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A Convex Approach to Optimal Control
Synthesis for Nonlinear Systems

Joseph Moyalan, Hyungjin Choi, Yongxin Chen, and Umesh Vaidya

Abstract—We consider control synthesis problem for nonlinear
dynamics. We propose a convex optimization-based approach for
the optimal control synthesis of a class of control-affine nonlinear
systems. The proposed approach relies on exploiting the duality
results in the stability theory of dynamical system. In particular,
the optimal control problem is formulated as infinite dimensional
convex optimization problem in the dual space of density. The
sum of square computational framework is further employed for
the finite dimensional approximation of the infinite dimensional
convex optimization problem. Simulation results are presented to
demonstrate the efficacy of the developed framework.

I. INTRODUCTION

The control synthesis problem for nonlinear systems has
been a longstanding challenge in the control community.
The optimal control synthesis for general nonlinear dynamics
aiming at designing a control law that minimizes some certain
cost function is normally addressed using either Pontryagin’s
maximum principle [1] or dynamic programming [2]. With
dynamic programming, the optimal control is characterized
by the celebrated Hamilton-Jacobi-Bellman equation [2]. The
dimension this partial differential equation is equal to the
dimension of the state space. Thus, the complexity of dynamic
programming grows rapids with the state dimension; this
phenomenon is known as the curse of dimensionality. The
Pontryagin’s maximum principle, on the other hand, enjoys
much better scalability. However, it only leads to local optimal
control. Another limitation of the maximum principle is that
the solution doesn’t provide a feedback law; the solution has
to be recalculated each time for different initial state.

In this work, we consider optimal control problems for
control-affine systems [3], an important class of nonlinear
systems widely used in applications such as robotics. We
propose a novel framework to compute the optimal controllers
for control-affine dynamics. The key idea of our framework
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is to convert the nonlinear dynamics to linear dynamics in the
lifted density space. By leveraging the linear operator theory
for nonlinear systems and with proper reparametrization, the
optimal control problem becomes a convex optimization over
the lifted density space. With a proper parametrization, this
convex optimization is then solved efficiently using sum of
square method. The performance of our method is illustrated
with several numerical examples.

The idea of carrying out control synthesis over the density
space was originally explored in [4] for stabilization problems.
The celebrated Lyapunov theory [5] is a powerful framework
to certify the stability of a given nonlinear dynamics. Search-
ing for a suitable Lyapunov function for a nonlinear system
is a convex problem. However, when it comes to control
synthesis, this framework becomes less effective. The joint
search of the Lyapunov function and the control law is in
general a non-convex problem. To overcome this difficulty,
[4] proposed to use the dual Lyapunov function known as
Lyapunov density [6]. For control-affine dynamics, the control
design can be formulated as a convex problem. The method
we proposed in this paper can be viewed as a generalization
of that in [4] to deal with optimal control problems. Indeed,
as discussed in Section III, the method in [4] is a special
case of our framework. The formulation of optimal control
problem in the density space is made possible by viewing
the duality in stability and stabilization results through the
lense of linear operator theory involving Koopman and Perron-
Frobenius operator [7]-[10].

The proposed framework requires solving Sums-of-Squares
(SOS) optimization problem. DUe to the complexity of the
resulting SOS optimization problem, We envision that this
method can be applied to low to medium dimensional dy-
namical systems (e.g. robotics, distributed power-electronics
control applications with energy storage systems).

The rest of the paper is structured as follows. In Section II,
we provide a brief introduction to the necessary ingredient
of our framework. The problem formulation and the main
theoretical results are given in Section III. In Section IV,
we develop the algorithm details based on the sum of square
framework. This is followed by several numerical examples in
Section V and a brief conclusion in Section VI.

II. BACKGROUND
A. Koopman and Perron-Frobenius Operators

For a dynamical system

x =f(x), x€ X CR" (1)



there are two different ways of linearly lifting the finite
dimensional nonlinear dynamics from state space to infinite di-
mension space of functions, F, namely Koopman and Perron-
Frobenius operators. Denote the solution of system (1) at time
t starting from initial condition x by s;(x). The definitions
of these operators along with the infinitesimal generators of
these operators are defined as follows.

Definition 1 (Koopman Operator): K : Loo(X) = Loo(X)
for dynamical system (1) is defined as

[Kipl(x) = ¢(s:(x)), ¢ € Loo,

The infinitesimal generator for the Koopman operator is

t>0.

lim M =f(x) - Vo(x) =: Keop 2)

Definition 2 (Perron-Frobenius Operator): Py : £1(X) —
£L1(X) for dynamical system (1) is defined as

[Py](x) = ¥(s_s(x)) 3sé;(x)

where || stands for the determinant. The infinitesimal gener-
ator for the P-F operator is given by
(P — )¢

lim ——— =

e — =V (f(x)ip(x)) =: Petp 3)

These two operators are dual to each other where the duality
is expressed as follows.

