This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 10623C

SIMPIC: A Simple Particle-in-Cell Code

B.T. Yee, M.M. Hopkins

Abstract

Particle methods are appealing tools for modeling the behavior of plasmas for several reasons.
Their implementation can be extremely simple both in terms of the physical models and the
numerical methods. However, despite this simplicity they are capable of reproducing complex
plasma dynamics. From a pedagogical perspective, they provide an appreciation for the
connection between the microscopic view of a plasma and its characteristic collective effects.
The primary downsides of particle methods are their computational cost and the stochastic
nature of their output. This talk will review the foundational principles of the particle-in-cell
(PIC) method and basic numerical methods required for its implementation. From there, some
of the basic constraints for accurate solutions will be presented, followed by a hands-on
demonstration of using a PIC code to simulate the two-stream instability. The results from this
simulation will then be compared to the analysis of the instability and the fluid results. By the
end of this talk, attendees can expect to learn the essential components of PIC codes,
important considerations in interpreting their results, and publicly available resources.

Description

This program is a simple particle-in-cell code designed to accompany the “Plasma Physics
Fundamentals” workshop at the 737 Annual Gaseous Electronics Conference. It uses common
methods and models that are mostly documented in the book “Plasma Physics via Computer
Simulation” by Birdsall and Langdon. More specifically, it is a 1D1V electrostatic PIC code in a
bounded domain which is solved using the leapfrog and finite difference methods. Given its
intended use for pedagogy it is written with a greater emphasis on readability and brevity
rather than speed. For the same reasons, the code is written in Python for its portability and
simple syntax. Despite this, the code performs reasonably fast for particle populations up to
100k, sufficient to replicate important kinetic effects in plasma sheaths.

Funding Statement

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

Appendix: Code
simpic
#!/usr/bin/env python3

def cprint(s, b, **kwargs):

Conditionally print a string.

Keyword arguments:

s -- string
b -- boolean
if b:

print(s, **kwargs)
def save_grid_data(savedir, step, steps, arr):

Save data presumed to be on a grid.

Keyword arguments:

name -- base name of quantity being saved
step -- current timestep

steps -- total number of timesteps

arr -- array to save

if not os.path.exists(savedir):
os.makedirs(savedir)

order = int(np.ceil(np.logl@(steps)))

fmt = '%%.0%ii' % order

fn = os.path.join(savedir, fmt % step)

return np.save(fn, arr)

if _name__ == "_main__":
import argparse
import configparser
import os
import shutil
import warnings

import numpy as np
from lib.particlelist import ParticlelList

constants

e = 1.602e-19 # C, elementary charge

me = 9.109%e-31 # kg, electron mass

k = 1.381e-23 # J/K, Boltzmann constant

epsilon_@ = 8.854e-12 # F/m, permittivity of free space
from math import pi

parser = argparse.ArgumentParser(
description="A simple particle-in-cell code.")
parser.add_argument(
'input_deck', type=str, help='Input deck specifying simulation
'physics"')
args = parser.parse_args()

read in settings

config = configparser.ConfigParser()
config.read(args.input_deck)

name = config.get('simulation', 'name')

initialize the random number generator
from numpy.random import default_rng
rng = default_rng(config.getint('simulation', 'seed', fallback=1234))

check if output directory already exists

outputdir = os.path.join(config.get(
'simulation', 'outputdir', fallback='output'), name)

if os.path.exists(outputdir):

while True:
action = input(
'Existing results found: [o]verwrite, [d]elete, [a]bort? ')
if action == '
break

o :

elif action == 'd':
shutil.rmtree(outputdir)
os.makedirs(outputdir)
break

elif action == 'a':
import sys
sys.exit()

else:

os.makedirs(outputdir)

copy config file to output directory for posterity
tail = os.path.split(args.input_deck)[1]
try:
shutil.copy(args.input_deck, os.path.join(outputdir, tail))
except shutil.SameFileError:
pass

