customers)

Advantages:
Robust to less than 100% AMI coverage
Shown to be more accurate in general than power-
based methods

- Do not require extensive man-hours
Disadvantages:

- Fewer utilities are currently recording this data
Data Strea m
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Conceptually we understand from experience and the physical design of the system, that
customers connected to the same wire (Phase A, Phase B, or Phase C) probably vary together.
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Phase B Connection

Advanced Metering Infrastructure (AMI) meters provide timeseries voltage measurements at each residence
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Select a 'window' of data
and remove customers with

missing datapoints

Spectral clustering of voltage
timeseries

Update pairwise weight
matrix ®

Spectral clustering of weight
matrix for final clusters

Option #1
Use Utility
Labels

0

Repeat
for each
sliding
window

An ensemble algorithm using spectral clustering
is used to create a co-association matrix which

is used to group customers by phase
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Option #2
Use Substation

Voltages

Assignment of
predicted phases to
each customer

Testing with Differing Percentages of Mislabeled Customers

— Substation CC

-- Voting

i
1
t
u

i i 16 115 26 2'5 36 is 46 i5 56 io 70 80 90

Percentage of Customers with Incorrect Injected Phase Labels
160

Choose how to assign final predicted phases based on
the availability (and trust) in existing utility phase

labels



37 I Phase Identification - Methodology

Apply spectral clustering to

a cleaned window of data

Number of Clusters (k) = 5

Spectral Clustering Sets: 0 0 0 0 0

Use the cluster set information to

create an adjacency matrix, Adjt

Customers

2 3 4 5 6 7 8 9 10

={1,2} 00000

k2 = 3,5} o

k3 =

k4 =
7,8
4,6
}
}

0 0

o o

k5 ={9,10} Updated
window

cells for this

shown in green

This process is repeated for all available windows

(10 windows in this example)

Normalized Co-Association Matrix
Customers

5 6 7 8 9 10

10 0 0 000 0 0

0 0 0 0 0 0 0 0

0.38 0.4 0 0 0 0 0

0.5 0.2 0 0 0 0

0.4 0 0 0 0

0 0 0 0

0.7 0.3 0

0.2 0.2

0.6

Use the

window

adjacency

in time

matrices

to update

(Adjt) from each

the co-association

matrix Customers

Divide the co-association matrix by the

matrix of customer window counts

Customers
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Apply spectral clustering to
obtain the final sets

Final Number of Clusters = 3
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Phase Identification - Results

Testing Circuits - Sandia:
- Synthetic Data:

- EPRI Ckt 5 - 1379 Residential Meters
- Achieved 100% accuracy under rigorous testing scenarios

Utility Data:
- 1055 Residential Meters from a utility in the Northeastern

US.
- Predicted 143 customers (-13%) to be on a different phase

from the original utility model

Testing Circuits - CYME:
- Synthetic Data:

- Achieved >99% accuracy on all systems

Utility Data:
- 209 Residential Meters from a utility in the Northeastern US.
- Predicted 35 customers to be on a different phase from the

original utility model, 29 from one lateral and 6 from
individual transformers

• Substation

s32, Photo Voltaic System

t. + Capacitor

EPRI Ckt 51

Network Nodes AMI
Meters

Substation
Regulators

Inline
Regulators

EPRI's CKT5 3003 1373 0 0
North #1 2369 615 1 3
North #2 4065 963 1 6
South 1778 447 0 1

Figure Credit: Francis Therrien - CYME I Eaton

1: Figure Citation: J. Fuller, W. Kersting, R. Dugan, and S. C. Jr., "Distribution Test Feeders," IEEE PES AMPS DSAS Test Feeder Working Group, 2013. [Online]. Available: http://sites.ieee.org/pes-testfeeders/.
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Purple and Orange marked meters are
incorrectly labeled in the original

utility model

39
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Phase C Transformer

to the North

Labeled as

Phase A

-
Predicted anc

Verified to_

:Ziaiiiii

14

Phase 

C.

.

Left-hand transformer labeled in the
utility model as Phase A, but predicted
to be Phase C by our phase identification
algorithm

Right-hand transformer is the next
Phase C transformer to the North
(labeled and predicted to be C) is
clearly connected to the same wire as
the left-hand transformer

Not shown, the next Phase C
transformer to the south is also
connected to the same wire
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Note the group of Phase B (green)
customers clustered with the majority
Phase C (red) customers in the right-hand
cluster

This lateral was identified by the phase
identification algorithm as incorrect and
the predicted labeling of Phase C was
verified by the utility.

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

ESC-GIS eigenvectors • Phase A (Initial)
, • Phase B (Initial)

• Phase C (Initial)

0 Selit

-0.010

4111111r

;

0100.
0.005

0.000
-0.005

0.015
0.00

0.01
0.02

0.03

The utility reported that they had planned to move the lateral to Phase B from Phase C and
changed the labeling in the model but did not physically move the lateral. Thus the 29
customers on that lateral remain on Phase C as predicted by the phase identification
algorithm and shown in the figure.

Figure Credit: Francis Therrien - CYME l Eaton



42 I Meter to Transformer Task - Introduction

Problem Statement: Given AMI data from a set of customers, group the customers by transformer

?
006

•00
.101

4--
Single-Phase

Transformer 1

Unknown Customer

AMI
Timeseries

Data

,.......,„,... 17 aft.

Cust 1

AMI

Timeseries
Data

 [ 

?
%ay

411/4,
al%

Single-Phase

Transformer 2

t
Cust 4

AMI

Timeseries
Data

Single-Phase

Transformer 3

Cust 3

AMI

Timeseries
Data

Which
transformer is

this meter
connected to?



