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,| Grid Energy Storage

 Grid-level energy storage systems needed to enable
iIntermittent renewables

» Li-ion, Pb-acid battery systems have been implemented but
pose safety and environmental risks

» Successful grid storage must be safe, reliable, and low-cost

Center for Sustainable Systems, University of Michigan. 2016. "U.S. Energy Storage Factsheet." Pub. No. CSS15-17.
Energy Sage. n.d. “Ground Mount Solar Panels: Top 3 Things You Need to Know.”




3‘ Alkaline Zn-MnO,, Batteries

Zn-MnO,

MnO,

« 617 mAh/g « Potash ~ $357/ton (2018)
« ~%$1.11/b (2012) « 2.2 million tons (2018)
* 466,000 tons (2013) * Aqueous, non-flammable
« Safe, recyclable
2Mn0, + H,0 + 2e~ = Mn,03 + 20H™ [E® = +0.15 V]
Zn+20H™ - Zn0 + H,0 + 2e~ [E° = +1.28 V]
Zn + 2Mn0, - Zn0 + Mn, 03 [E® = +1.43 V]

Up to 400 Wh/L or 150 Wh/kg,
$18/kWh as primary cell

(m)

820 mAh/g

~ $1.37 /Ib (2018)

13.2 million tons (2018)
Safe, recyclable

Co $13-15/b Li $2.5/Ib
Vv $11-12/Ib Al $0.8-0.9/Ib
Ni  $6-9/b Cu $2.5-3.5/b

The ultimate challenge in rechargeable Zn/MnO), batteries is increasing energy density while

maintaining reversibility

Images adapted from Gautam Yadav



‘ /n Anode Problems at High DOD

- 29, 1604685 (2017)

Shape change
. . z/ EolOH, d_
Dend rlte formatlon 5 \ @ J. Fu et al., Adv. Mater.

Passivation

H, evolution

J. Electrochem. Soc., J. Electrochem. Soc.,
138 (2), 645 (1991) 163 (9), A1836 (2016)

D. Turney et al, Chem. Mater., 29 (11), 4819 (2017)




ZnO-Saturated Electrolyte ®

Pre-saturating electrolyte with ZnO can minimize dissolution and long-range

m|grat|0n Of ZInc from anOde J. Fu et al., Adv. Mater. 29, 1604685 (2017).

; A. Mainar et al., Energy Science & Engineering 6, 174 (2018).
Can also reduce the rate of H, evolution

Saturated-ZnO electrolytes have been previously reported for Zn-Ni cells
but most do not mention the amount of electrolyte relative to anode

« Leads to artificially inflated metrics if cell is flooded

No systematic study to date on effect of ZnO saturation alone at different
levels of Zn DOD
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.| Battery Assembly and Testing

Due to the sensitivity of MnO,, to Zn(OH),%, use NiOOH as the cathode material

instead to examine the effect of ZnO saturation at different Zn DOD.
T

3

M. Kelly et al., J. Electrochem.
Soc., 164, A3684 (2017)
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Ni Current Collector

Sintered NiOOH Cathode
(~143 mAh)

Commercial Separators ===t
Zn Anode (275-300 mAh)
Cu Current Collector

Plastic Shimg ==

« 3 mL 32% KOH electrolyte with/without saturated ZnO

«  Zn(ll) saturation concentration = 0.74 mol/L = 119 mAh in dissolved ZnO

* Cycled between 1 and 1.93 V vs. Zn at C/10 relative to full anode capacity =
75 mAIganode

« Zn DOD limits of 14%, 21%, 35% relative to all Zn+ZnO in system
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Improved Cycle Life at High DOD ®
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Cells with ZnO-saturated electrolyte last significantly longer with similar energy efficiency to cells
with regular electrolyte cycled at same DOD, even when including dissolved ZnO in capacity

E 2 ! L I LI L PR UL
Full discharge of Zn anode vs. NiOOH at C/10 Z, 1.8\ Theoretical capacity: 746 mAN/g e
to 1V actually delivers slightly lower capacity > ,,
in ZnO-saturated electrolyte, suggesting that g 4 .
effective DOD is much higher for the above g o 230//2 {28;‘ 7nO-sat.
cells cycled in ZnO-saturated electrolyte = "2

O 1 PR Y 1 eyl
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M. Lim, T. Lambert, E. Ruiz, in preparation. Capacity (mAh/g anode)
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« Energy density is a misleading metric due to possible contribution of pre-dissolved
ZnO from the electrolyte reservoir and higher cycled capacity of cells with saturated
electrolyte

« Average discharge potential is more informative (= discharge energy / discharge
capacity)

No energy losses due to voltage between cells cycled in saturated vs. regular electrolyte at same DOD

M. Lim, T. Lambert, E. Ruiz, in preparation.




‘ Post-Mortem Anode Characterization

| 32 KOH 32% KOH ZnO-saturated Cells disassembled in charged state following
> 2SRl o G, L : Dy failure (80% of nominal cycled capacity).

Inset = % mass loss of anode after cycling

14%

Zn DOD 34 * Anodes cycled in ZnO-saturated
electrolyte yield more compact Zn
deposits indicative of more
homogeneous current density

21% * They also lose less mass despite

Zn DOD showing significant Zn deposition on
the bottom of the electrode and
through the separator

«  Re-pairing experiments confirm that
failure was due to anode
35%
Zn DOD

21% Zn DOD,
32% KOH

21% Zn DOD,
32% KOH
ZnO-sat. |
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M. Lim, T. Lambert, E. Ruiz,
in preparation.




‘ Effect of KOH Concentration at 21% Zn DOD
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25 0.45 72.4
Cells with 45% KOH fail more quickly with = 0.74 119
more zinc growth outside the electrode than = e 241

cells with less concentrated electrolyte ) Electrochem. Soc. 1967, 114, 1045,

. . . . C . Soc, . 2, , 710, :
ZnO saturation reduces cycle life in 25% KOH o Chem. Soc, Faraday Trans. 2, 1974, 70, 197

* May be due to lower saturation concentration of ZnO ->
increased passivation

M. Lim, T. Lambert, E. Ruiz, in preparation.



.| Summary

* Pre-saturating electrolyte with ZnQO increases lifetime of limited-
electrolyte Zn-Ni batteries at high Zn utilization without energy losses,
but only at higher KOH concentrations

* Anodes cycled in ZnO-saturated electrolyte develop more compact Zn
morphologies with less overall mass loss

Future Work

» Develop flexible polymeric zincate-blocking, hydroxide-conductive
separators for cells with lower-cost, more energy-dense 2e- MnO,,
cathodes that are sensitive to zincate

Recently showed zincate-blocking ability and increased cycle life of Zn-

MnO, cells with commercial NaSICON separators at limited DOD
J. Duay, M. Kelly, T. Lambert, J.

Potential for >250 Wh/L and <$100/kWh Power Sources 395, 430 (2018)
Ongoing collaboration with CUNY

G. Yadav et al., Nat. Commun. 8:14424 (2017).
G. Yadav et al., J. Mater. Chem. A 5, 15845 (2017).
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