derived quantities

cells = config.getint('simulation', 'cells")
dt = config.getfloat('simulation', 'dt")
steps = config.getint('simulation', 'steps"')
xi = config.getfloat('physical', 'xi'")

xf = config.getfloat('physical', 'xf")

nodes = cells + 1 # number of nodes

ti =0 # s, start time of simulation

tf = dt * steps # s, end time of simulation

dt
dx

(tf - ti) / steps # s, timestep
(xf - xi) / cells # m, spatial step

Do a preliminary check on whether the solution will be valid
if config.getboolean('simulation', 'check_validity', fallback=False):
Te = config.getfloat('simulation’, 'nominal_temperature')
n@ = config.getfloat('simulation', 'nominal_density')
solution_valid = True
print('Checking solution criteria')
v_cfl = dx / dt
v_th = np.sqrt(k * Te / me)
print('\tCFL condition")
print('\t\tdx/dt = %e m/s' % v_cfl)
print('\t\tv_th = %e m/s' % v_th)
cfl met = v_cfl > v_th
print("\t\tdx/dt > v_th = %s' % cfl_met)
lambda_D = np.sqrt(epsilon_@ * k * Te / (n@ * e**2))
print('\tDebye length resolved')
print('\t\tlambda_D = %e m' % lambda_D)
print('\t\tdx = %e m"' % dx)
debye_met = dx < (lambda_D / 2)
print('\t\tdx < lambda_D / 2 = %s' % debye_met)
lambda_D = np.sqrt(epsilon_@ * k * Te / (n@ * e**2))
print('\tPlasma frequency resolved"')
f pe =2 * pi * np.sqrt(n@ * e**2 / (me * epsilon_0))
print('\t\tf_pe = %e Hz' % f_pe)
print('\t\tl/dt = %e Hz' % (1 / dt))
freq_met = (1/dt) > 2 * f _pe
print("\t\tl / dt > 2f_pe = %s' % freq_met)
if not all((cfl_met, debye_met, freq_met)):
raise ValueError('Simulation parameters will not resolve plasma behavior.")

generate the requested particle species
print('Generating requested species')
species = []
for section in config.sections():
if 'species: ' in section:
new_species = ParticlelList(config, section, rng)
try:
N = config.getint(section, 'number')
except configparser.NoOptionError:
N = int((xf - xi) * config.getfloat(
section, 'density', fallback=0) / new_species.w)
print('\tSampling %i %ss' % (N, new_species.name))
new_species.sample_particles(N)
species.append(new_species)

for s in species:
particledir = os.path.join(outputdir, 'particles', s.name)
try:
os.makedirs(particledir)

except IOError:
already exists in the case of overwrite
pass

s.save_descriptor(outputdir)

print('Discretizing space and time...')

define spatial grid

spatial_grid = np.linspace(xi, xf, num=nodes) # m, array of nodes
np.savetxt(os.path.join(outputdir, 'spatial_grid.dat'), spatial_grid)

define temporal grid
temporal_grid = np.linspace(ti, tf, num=steps) # s, array of timesteps
np.savetxt(os.path.join(outputdir, 'temporal_grid.dat'), temporal_grid)

setup LHS of finite difference version of Poisson's equation

precompute inverse to save on solution time

print('Setting up difference equations...")

A = np.eye(nodes - 2, k=-1) - 2*np.eye(nodes - 2) + np.eye(nodes - 2, k=1)
Ainv = np.linalg.inv(A)

allocate memory

rho = np.zeros((len(species), nodes))

phi = np.zeros(nodes)

E = np.zeros(nodes)

