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21 Grid Energy Storage
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Grid-level energy storage systems needed to enable
intermittent renewables

Li-ion, Pb-acid battery systems have been implemented but
pose safety and environmental risks

Successful grid storage must be safe, reliable, and low-cost

Center for Sustainable Systems, University of Michigan. 2016. "U.S. Energy Storage Factsheet." Pub. No. CSS15-17.
Energy Sage. n.d. "Ground Mount Solar Panels: Top 3 Things You Need to Know."



31 Alkaline Zn-Mn02 Batteries
Zn-Mn02

Mn02

$18/kWh
As Primary cell

KOH Zn

40
• - $1-2 per lb • Potash $260 per ton
• 16,000,000 tons (2012) • Aqueous
• Safe • Safer than Li-org

• - $1 per lb
• 13,000,000 tons (2012)
• Safe

2Mn02 + H20 +2e- Mn203+ 20H- [E° = +0.15 V] Co $13-15/1b Li $2.5/1b

Zn +20H- ZnO + H20 + 2e- [E° = +1.28 V] V $11-12/1b Al $0.8-0.9/1b

Zn + 2MnO2 ZnO + Mn203 [E° = +1.43 V] Ni $6-9/1b Cu $2.5-3.511b

The ultimate challenge in rechargeable ZnAln0 2 batteries is increasing energy density while
maintaining reversibility
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Anode

PassivE

Shape

Dendrit

2 e-

820 mAh/g

Energy density of primary cell:
up to 400 Wh/L or 150 Wh/kg

2 e-

616 mAh/g

I'Mn02

a-Mn304

Issues

ructure breakdown

lhase(s) formed

)ning

ZnMn204

J. Electrochem. Soc.,
138 (2), 645 (1991)

J. Electrochem. Soc.,
163 (9), A1836 (2016) PNAS 115 (23), E5261 (2018) Mater. Chem. Phys. 130, 39 (2011)



51 Limited DOD
2 e-

820 mAh/g

2 e-

616 mAh/g

I'Mn02

1000+ cycles shown under limited depth-of-discharge (DOD) conditions

20% of 1st Mn02 electron, 2.5% of total Zn
N. D. lngale, J. W. Gallaway, M. Nyce, A. Couzis
and S. Banerjee, J. Power Sources, 276, 7 (2015).

Technology has been commercialized by Urban Electric Power

50-100 Wh/LI $150-250/kWh



6 1 Improving Zn-Mn02 Battery Performance

Chemical additives often used to improve battery

performance

Cathode Additives: Bi203, MgO, Sr-, Ba-, and Ti-based compounds

Anode Additives: In, Bi, Pb, Ca(OH)2

Triethanolamine (TEA)

Known to form complexes with Mn2+ and Mn3+

Previous work claimed triethanolamine binds

solubilized Mn2+ and Mn3±, which could mitigate the

formation of irreversible species

Comprehensive analysis of TEA effect in limited DOD cells

A. Kozawa and R. A. Powers, J. Electrochem. Soc., 113 870 (1966).
A. Kozawa and J. F. Yeager, J. Electrochem. Soc., 112, 959 (1965).

M. Kelly et al. J. Electrochem. Soc., 113, 870 (2017).



71 Rate Performance

COTS materials
Cathode-limited
< 1.5% DOD on Zn

igrmIrkerrums.
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10 vol% TEA electrolyte
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5 cycles each of C/2, 1C, 2C, 5C, 10C, 20C (based on cycled capacity)

Cells prepared with TEA exhibit 29, 58, and 121 mV higher DEV at 1C, 2C, 5C

All cells drop below 1V at 100 and 20C rates — high resistivity of Mn02

Cells with TEA exhibit enhanced performance at higher rates

M. Kelly et al. J. Electrochem. Soc., 113, 870 (2017).



81 Extended Cycling
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2C, 10% DOD:
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Cycled at 2C, 10% DOD until failure (80% of cycled capacity remaining)

Baseline Cells: 183-198 cycles, TEA Cells: 483-653 cycles

TEA extends cycle lifetime by 297%

Zn: harder to reduce, more soluble, less transport through separator, lower
surface area

M. Kelly et al. J. Electrochem. Soc., 113, 870 (2017).



Zn Anode Increasing Cycle Life at High DOD

Pre-saturating electrolyte with ZnO can minimize dissolution and
migration of zinc from the anode

