
SIMPIC: A Simple Particle-in-Cell Code
B.T. Yee, M.M. Hopkins

Abstract
Particle methods are appealing tools for modeling the behavior of plasmas for several reasons.

Their implementation can be extremely simple both in terms of the physical models and the

numerical methods. However, despite this simplicity they are capable of reproducing complex

plasma dynamics. From a pedagogical perspective, they provide an appreciation for the

connection between the microscopic view of a plasma and its characteristic collective effects.

The primary downsides of particle methods are their computational cost and the stochastic

nature of their output. This talk will review the foundational principles of the particle-in-cell

(PIC) method and basic numerical methods required for its implementation. From there, some

of the basic constraints for accurate solutions will be presented, followed by a hands-on

demonstration of using a PIC code to simulate the two-stream instability. The results from this

simulation will then be compared to the analysis of the instability and the fluid results. By the

end of this talk, attendees can expect to learn the essential components of PIC codes,

important considerations in interpreting their results, and publicly available resources.

Description
This program is a simple particle-in-cell code designed to accompany the "Plasma Physics

Fundamentals" workshop at the 73' Annual Gaseous Electronics Conference. It uses common

methods and models that are mostly documented in the book "Plasma Physics via Computer

Simulation" by Birdsall and Langdon. More specifically, it is a 1D1V electrostatic PIC code in a

bounded domain which is solved using the leapfrog and finite difference methods. Given its

intended use for pedagogy it is written with a greater emphasis on readability and brevity

rather than speed. For the same reasons, the code is written in Python for its portability and

simple syntax. Despite this, the code performs reasonably fast for particle populations up to

100k, sufficient to replicate important kinetic effects in plasma sheaths.

Funding Statement
Sandia National Laboratories is a multimission laboratory managed and operated by National

Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of Energy's National Nuclear Security Administration

under contract DE-NA0003525.

SAND2020-10623C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Appendix: Code
simpic
#!/usr/bin/env python3

def cprint(s, b, **kwargs):
111111

Conditionally print a string.

Keyword arguments:

s -- string

b -- boolean

if b:

print(s, **kwargs)

def save_grid_data(savedir, step, steps, arr):
111111

Save data presumed to be on a grid.

Keyword arguments:

name -- base name of quantity being saved

step -- current timestep

steps -- total number of timesteps

arr -- array to save

if not os.path.exists(savedir):

os.makedirs(savedir)

order = int(np.ceil(np.log10(steps)))

fmt = '%%.0%ii' % order

fn = os.path.join(savedir, fmt % step)

return np.save(fn, arr)

if name == " main ":

import argparse

import configparser

import os

import shutil

import warnings

import numpy as np

from lib.particlelist import ParticleList

constants

e = 1.602e-19 # C, elementary charge

me = 9.109e-31 # kg, electron mass

k = 1.381e-23 # 3/K, Boltzmann constant

epsilon_0 = 8.854e-12 # F/m, permittivity of free space

from math import pi

parser = argparse.ArgumentParser(

description='A simple particle-in-cell code.')

parser add_argument(

'input_deck., type=str, help='Input deck specifying simulation

'physics')

args = parser.parse_args()

read in settings

config = configparser.ConfigParser()

config.read(args.input_deck)

name = config.get('simulation', 'name')

initialize the random number generator

from numpy.random import default_rng

rng = default_rng(config.getint('simulation', 'seed', fallback=1234))

check if output directory already exists

outputdir = os.path.join(config.get(

'simulation', 'outputdir', fallback='output'), name)

if os.path.exists(outputdir):

while True:

action = input(

'Existing results found: [o]verwrite, [d]elete, [a]bort?