E_mapped = [None] * len(species)

remainders = [@] * len(species) # for repopulation
Vi = eval('lambda t:' + config.get('physical', 'Vi'))
Vf = eval('lambda t:' + config.get('physical', 'Vf'))

print('\tInitial field solve')
map each list of particles to grid and get their charge
for j, s in enumerate(species):
f = ((s.x - xi) % dx) / dx # fractions to allocate to left node
left_rho, _ = np.histogram(
s.X, bins=spatial_grid, weights=(f * s.q * s.w / dx))
rho[j, :-1] += left_rho
right_rho, _= np.histogram(
s.X, bins=spatial_grid, weights=((1 - f) * s.q * s.w / dx))
rho[j, 1:] += right_rho
rho[:, @], rho[:, -1] = @, @ # no charge is stored on the walls
total_rho = rho.sum(axis=0) # get the total charge density
calculate the potentials using center differencing
b = -dx**2 * total_rho[1:-1] / epsilon_@ # RHS of Poisson's equation
b[@] -= Vi(@) # correct for applied bias
b[-1] -= Vf(0)
phi[1:-1] = np.dot(Ainv, b)
phi[@], phi[-1] = Vvi(@), Vf(@) # determined by boundary conditions
calculate the fields in a similar manner
E[@] = -(phi[1] - phi[@]) / dx
E[1:-1] = (phi[:-2] - phi[2:]) / (2 * dx)
E[-1] = -(phi[-1] - phi[-2]) / dx

map fields back to particles
for j, s in enumerate(species):
E_mapped[j] = np.interp(s.x, spatial_grid, E)

solution loop
print('Stepping through time:")
import time
start = time.time()
before = start
announce_delay = config.getfloat('simulation', 'announce_delay', fallback=1)
grid_diagnostic_step = config.getint('simulation', 'grid_diagnostic_step"')
particle_diagnostic_step = config.getint(
'simulation', 'particle_diagnostic_step')
for i, t in enumerate(temporal_grid):
rate limit writing to command line
now = time.time()
if now - before > announce_delay:
announce_step = True
before = now
else:
announce_step = False
cprint('\tt = %e s' % t, announce_step)

pre-sort particle to speed up access
for j, s in enumerate(species):
s.sort()

run diagnostics if needed
insert diagnostics here to get time-aligned values
if not i % grid_diagnostic_step and not grid_diagnostic_step ==
cprint('\t\tRunning diagnostics', announce_step)
for j, s in enumerate(species):
T = np.zeros(nodes)
np.zeros(nodes)
((s.x - xi) % dx) / dx # fractions to allocate to left node
get particle density from prior charge mapping
= rho[j, :] * dx / s.q
calculate drift velocity
uweight = s.w * s.v
left_u, _ = np.histogram(
s.X, bins=spatial_grid, weights=(f * uweight))
u[:-1] = left_u
right_u, _= np.histogram(
s.X, bins=spatial _grid, weights=((1 - f) * uweight))
ufl1:] += right_u
uf@], u[-1] = o, 0
with np.errstate(invalid="ignore'):
u = np.nan_to_num(u/N, posinf=0, neginf=0)
calculate temperature
indices = (s.x // dx).astype(int)
Tweight = s.w * (s.v - u[indices])**2

Z H -h C

left_T, _ = np.histogram(
s.X, bins=spatial_grid, weights=(f * Tweight))
T[:-1] = left_T
right_T, _= np.histogram(
s.X, bins=spatial_grid, weights=((1 - f) * Tweight))
T[1:] += right T
T[@], T[-1] =0, ©
with np.errstate(invalid="ignore'):
T = np.nan_to_num(s.m * T / N / k / 2, posinf=0, neginf=0)
save_grid_data(
os.path.join(outputdir, 'densities', s.name),
i, steps, rho[j, :] / s.q)
save_grid_data(
os.path.join(outputdir, 'velocities', s.name),
i, steps, u)
save_grid_data(
os.path.join(outputdir, 'temperatures', s.name),
i, steps, T)
save_grid_data(os.path.join(outputdir, 'electric_field'), i, steps, E)
save_grid_data(os.path.join(outputdir, 'electric_potential'), i, steps, phi)
save_grid_data(os.path.join(outputdir, 'charge'), i, steps, total_rho)
if not i % particle_diagnostic_step and not particle_diagnostic_step ==
for s in species:
s.save_data(os.path.join(outputdir, 'particles', s.name), i, steps)