43 Meter to Transformer Task — Error Flagging Methodology

Correlation Coefficient analysis is used to flag
transformer with customer connection labeling

errors

Calculate pairvvise
correlation coefficients using

the ‘windovv' method
CD)

inspect the pairwise
correlation coefficients for
customers labeled on the

same transformer

Flag transformers containing
customer(s) with correlation

coefficients below the
threshold 0

Repeat for
each

Tra nsformer

!IIst #1

Cust #2

Cust #3

Cust #4

Cust Cust Cust Cust
#1 #2 #3 #4

1 0.9 0.9 0.2

0.9 1 0.9 0.2

0.9 0.9 1 0.2

0.2 0.2 0.2 1

Cust 1 Cust 2

Flag
Transformer

Cust 3 Cust 4



44 I Meter to Transformer Task — Error Flagging Results
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A significant concern with distribution system model
validation is the false positive case, where a
methodology injects new errors into a model
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45 Meter to Transformer Task - Pairing Methodology

A pairwise linear regression model is fit
between customers to estimate the

goodness of fit, reactance distance, and
resistance distance for the customers

V1 V2 — P1R1 Q1X1 — P2R2 — Q2X2

Fit regression model to calculate

- measure of fit, MSE or R2
- Reactance Distance (X1 + X2)

- Resistance Distance (R1 + R2)

X and R represent the 'distance' from the AMI

meters to the nearest point the two meters are

electrically connected (8)

/ •
/ '-

Th 
'' c-i-‘-'.. •

wriarear, ....1,.', ltst) cararrirra

Ilri *
Customer 1 Customer 2

VI, P1, Q1 Ill, P1, Q1

♦

When the regression fit ( 5) is good there are two

options: Customers on the same transformer (left),

single customers on transformers (right)

♦
•

The difference in these two cases is evident in the

reactance distance (X1 + X2)

/

The regression fit ( ) is poor if there is physics, like
voltage drop due to other customers on the

transformer (right), or topology, like across phases
(left)

•
•

/ ♦

1(I r 1•tor



46 Meter to Transformer Task - Pairing Methodology and Results

Rz = 0.995
x = 0.0134

aired

Set Pairwise

Reactance to

1

1•
R2 = 0.6658
x = 0.1592 •

Not Paire

100

980

c.)
cts 96

c.)
c.) 94

92
o
o.)
.74 90

88

Meter to Transformer Pairing Accuracy

—Customer Grouping Accuracy

—Transformer Accuracy

0 10 20 30 40

Mislabeled Transformers Data Manipulation (%)

50

This method works well in the base case (unmanipulated data)
however an ongoing research challenge is adapting this method to
work in the under the various data issues mentioned in previous

slides
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Many innovations in Al and machine learning have not yet been applied to the power systems domain
As improvements and breakthroughs happen in other domains, those concepts can be adjusted and applied to solve power
systems problems
Similarly, lessons learned from other domains can be used to avoid similar situations

Integration of Physics-based Constraints into AI
Leverage existing knowledge (physical laws, power flow, etc) in AI-based
algorithms

Achieve more accurate results and faster training

SNL Project — 'REDLY: Resilience hnhancements through Deep Learning Yields"

- loss = 'model-based' loss f 'physics-based' loss
- loss = lossdata(Xb,y3 + (µlossiccL(X3 + alossm,L(X3)

(Kirchoff's Current Law) (Kirchoff's Voltage Law)

Explainable AI and Uncertainty Quantification
Understand why a particular prediction/decision was given

Understand the error bounds on predictions/decisions

SNL Project - "Opening the 'Black Box': An fixperimentalkValidated
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Theory-guided
Data Science Models

Data Science Models

Low Use of Data High

A. Karpatne et al., "Theory-guided Data Science: A New Paradigm for

Scientific Discovery from Data," IEEE Trans. Know!. Data Eng., vol. 29, no.

10, pp. 2318-2331, 2017.

Hxplainable Machine Learning Framework"
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Distributed, AI-based Controls using Fog Computing
- Create resilient systems in the event of communication loss

- Accelerate systems with low latency because processing happens

physically close to sensors

SNL Project — ̀ HEDGFS: High-Securi0 Edge Computingfor Smart Sensor

Systems"

Semi-Supervised, Few-Shot Learning, or

Synthetically-Generated Training Data
- Learn with few or no examples of critical events

- Generate realistic new data from existing samples

- SNL Project — ̀ Semi-Supervised Bayesian Low-Shot
Learning for FVlosive Device Characterkation"

Reliable Connectivity
Cornputing Power

Data Longevity
Data Storage
Reliability
Latency

Location Awareness
Mobility Support
Geo distribution

Responsive
Interactive
Delay Jitter

Devices

A. Yousefpour et al., "All One Needs to Know About Fog Computing and Related Edge

Computing Paradigms: A Complete Survey7 J. Syst. Archit., vol. 98, pp. 289-330, Sep. 2019.



49 I Conclusion

o There are many promising applications of Big Data and ylachine Learning in power
systems.

It is an exciting time to be at this intersection — new algorithms, large datasets, computing power

o There are many challenging problems yet to be solved with some fascinating future
research directions in big data and machine learning:
o Integration of Physics-based Constraints into machine learning algorithms
O Explainable AI and Uncertainty Quantification
O Distributed AI-based Controls using Fog Computing
o Semi-supervised, Few-shot learning, or Synthetically Generated Training Data

o Best results require integration between Big Data experts and power system experts
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Questions?

Sandia National Laboratories

Electric Power Systems Research Group

Matthew Reno
REtD SEtE, Electrical Engineering

mjreno@sandia.gov

Logan Blakely
REtD SEtE, Computer Science

lblakel@sandia.gov
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