Zn/Ni(OH)2

Anode capacity = 746
mAh/g

C/10 relative to full anode
capacity 75 mA/a,,anocle
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M. Lim et al.
unpublished results

Cells with saturated electrolyte last significantly longer than cells with regular
electrolyte cycled at comparable or lower DOD, even when including dissolved ZnO in
capacity



lo Features of a Good Zn-Mn02 Battery Separator

Mn02
Cathode

O

ZnMn,O,_ 4

(inactive)

High Ionic Conductivity
Metric: Electrochernical Irnpedance

Low Zincate Permeability
Metric: Zinc Diffusion Coefficient

O
ct
ct

r

Zn(OH)42-

Zinc Anode

A selective membrane/separator is needed that allows charge-carrying
ions through but blocks or limits Zn (zincate)



11 Rapid Screening Assay for Separators

Draw
Solution

io
5 ppm Bi

2.5 ppm Cd, Pb
KOH or NaOH

J. Duay, et al. Electroanalysis 2017, 29, 2261-2267

Feed Solution

5 ppm Bi
2.5 ppm Cd, Pb

Zn{01-},2 0.5% ZnO
KOH or NaOH

ASV results are similar to ICP-MS with much
shorter experimental times and no need for

dilution or pH modification

Method Dilution
Factor

Experimental lirTimeframe of
LOD • eriment

f.71

o

ASV (this work) 1=

ICP-MS >300x

1.6 ± 0.6 ppm

0.009 ppm
7.5 ± 2.4 ppm*

Hoursini

Days

Complexometric >20x
Titration

1 ppm
96 ± 24 ppm*

Weeks

20

15
a

- Celgard KOH
- Cellophane KOH

Celgard NaOH
-Si- Cellophane Na01-1

30 60

Time (min)
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10
-7

im ASV Results
ICP-N1S Results

Ce gard Cellophane Ceigard
KOH KOH NaOH

Cellophane
NaOH* LODs obtained in our lab



12 1 NaSICON Ceramic Separator

NaSuper Ionic CONductor
Na1,„Zr2Si„P3,012, 0 < x < 3

Conduction channels

(P,SIA

http://www.chemtube3d.com/solidstate/SSNASICON.htm

NaSICON purchased from Ceramatec

Battery Assembly Schematic

Ceramic monolith

30% NaOH electrolyte

100% Selective Membrane

- Conducts Na+ ions (-10-3 S/cm)
- No detectable through-
separator Zn transport

J. Duay, et al. J. Power Sources 2018, 395, 430-438. D01:10.1016/j.jpowsour.2018.05.072.



.1 Effect on 5% DOD Cells
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At relevant discharge rates for
grid storage, the thinner 0.5 mm
NaSICON doesn't decrease
DEV significantly despite
having >2.5x lower conductivity
than conventional separators

As NaSICON is thinned and
becomes less resistive, its
advantages become more
apparent, increasing cell lifetime
by 22%

J. Duay, et al. J. Power Sources 2018, 395, 430-438.



14 1 Flexible Polymeric Separators
Development of flexible polymers that allow for selective ion transport

(lower cost, higher volumetric energy density and more flexible battery assembly)
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15 I Summary
• Electrolyte additives can increase cycle life, active material utilization

and rate performance in limited DOD Zn/Mn02 batteries

• ASV technique can be used to rapidly evaluate separators for zincate
permeability

• NaSICON separators block zincate and can be effective at rates
relevant to grid storage despite their high resistance

• Flexible polymeric selective separators are under development

Future Work

• Combining electrode/electrolyte improvements and selective
separators with reversible 2e- Mn02 cathode

• Recently stabilized with Cu, Bi, CNT additives to achieve 3000+ cycles
vs. Ni(OH)2, but still sensitive to the presence of zinc

• Ongoing collaboration with CUNY

• Potential for >250 Wh/L and <$100/kWh

G. Yadav et al., Nat. Commun. 8:14424 (2017).
G. Yadav et al., J. Mater. Chem. A 5, 15845 (2017).
G. Yadav et al., Mater. Today Energy 6, 198 (2017).
G. Yadav et al., Int. J. Hydrog. Energy 43, 8480 (2018).
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