first half-step in velocity for leapfrog method
cprint('\t\tHalf velocity update', announce_step)
for j, s in enumerate(species):

s.v += (s.q * E_mapped[j] / s.m) * dt/2

cprint('\t\tFull position update', announce_step)
for s in species:
S.X += s.v * dt

optionally heat particles
for j, s in enumerate(species):
if s.heating > 0.0:
cprint('\t\tHeating %s' % s.name, announce_step)
s.heat_particles(dt, rng)

check for particle absorption or reflection
cprint('\t\tChecking particle crossings', announce_step)
for s in species:
absorbed = np.where((s.x < xi) + (s.x > xf))[0]
cprint ("\t\t\t%i %s exited, ' % (len(absorbed), s.name), announce_step, end="")
if s.resample:
cprint('Resampling..."', announce_step)
s.resample_particles(absorbed)
else:
cprint('Removing...
s.remove(absorbed)

, announce_step)

cprint('\t\tInserting new particles', announce_step)
for j, s in enumerate(species):
remainders[j] += s.repopulate * dt / s.w
num_new, remainders[j] = divmod(remainders[j], 1)
num_new = int(num_new)
cprint("\t\t\t%i computational %ss' % (num_new, s.name), announce_step)
s.sample_particles(num_new)

if announce_step:
for s in species:
print("'\t\t%i %ss' % (len(s.x), s.name))

map each list of particles to grid and get their charge
cprint('\t\tMapping particles to grid', announce_step)
rho[:, :] = ©@ # zero out previous results
for j, s in enumerate(species):
f = ((s.x - xi) % dx) / dx # fractions to allocate to right node
left_rho, _ = np.histogram(
s.X, bins=spatial_grid, weights=(f * s.q * s.w / dx))
rho[j, :-1] += left_rho
right_rho, _= np.histogram(
s.X, bins=spatial_grid, weights=((1 - f) * s.q * s.w / dx))
rho[j, 1:] += right_rho
rho[:, @], rho[:, -1] = @, @ # no charge is stored on the walls
total_rho = rho.sum(axis=0) # get the total charge density

calculate the potentials using center differencing
cprint('\t\tCalculating potentials', announce_step)

b = -dx**2 * total_rho[1l:-1] / epsilon_@ # RHS of Poisson's equation
b[@] -= Vi(t) # correct for applied bias

b[-1] -= Vf(t)

phi[1:-1] = np.dot(Ainv, b)

phi[@], phi[-1] = Vi(t), Vf(t) # determined by boundary conditions

calculate the fields in a similar manner
cprint('\t\tCalculating fields', announce_step)
E[@] = -(phi[1] - phi[@]) / dx

E[1:-1] = (phi[:-2] - phi[2:]) / (2 * dx)

E[-1] = -(phi[-1] - phi[-2]) / dx

map fields back to particles
cprint('\t\tMapping fields to particles', announce_step)
for j, s in enumerate(species):

E_mapped[j] = np.interp(s.x, spatial_grid, E)

push particle positions, and finish the velocity update
cprint('\t\tFinish the velocity update', announce_step)
for j, s in enumerate(species):

s.v += (s.q * E_mapped[j] / s.m) * dt/2

elapsed = time.time() - start
per_step = elapsed / steps
print('Finished in %e s for an average of %e s per step' % (elapsed, per_step))

particlelist.py

import os
import numpy as np

e = 1.602e-19 # C, elementary charge

me = 9.109e-31 # kg, electron mass

k = 1.381e-23 # J/K, Boltzmann constant

epsilon_0@ = 8.854e-12 # F/m, permittivity of free space

class Particlelist:
def __init__ (self, config, section, rng):

[IRTRT]

Initialize a list of particles sharing certain characteristics.

