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Background

Substantial interest within organization to develop well-characterized, limited-
rechargeable Li primary batteries in-house

o Streamline qualification process and surveillance capabilities

° Improve reliability estimates

Underlying goal of project is to develop high energy density Li primary battery with
long shelf life that can achieve 1-10 recharge cycles

First step is understanding cell electrode/electrolyte composition across a range of
cell chemistries/ages
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Methodology
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rechargeable capability
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2017 Duracell DLI23A (Li/MnO,) - Anode ()
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Observations

= Substantial Li pitting apparent in bulk anode

* Anode appears to be LiAl alloy (likely small % Al to
improve mechanical properties). CryoFIB indicates trace
Al, Si in anode bulk

*  Particles containing F S, O at anode surface suggests Li
Triflate or Li TFSI salt

* Mn detected in bulk only (presumably an artifact of Mn
dissolution)

= Si, Ca potential impurities
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2017 Duracell DL123A (Li/MnO,) - Cathode
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Cathode observations
=  Consistent MnO, particle size (30 — 50 pm)
*  Fe, K unexpected; Fe potential impurity from other batches

*  Mesh current collector contains high concentrations of Cr and exhibits magnetic properties, indicating 400 series
stainless steel (Note: XRD suggests 410L stainless steel)




2017 Duracell DL123A (Li/MnO,) - Electrolyte
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2017 Duracell DLI123A (Li/MnO,) — XPS Analysis

Cathode Anode
C1s Lils

“ 1‘4“. M‘mw'ﬁ“‘!‘ ! ;‘{
f‘f‘] e 4 l 1 |
A ’ /' l\ W \MWM MW"“{»“""@“M;‘ /\
!\ N\./r"(dw ‘~\-" M f \ A l |
Y f | 4 |

{J ‘ | \ / X » |

‘‘‘‘‘‘ J | 1 L™ | ] \

: : | | b L] ‘

| / E‘\ y“‘i e —1 L ) J‘ J‘ \‘\

= /J v ‘\f '\ e t | W q 1 ‘ {

Initial findings

=  Survey scan indicates F,Mn, O, C, S, Si (cathode) & F, O, C, Sj, Li (anode)

(Cathode) Consistent mix of C-C, C=C, along with -OH, C=0 & ether groups indicate carbon black

(Anode) F |s peak becomes more defined with increased sputtering and appears to be LiF (BE = 685 eV, 55.5 eV),

indicating potential interaction between Li Triflate & anode (Triflate known to aide in formation of thin, stable SEI)




2017 Energizer L9I (Li/FeS,) - Anode ()
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Observations
=  “Concave” and “convex” samples exhibit substantially different morphology, though EDS tells similar story
=  Convex samples suggest extensive Li pitting (likely artifact of self-discharge)
=  Concave samples have rough and flaky surface, though no Li pitting evident
*  Anode does not appear to be alloyed as we saw with DLI123A
=  Although anode not alloyed, cells do not exhibit poor performance at low discharge rates due to non-uniform
anode stripping




2017 Energizer L91 (Li/FeS,) - Cathode ()
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Observations

»=  Cathode comprises two distinct layers — color varies, but morphologically and chemically similar
*  FeS, occupies bulk composition, with amorphous C filling voids
=  Si-O compounds evident across electrode surface

*  Uniform lodine signal across surface indicates potential Lil salt

»  Cathode current collector spectrum (not shown) indicates bulk Al composition



2017 Energizer L91 (Li/FeS,) - Electrolyte

FTIR
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2017 Energizer L91 (Li/FeS,) — XPS Analysis
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Initial findings

= (Cathode) Analysis of C- peaks again indicate carbon black (potentially graphite as well)

= If you can identify an ether in the XPS scan, look at how it changes w.r.t sputtering at anode and discuss the ring
opening mechanism to create a robust SEI

*  (Anode) Samples without sputtering exhibit both |, and Alkali lodide (potentially Lil)

*  (Anode) Ether groups in O Is, C |s peaks suggest ring-opening mechanism of |,3-Dioxolane previously outlined in
literature — mechanism known to develop robust SEl



Closing thoughts

Anode morpholo%y varies based on concavity, whereas cathode morphology appears
consistent — may be an artifact of manufacturing

Initial estimates predict cells contain large excess of anode, presumably intended to
extend shelf life as Li corrodes

Were aléle to partially characterize the SEI layer using XPS, though further analysis
require

Conducted full suite of characterization of the anode

Source of Si, Na, K & Fe in cells still under consideration

Rechargeability considerations

> BR1/2AA CF_ electrolyte will likely need to be fortified with ethetr-based solvent to Frevent
perpetual Li corrosion during cycling (esters, alkyl carbonate do not form robust SEI)

> DL123A MnO, & BR1/2AA CF_ batteries have exhibited poor discharge performance at low
discharge rates — may need to limit discharge voltage limit or employ current collector
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FTIR - 2017 Panasonic BRI1/2AA

2017 Panasonic BR1/2AA Electrolyte
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