
Toward predicting trends in
propagating failure
and its mitigation
for a lithium-ion cell stack
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2 1 Thermal runaway and cascading failure

Validated reliability and safety is one of four critical challenges identified in the
Department of Energy Office of Electricity's 2013 Grid Energy Storage Strategic
Plan
O Failure rates as low as 1 in several million

O Potentially many cells used in grid-scale energy storage

O Moderate likelihood of 'something' going wrong

A single point failure that propagates through the pack can have an impact
even with low individual failure rates.

How do we decrease the risk?
The typical approach is to test our way into safety

Large system (>1MWh) testing is difficult and costly.

Supplement testing with predictions of challenging scenarios and optimization
of mitigation.

Develop multi-physics models to predict failure mechanisms and identify
mitigation.

Build capabilities with small/medium scale measurements.

Still requires some testing and validation.

Please excuse the lack of graphics but peripheral images removed to avoid copyright issues



3 Simulating cascading failure of cell stack

Short circuit
simulated in
first cell acts
as boundary
condition

'Heat losses
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4 Simulating cascading failure of cell stack

Short circuit
simulated in
first cell acts
as boundary
condition

'Heat losses

Reduced
energy density,

increased
contact resistance:

Failure to
propagate.
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5 Finite element model

Discretization in one direction (x)

Modeled as a quasi 1-D domain of
thin hexahedron elements

Multi-layered system
, Lumped battery material

. Metal plate spacers

. End block insulators

, Contact resistances between
blocks/plates

Convective heat transfer to
surroundings (scaled by surface area
to volume ratio for thin domain)

Heat conduction with chemical
sources inside battery material
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6 Finite element model equations

Energy conservation:
dT

pcp Tt = v • (KVT) + gm

Mass conservation for species i with Nr reactions:

Energy source:

api
at (viiii — vii)ri

Nr
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7 Chemical source terms for thermal runaway

Empirical chemical reactions:

SEI decomposition (Richard, et al., 1999, Shurtz, et al., 2018)

(CH2OCO2L02 —> Li2CO3 + gas

Anode-electrolyte (Richard, et al., 1999, Shurtz et al., 2018, Kurzawski et al., 2020)

2C6Li + C3H403 —> 2C6 + Li2CO3 + gas

Cathode-electrolyte (Hatchard, et al. 2001, Shurtz, et al., 2020, Kurzawski et al., 2020)

2 1
Co02 + —

15 
C3H403 —> 3Co0 + gas

Short-circuit (Kurzawski, et al., 2020)

C6Li + Co02 —> C6 + LiCOO2

References for kinetics models
• Shurtz, et al., J. Electrochem. Soc., I 65,A3878 (2018).
• Shurtz, et al., J. Electrochem. Soc., I 65,A389 I (2018).
• Richard and Dahn, J. Electrochem. Soc., 146, 2078 (1999).
• Hatchard, et al., J. Electrochem. Soc., I 48,A755 (200 I ).
• Shurtz and Hewson, J. Electrochem. Soc., 167, 090543 (2020)
• Kurzawski, et al., Proc. Combust. Instit., 34 (in press 2020)
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8 Cascading failure testing

LiCo023Ah pouch cells

5 closely packed cells with/without
aluminum or copper spacer plates
, Spacer thicknesses between 1/32" and 1/8"

. State of charge between 50% and 100%

Failure initiated by a mechanical nail
penetration in the outer cell (cell 1)

Thermocouples (TC) between cells and
spacers (if present)
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Torres-Castro, L. et al., (2020) J Electrochem. Soc., I 67(9): 090515
Lamb, J., et al. (2015). J. Power Sources 283: 517-523. 
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Predictions extrapolating early thermal runaway models to full
heat release

Extrapolating rate constants with full thermodynamic heat release

leads to propagation predictions that are far too fast.

I 00% SOC - Extrapolated Rate C1-0 Sim n

C1-0 Exp

C1-C2 Sim

Cl-C2 Exp

C2-C3 Sim

C2-C3 Exp

C3-C4 Sim

C3-C4 Exp

C4-05 Sim

C4-05 Exp

C5-0 Sim

C5-0 Exp

Predictions use rate constants from

Anode-electrolyte: Shurtz, et al.,
2018 (activation energy like Richards
et al., 1999)

Cathode-electrolyte : Hatchard, et al.,
2001 with heat of reaction following
Shurtz et al., 2020

Heat release is determined here from
thermodynamics of complete reaction
as reviewed in cited papers.

Propagation speed for reacting fronts scale with reaction rate at peak temps and

thermal diffusivity: V ,=== -\/(:7)a
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1 Adjusting activation energies to Iimit high temp rates
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We limit high temperature rates

while fixing the onset rate by

adjusting the Arrhenius pre-

exponential and activation energy

together.
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Propagation speed for reacting fronts scale with reaction rate at peak temps and
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Adjusted activation energy looks good at 100% SOC, but does
not predict full range: 100% SOC, no spacers
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Adjusted activation energy predicts mitigation too soon. Lacks physical basis.
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Solid-state particle diffusion can be limiting in Li-ion cells.
Incorporate internal diffusion limits in series with kinetics.

Challenge: Calorimetry measurements only at lower
temperatures.

Lithium and oxygen must diffuse to the particle
surface to react with the electrolyte.
Serial reactions are corrected with the
"Damköhler limited" form.

k'
k

1 + Da

Damköhler number is ratio of surface reaction
rate to the rate of diffusion between an inner
radius (ri) and outer radius (r0).

Da =

E \i
Aexp — I w ) (r0 — ri)ro

aepDo exp (— ED) ri

RT

Kurzawski,A., et al. (in press 2020). "Predicting cell-to-cell failure propagation and
limits of propagation in lithium-ion cell stacks." Proc. Combust. Instit. 38.



Rate limitation at high temperature assuming transition to
I 3 solid-state diffusion limited regime
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temperatures
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Damköhler number formulation
adjusts propagation rate to
reasonable degree based on
literature diffusion rates
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Propagation speed for reacting fronts scale with reaction rate at peak temps and

thermal diffusivity: v
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Propagation trends well-predicted with transition to solid-
state diffusion limited regime

Damköhler number formulation (diffusion-limited rate) predicts
propagation rate and failure to propagate with reduced SOC
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Diffusion-limited rate predictions extend to capture effects of
I 5 added metal plates between cells
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I 6 Summary — Predicting trends in propagating failure
and its mitigation 800

Reductions of specific energy have been measured to
slow and mitigate propagation (SOC, metal plates).

Using early source term models with
`thermodynamics' heat release leads to too fast
propagation.

Simply adjusting activation energy matches some
thermal runaway conditions but predicts mitigation
too soon.

Introducing a diffusion-limit in series with kinetics
predicts full range of propagation/mitigation
measured recently.

Early diffusion-limit model in Kurzawski et al., 2020
to be supplemented with forthcoming publication.
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Contact

Thank you

Funded by the U.S. Department of Energy, Office of Electricity, Energy
Storage program under the guidance of Dr. Imre Gyuk, Program
Director.

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

For further information: John Hewson - jchewso@sandia.gov

This has been presentation A06-1058 from PRIME 2020, held October
4-9, 2020.