if action == 'o':

break

elif action == 'd':

shutil.rmtree(outputdir)

os.makedirs(outputdir)

break

elif action == 'a':

import sys

sys.exit()

else:

os.makedirs(outputdir)

copy config file to output directory for posterity

tail = os.path.split(args.input_deck)[1]

try:

shutil.copy(args.input_deck, os.path.join(outputdir, tail))

except shutil.SameFileError:

pass

derived quantities

cells = config.getint('simulation', 'cells')

dt = config.getfloat('simulation', 'dt')

steps = config.getint('simulation', 'steps')

xi = config.getfloat('physical', 'xi')

xf = config.getfloat('physical', 'xf')

nodes = cells + 1 # number of nodes

ti = 0 # s, start time of simulation

tf = dt * steps # s, end time of simulation

dt = (tf - ti) / steps # s, timestep

dx = (xf - xi) / cells # m, spatial step

Do a preliminary check on whether the solution will be valid

if config.getboolean('simulation', 'check_validity., fallback=False):

Te = config.getfloat('simulation', 'nominal_temperature')

nO = config.getfloat('simulation', 'nominal_density')

solution_valid = True

print('Checking solution criteria')

v_cfl = dx / dt

v_th = np.sqrt(k * Te / me)

print('\tCFL condition')

print('\t\tdx/dt = %e m/s' % v_cfl)

print('\t\tv_th = %e m/s' % v_th)

cfl_met = v_cfl > v_th

print('\t\tdx/dt > v_th = %s' % cfl_met)

lambda_D = np.sqrt(epsilon_O * k * Te / (n0 * e**2))

print('\tDebye length resolved')

print('\t\tlambda_D = %e m' % lambda_D)

print('\t\tdx = %e m' % dx)

debye_met = dx < (lambda_D / 2)

print('\t\tdx < lambda_D / 2 = %s' % debye_met)

lambda_D = np.sqrt(epsilon_O * k * Te / (n0 * e**2))

print('\tPlasma frequency resolved')

f_pe = 2 * pi * np.sqrt(n0 * e**2 / (me * epsilon_0))

print('\t\tf_pe = %e Hz' % f_pe)

print('\t\tl/dt = %e Hz' % (1 / dt))

freq_met = (1/dt) > 2 * f_pe

print('\t\t1 / dt > 2f_pe = %s' % freq_met)

if not all((cfl_met, debye_met, freq_met)):

raise ValueError('Simulation parameters will not resolve plasma behavior.')

generate the requested particle species

print('Generating requested species')

species = []

for section in config.sections():

if 'species: ' in section:

new_species = ParticleList(config, section, rng)

try:

N = config.getint(section, 'number')

except configparser.NoOptionError:

N = int((xf - xi) * config.getfloat(

section, 'density', fallback=0) / new_species.w)

print('\tSampling %i %ss' % (N, new_species.name))

new_species.sample_particles(N)

species.append(new_species)

for s in species:

particledir = os.path.join(outputdir, 'particles', s.name)

try:

os.makedirs(particledir)

except IOError:

already exists in the case of overwrite

pass

s.save_descriptor(outputdir)

print('Discretizing space and time...')

define spatial grid

spatial_grid = np.linspace(xi, xf, num=nodes) # m, array of nodes

np.savetxt(os.path.join(outputdir, 'spatial_grid.dat'), spatial_grid)

define temporal grid

temporal_grid = np.linspace(ti, tf, num=steps) # s, array of timesteps

np.savetxt(os.path.join(outputdir, 'temporal_grid.dat.), temporal_grid)

setup LHS of finite difference version of Poisson's equation

precompute inverse to save on solution time

print('Setting up difference equations...')

