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2 Background

Substantial interest within organization to develop well-characterized, limited-
rechargeable Li primary batteries in-house

. Streamline qualification process and surveillance capabilities

. Improve reliability estimates

Underlying goal of project is to develop high energy density Li primary battery with
long shelf life that can achieve 1-10 recharge cycles

First step is understanding cell electrode/electrolyte composition across a range of
cell chemistries/ages
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3 Methodology

Identify Li primary chemistries with
rechargeable capability
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I 2017 Duracell DL123A (Li/Mn02) - Anode
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Observations 
■ Substantial Li pitting apparent in bulk anode
■ Anode appears to be LiAI alloy (likely small % Al to

improve mechanical properties). CryoFIB indicates trace
Al, Si in anode bulk

■ Particles containing F, S, O at anode surface suggests Li
Triflate or Li TFSI salt

■ Mn detected in bulk only (presumably an artifact of Mn
dissolution)

■ Si, Ca potential impurities
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I 2017 Duracell DL123A (Li/Mn02) - Cathode
SEM
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Cathode observations 
• Consistent Mn02 particle size (30 — 50 pm)
• Fe, K unexpected; Fe potential impurity from other batches
• Mesh current collector contains high concentrations of Cr and exhibits magnetic properties, indicating 400 series

stainless steel (Note: XRD suggests 4 l OL stainless steel)



I 2017 Duracell DL123A (Li/Mn02) - Electrolyte

NMR FTIR
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—2017 DL123A Electrolyte —1M Li Triflate in 1:1 PC/D ME

Commercial electrolyte compared to in-house
standard using NMR & FTIR

Results indicate a Li Triflate in PC:DME electrolyte

2017 commercial cell electrolyte shows evidence of
moisture contamination
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I 2017 Duracell DL123A (Li/Mn02) — XPS Analysis
Cathode
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Initial findings 
■ Survey scan indicates F, Mn, O, C, S, Si (cathode) & F, O, C, Si, Li (anode)
■ (Cathode) Consistent mix of C-C, C=C, along with —OH, C=0 & ether groups indicate carbon black
■ (Anode) F I s peak becomes more defined with increased sputtering and appears to be LiF (BE = 685 eV, 55.5 eV),

indicating potential interaction between Li Triflate & anode (Triflate known to aide in formation of thin, stable SEI)



I 2017 Energizer L91 (Li/FeS2) - Anode
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Observations 
• "Concave" and "convex" samples exhibit substantially different morphology, though EDS tells similar story

• Convex samples suggest extensive Li pitting (likely artifact of self-discharge)
• Concave samples have rough and flaky surface, though no Li pitting evident

• Anode does not appear to be alloyed as we saw with DL I 23A
• Although anode not alloyed, cells do not exhibit poor performance at low discharge rates due to non-uniform

anode stripping



20 I 7 Energizer L9 1 (Li/FeS2) - Cathode
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Observations 
• Cathode comprises two distinct layers — color varies, but morphologically and chemically similar

• FeS2 occupies bulk composition, with amorphous C filling voids
• Si-O compounds evident across electrode surface

• Uniform Iodine signal across surface indicates potential Lil salt
• Cathode current collector spectrum (not shown) indicates bulk Al composition



I 2017 Energizer L91 (Li/FeS2) - Electrolyte
FTIR
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—2017 L91 Electrolyte 0.75M Lil in 65:35 DOL:DME

• Electrolyte solvent appears to be DOL:DME mixture
• Lil not IR active species; will need to run NMR to determine salt concentration
• EDS indicates Lil salt is highly probably



201 7 Energizer L9 1 (Li/FeS2) — XPS Analysis
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Initial findings 
■ (Cathode) Analysis of C- peaks again indicate carbon black (potentially graphite as well)
■ If you can identify an ether in the XPS scan, look at how it changes w.r.t sputtering at anode and discuss the ring

opening mechanism to create a robust SEI
■ (Anode) Samples without sputtering exhibit both 12 and Alkali Iodide (potentially Lil)
■ (Anode) Ether groups in O I s, C I s peaks suggest ring-opening mechanism of 1,3-Dioxolane previously outlined in

literature — mechanism known to develop robust SEI



I Closing thoughts

Anode morphology varies based on concavity, whereas cathode morphology appears
consistent — may ie an artifact of manufacturing

Initial estimates predict cells contain large excess of anode, presumably intended to
extend shelf life as Li corrodes

Were able to partially characterize the SEI layer using XPS, though further analysis
required

Conducted full suite of characterization of the anode

Source of Si, Na, K & Fe in cells still under consideration

Rechargeability considerations

. BR1 /2AA CFx electrolyte will likely need to be fortified with ether-based solvent to prevent
perpetual Li corrosion during cycling (esters, alkyl carbonate do not form robust SEI)

. DL123A Mn02 & BR1/2AA CF batteries have exhibited poor discharge performance at low
discharge rates — may need to limit discharge voltage limit or employ current collector

o



I 3 Acknowledgements

Travis M. Anderson

Katharine L. Harrison

Samantha G. Rosenberg

Claudina X. Cammack

Laura C. Merrill

Katherine L. Jungjohann

Fernando H. Garzon

Sandia
National
Laboratories

LABORATORY D[RECTED
WRD RESEARCH & DEVELOPMENT

This work was supported by the Laboratory Directed Research and Development program at Sandia
National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA-0003525.



1

Supplementary Information



1
FTIR - 2017 Panasonic BR I /2AA

201 7 Panasonic BR I /2AA Electrolyte
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