Keyword arguments:

config -- configparser object to read from

section -- section with species information

self.name = section[9:]

self.q = config.getfloat(section, 'charge')

self.m = config.getfloat(section, 'mass')

self.w = config.getfloat(section, 'weight')

self.repopulate = config.getfloat(section, 'repopulation_rate', fallback=0)
self.resample = config.getboolean(section, 'resample’, fallback=False)
self.heating = config.getfloat(section, 'heating_rate', fallback=0)

xdist = config.get(section, 'spatial_distribution')
if xdist == 'uniform':
xi = config.getfloat('physical', 'xi'")
xf = config.getfloat('physical', 'xf')
def fx(num):
return rng.uniform(xi, xf, num)
elif xdist == 'point':
x0 = config.getfloat(section, 'x@")
def fx(num):
return np.ones(num) * x0

else:
raise NotImplementedError(

'%s is not a valid spatial distribution.' % xdist)
vdist = config.get(section, 'velocity distribution')
if vdist == 'uniform':

vmin = config.get(section, 'vmin')
vmax = config.get(section, 'vmax')
def fv(num):
return rng.uniform(vmin, vmax, num)
elif vdist == 'maxwellian':
vd = config.getfloat(section, 'drift')
T = config.getfloat(section, 'temperature')
sigma = (k * T / self.m)**0.5
def fv(num):
return rng.normal(vd, sigma, num)
elif vdist == 'constant':
vl = config.getfloat(section, 'v@')
def fv(num):
return np.ones(num) * vo

else:
raise NotImplementedError(
'%s is not a valid velocity distribution.' % vdist)
x
fv

self.fx
self.fv

arrays holding individual particle information
self.x = np.array([])
self.v = np.array([])

def sort(self):
ind = np.argsort(self.x) # sort from low to high, reduces memory misses later
self.x = self.x[ind]
self.v = self.v[ind]

def add_particle(self, x, v):

Add individual particles to the 1list.

Keyword arguments:

X -- position (m)

v -- velocity (m/s)

w -- weight

self.x = np.hstack((self.x, x))

self.v = np.hstack((self.v, v))

def remove(self, indices):

Remove specificed particles.

Keyword arguments:

indices -- iterable of particle indices
self.x = np.delete(self.x, indices)
self.v = np.delete(self.v, indices)

def resample_particles(self, indices):

Resample the position and velocity for given particle indices.

Keyword arguments:

indices -- iterable of particle indices
self.x[indices] self.fx(len(indices))
self.v[indices] = self.fv(len(indices))

def sample_particles(self, num):

non

Add new particles by sampling their distribution functions.

Keyword arguments:

num -- number of particles to sample
self.x
self.v

np.hstack((self.x, self.fx(num)))
np.hstack((self.v, self.fv(num)))

def heat_particles(self, dt, rng):

non

Heat particles the particles in this list.

def

def

Keyword arguments:

energy -- mean energy in joules to add to particles

non

energy = self.heating * dt

dv = rng.normal(@, (2*energy/self.m)**2, len(self.v))

self.v += dv
save_descriptor(self, d):

Save basic particle information.

Keyword arguments:
d -- directory

non

fn = 'species_¥%s.txt' % self.name

with open(os.path.join(d, fn), mode='w') as f:

f.write('name: %s\nmass: %.5e\ncharge: %.5e\nweight: %.5e’

% (self.name, self.m, self.q, self.w))

save_data(self, d, step, steps, filetype='binary'):

[IRTRT]

Save particle data in specified format

Keyword arguments:
fn -- filename
filetype -- format to save as

[IRTRT]

output = np.vstack((self.x, self.v)).T
order = int(np.ceil(np.logle(steps)))

fmt = '%%.0%ii' % order

fn = os.path.join(d, fmt % step)

if not os.path.exists(d):
os.makedirs(d)

if filetype == 'binary':
np.save(fn, output)

elif filetype == 'ascii':
header = 'x(m),v(m/s)"'

np.savetxt(fn, output, fmt='%.5e', delimiter=",

, header=header)