A = np.eye(nodes - 2, k=-1) - 2*np.eye(nodes - 2) + np.eye(nodes - 2, k=1)

Ainv = np.linalg.inv(A)

allocate memory

rho = np.zeros((len(species), nodes))

phi = np.zeros(nodes)

E = np.zeros(nodes)

E_mapped = [None] * len(species)

remainders = [0] * len(species) # for repopulation

Vi = eval('lambda t:' + config.get('physical', 'Vi'))

Vf = eval('lambda t:' + config.get('physical', 'Vf'))

print('\tInitial field solve')

map each list of particles to grid and get their charge

for j, s in enumerate(species):

f = ((s.x - xi) % dx) / dx # fractions to allocate to left node

left_rho, _ = np.histogram(

s.x, bins=spatial_grid, weights=(f * s.q * s.w / dx))

rho[j, :-1] += left_rho

right_rho, _= np.histogram(

s.x, bins=spatial_grid, weights=((1 - f) * s.q * s.w / dx))

rho[j, 1:] += right_rho

rho[:, 0], rho[:, -1] = 0, 0 # no charge is stored on the walls

total_rho = rho.sum(axis=0) # get the total charge density

calculate the potentials using center differencing

b = -dx**2 * total_rho[1:-1] / epsilon_0 # RHS of Poisson's equation

b[0] -= Vi(0) # correct for applied bias

b[-1] -= Vf(0)

phi[1:-1] = np.dot(Ainv, b)

phi[0], phi[-1] = Vi(0), Vf(0) # determined by boundary conditions

calculate the fields in a similar manner

E[0] = -(phi[1] - phi[0]) / dx

E[1:-1] = (phi[:-2] - phi[2:]) / (2 * dx)

E[-1] = -(phi[-1] - phi[-2]) / dx

map fields back to particles

for j, s in enumerate(species):

E_mapped[j] = np.interp(s.x, spatial_grid, E)

solution loop

print('Stepping through time:')

import time

start = time.time()

before = start

announce_delay = config.getfloat('simulation', 'announce_delay', fallback=1)

grid_diagnostic_step = config.getint('simulation', 'grid_diagnostic_step')

particle_diagnostic_step = config.getint(

'simulation', 'particle_diagnostic_step')

for i, t in enumerate(temporal_grid):

rate limit writing to command line

now = time.time()

if now - before > announce_delay:

announce_step = True

before = now

else:

announce_step = False

cprint('\tt = %e s' % t, announce_step)

pre-sort particle to speed up access

for j, s in enumerate(species):

s.sort()

run diagnostics if needed

insert diagnostics here to get time-aligned values

if not i % grid_diagnostic_step and not grid_diagnostic_step == 0:

cprint('\t\tRunning diagnostics', announce_step)

for j, s in enumerate(species):

T = np.zeros(nodes)

u = np.zeros(nodes)

f = ((s.x - xi) % dx) / dx # fractions to allocate to left node

get particle density from prior charge mapping

N = rho[j, :] * dx / s.q

calculate drift velocity

uweight = s.w * s.v

left_u, _ = np.histogram(

s.x, bins=spatial_grid, weights=(f * uweight))

u[:-1] = left_u

right_u, _= np.histogram(

s.x, bins=spatial_grid, weights=((1 - f) * uweight))

u[1:] += right_u

u[0], u[-1] = 0, 0

with np.errstate(invalid='ignore'):

u = np.nan_to_num(u/N, posinf=0, neginf=0)

calculate temperature

indices = (s.x // dx).astype(int)

Tweight = s.w * (s.v - u[indices])**2

left_T, _ = np.histogram(

s.x, bins=spatial_grid, weights=(f * Tweight))

T[:-1] = left_T

right_T, _= np.histogram(

s.x, bins=spatial_grid, weights=((1 - f) * Tweight))

T[1:] += right_T

T[0], T[-1] = 0, 0

with np.errstate(invalid='ignore'):

T = np.nan_to_num(s.m * T / N / k / 2, posinf=0, neginf=0)

save_grid_data(

os.path.join(outputdir, 'densities', s.name),

i, steps, rho[j, :] / s.q)

save_grid_data(

os.path.join(outputdir, 'velocities', s.name),

i, steps, u)

save_grid_data(

os.path.join(outputdir, 'temperatures', s.name),

i, steps, T)

save_grid_data(os.path.join(outputdir, relectric_field'), i, steps, E)

save_grid_data(os.path.join(outputdir, 'electric_potential'), i, steps, phi)

save_grid_data(os.path.join(outputdir, 'charge'), i, steps, total_rho)

if not i % particle_diagnostic_step and not particle_diagnostic_step == 0:

for s in species:

s.save_data(os.path.join(outputdir, 'particles', s.name), i, steps)

first half-step in velocity for leapfrog method

cprint('\t\tHalf velocity update', announce_step)

for j, s in enumerate(species):

s.v += (s.q * E_mapped[j] / s.m) * dt/2

cprint('\t\tFull position update', announce_step)

for s in species:

s.x += s.v * dt

optionally heat particles

for j, s in enumerate(species):

if s.heating > 0.0:

cprint('\t\tHeating %s' % s.name, announce_step)

s.heat_particles(dt, rng)

check for particle absorption or reflection

cprint('\t\tchecking particle crossings', announce_step)

for s in species:

absorbed = np.where((s.x < xi) + (s.x > xf))[0]

cprintnt\t\t%i %s exited, ' % (len(absorbed), s.name), announce_step, end=")

if s.resample:

cprint('Resampling...', announce_step)

s.resample_particles(absorbed)

else:

cprint('Removing...', announce_step)

s.remove(absorbed)

cprint('\t\tInserting new particles', announce_step)

for j, s in enumerate(species):

remainders[j] += s.repopulate * dt / s.w

num_new, remainders[j] = divmod(remainders[j], 1)

num_new = int(num_new)

cprint('\t\t\t%i computational %ss' % (num_new, s.name), announce_step)

s.sample_particles(num_new)

if announce_step:

for s in species:

printnt\t%i %ss' % (len(s.x), s.name))

map each list of particles to grid and get their charge

cprint('\t\tMapping particles to grid', announce_step)

rho[:, :] = 0 # zero out previous results

for j, s in enumerate(species):

f = ((s.x - xi) % dx) / dx # fractions to allocate to right node

left_rho, _ = np.histogram(

s.x, bins=spatial_grid, weights=(f * s.q * s.w / dx))

rho[j, :-1] += left_rho

right_rho, _= np.histogram(

s.x, bins=spatial_grid, weights=((1 - f) * s.q * s.w / dx))

rho[j, 1:] += right_rho

rho[:, 0], rho[:, -1] = 0, 0 # no charge is stored on the walls

total_rho = rho.sum(axis=0) # get the total charge density

calculate the potentials using center differencing

cprint('\t\tcalculating potentials', announce_step)

b = -dx**2 * total_rho[1:-1] / epsilon_0 # RHS of Poisson's equation

b[0] -= Vi(t) # correct for applied bias

b[-1] -= Vf(t)

phi[1:-1] = np.dot(Ainv, b)

phi[0], phi[-1] = Vi(t), Vf(t) # determined by boundary conditions

calculate the fields in a similar manner

cprint('\t\tcalculating fields', announce_step)

E[0] = -(phi[1] - phi[0]) / dx

E[1:-1] = (phi[:-2] - phi[2:]) / (2 * dx)

E[-1] = -(phi[-1] - phi[-2]) / dx

map fields back to particles

cprint('\t\tMapping fields to particles', announce_step)

for j, s in enumerate(species):

E_mapped[j] = np.interp(s.x, spatial_grid, E)

push particle positions, and finish the velocity update

cprint('\t\tFinish the velocity update', announce_step)

for j, s in enumerate(species):

s.v += (s.q * E_mapped[j] / s.m) * dt/2

elapsed = time.time() - start

per_step = elapsed / steps

print('Finished in %e s for an average of %e s per step' % (elapsed, per_step))

particlelist.py
import os

import numpy as np

e = 1.602e-19 # C, elementary charge
me = 9.109e-31 # kg, electron mass
k = 1.381e-23 # J/K, Boltzmann constant
epsilon_0 = 8.854e-12 # F/m, permittivity of free space

class ParticleList:
def init (self, config, section, rng):

Initialize a list of particles sharing certain characteristics.

Keyword arguments:
config -- configparser object to read from
section -- section with species information

self.name = section[9:]
self.q = config.getfloat(section, 'charge')
self.m = config.getfloat(section, 'mass')
self.w = config.getfloat(section, 'weight')
self.repopulate = config.getfloat(section, 'repopulation_rater, fallback=0)
self.resample = config.getboolean(section, 'resample', fallback=False)
self.heating = config.getfloat(section, 'heating_rate', fallback=0)

xdist = config.get(section, 'spatial_distribution')
if xdist == 'uniform':

xi = config.getfloat('physical', 'xi')
xf = config.getfloat('physical', 'xf')
def fx(num):

return rng.uniform(xi, xf, num)
elif xdist == 'point':

x0 = config.getfloat(section, 'x0')
def fx(num):

return np.ones(num) * x0
else:

raise NotlmplementedError(
'%s is not a valid spatial distribution.' % xdist)

vdist = config.get(section, 'velocity_distribution')
if vdist == 'uniform':

vmin = config.get(section, 'vmin')
vmax = config.get(section, 'vmax')
def fv(num):

return rng.uniform(vmin, vmax, num)
elif vdist == 'maxwellian':

vd = config.getfloat(section, 'drift')
T = config.getfloat(section, 'temperature')
sigma = (k * T / self.m)**0.5
def fv(num):

return rng.normal(vd, sigma, num)
elif vdist == 'constant':

v0 = config.getfloat(section, 'v0')
def fv(num):

return np.ones(num) * v0

else:
raise NotlmplementedError(

'%s is not a valid velocity distribution.' % vdist)
self.fx = fx
self.fv = fv

arrays holding individual particle information
self.x = np.array([])
self.v = np.array([])

def sort(self):
ind = np.argsort(self.x) # sort from low to high, reduces memory misses later
self.x = self.x[ind]
self.v = self.v[ind]

def add_particle(self, x, v):

Add individual particles to the list.

Keyword arguments:
x -- position (m)
✓ -- velocity (m/s)
w -- weight

self.x = np.hstack((self.x, x))
self.v = np.hstack((self.v, v))

def remove(self, indices):

Remove specificed particles.

Keyword arguments:
indices -- iterable of particle indices

self.x = np.delete(self.x, indices)
self.v = np.delete(self.v, indices)

def resample_particles(self, indices):

Resample the position and velocity for given particle indices.

Keyword arguments:
indices -- iterable of particle indices

self.x[indices] = self.fx(len(indices))
self.v[indices] = self.fv(len(indices))

def sample_particles(self, num):

Add new particles by sampling their distribution functions.

Keyword arguments:
num -- number of particles to sample

self.x = np.hstack((self.x, self.fx(num)))
self.v = np.hstack((self.v, self.fv(num)))

def heat_particles(self, dt, rng):

Heat particles the particles in this list.

Keyword arguments:
energy -- mean energy in joules to add to particles
1111 II

energy = self.heating * dt
dv = rng.normal(0, (2*energy/self.m)**2, len(self.v))
self.v += dv

def save_descriptor(self, d):

Save basic particle information.

Keyword arguments:
d -- directory

fn = 'species_%s.txt' % self.name
with open(os.path.join(d, fn), mode='w') as f:

f.write('name: %s\nmass: %.5e\ncharge: %.5e\nweight: %.5e'
% (self.name, self.m, self.q, self.w))

def save_data(self, d, step, steps, filetype='binary'):

Save particle data in specified format

Keyword arguments:
fn -- filename
filetype -- format to save as

output = np.vstack((self.x, self.v)).T
order = int(np.ceil(np.log10(steps)))
fmt = '%%.0%ii' % order
fn = os.path.join(d, fmt % step)
if not os.path.exists(d):

os.makedirs(d)
if filetype == 'binary':

np.save(fn, output)
elif filetype == 'ascii':

header = 'x(m),v(m/s)'
np.savetxt(fn, output, fmt='%.5e', delimiter=',', header=header)