[ elwixax = [

7’¢€»’31, tZO

[Prp] (x)p(x)dx )

n

B. Almost everywhere stability and Stabilization

The formulation for the optimal control problem we present
in the dual space is intimately connected to density function
and Lyapunov measure introduced for verifying the almost
everywhere notion of stability defined below.

Definition 3: [Almost everywhere stable] The equilibrium
point at x = 0 is said to be almost everywhere stable w.r.t.
measure, p, if

u{xeX: tll>nolo st(x) #0} =0

Following theorem from [6] provide condition for almost
eveywhere stability with respect to (w.r.t.) Lebesgue measure.

Theorem 1: Given the system x = f(x), where f is
continuous differentiable and f(0) = 0, suppose there exists a
nonnegative p is continuous differentiable for x # 0 such that
p(x)f(x)/|x| is integrable on {x € R™ : |x| > 1} and

[V - (pf)](x) > 0 for almost all x. (3)

Then, for almost all initial states x(0), the trajectory x(¢) tends
to zero as t — oo.

The density p serves as a stability certificate and can be
viewed as a dual to the Lyapunov function [6]. Applying
Theorem 1 to control system, x = f(x) 4+ g(x)u, we arrive at

V- (p(f + gu)) > 0 for almost all x. (6)

The control synthesis problem becomes searching for a pair
(p,u) such that (6) holds. Even though (6) is again bilinear, it
becomes linear in terms of (p, pu). Thus, the density function
based method for control synthesis is a convex problem.

C. Sum of squares

Sum of squares (SOS) optimization [11]-[14] is a relaxation
of positive polynomial constraints appearing in polynomial
optimization problems which are generally difficult to solve.
SOS polynomials are in a set of polynomials which can
be described as a finite linear combinations of monomials,
ie, p = Zle d;p? where p is a SOS polynomial; p; are
polynomials; and d; are coefficients. Hence, SOS is a sufficient
condition for nonnegativity of a polynomial and thus SOS re-
laxation provides a lower bound on the minimization problems
of polynomial optimizations. Using the SOS relaxation, any
polynomial optmization problems with positive constraints can
be formulated as SOS optimization as follows:

rr}din w'd s.t. ps(x,d) € [x], pe(x;d) =0, (7)

where X[x] denotes SOS set; w is weighting coefficients; ps
and p,. are polynomials with coefficients d. The problem in (7)
is translated into Semidefinite Programming (SDP) [12], [15].
There are readily available SOS optimization packages such
as SOSTOOLS [16] and SOSOPT [17] to solve (7).

IIT. CONVEX FORMULATION OF OPTIMAL CONTROL
PROBLEM

We consider optimal control problem for input in affine
control system of the form

x =f(x) + g(x)u (8)

where, x € X C R" is the state, u € R™ is the control input
and g(x) = (g1(x),...,8m(x)) with g; € R™ is the input
vector field. Let A/ denote the small neighborhood around the
origin and we denote, X; := X\ N. With some abuse of
notation we denote by x(t) solution of system (8) starting
from initial condition x.

I = [ [ Tlax(®) + uT (ORu()] didpo(x) )

where pio is the initial measure assumed to be equivalent to
Lebesgue measure i.e., there exits a function 0 < h € £4(X)
such that %%3 = h(x). The ¢ : X — RT is a positive
function such that ¢(0) = 0 and R > 0 is positive definite.
The objective is to minimize the cost starting from all initial
condition supported by measure 1o. Note that the cost function
is optimized over set X; and hence a small neighborhood, N,
around the origin in the computation of cost function. The
reason for this is explained in the form of Remark 1.

We now make the following assumption on the optimal
control input.

Assumption 2: We assume that the optimal control input is
feedback form i.e., u = k(x) and the system (8) with feedback
control input is almost everywhere stable w.r.t. measure p,
Definition 3.

With the above form of optimal feedback control input, the
optimal control problem can be written as

mkin Jx, 57 a(x) + k(x) "Rk(x) dt] dpo(x)

s.t. x = f(x) + g(x)k(x) (10)



Lemma 3: The feedback control system x = f(x) +
g(x)k(x) =: f.(x) is almost everywhere stable (Definition
3) with respect to measure j then

Jim [PEh](x) = 0 (1D

where, h = %f and P¢ is P-F operator for system x = f.(x).
Proof 4: For any set B C X1, let By := {x € X : 5¢(x) €
B}, then

xB, (%) = xB(s:(x)) = [Uixs](x)-

where s;(x) is the solution of system & = f.(x) starting from
initial condition x. Furthermore,

0= lim xp,(x) = lim xp(si(x)) = lim [U;xp](x)

for all point x such that s;(x) — 0. Since the system is a.e.
stable w.r.t. measure dyo(x) = h(x)dx, we have

0= /X Tim (U] (0)h(x)dx

— [ a0 Jim [Peh] o).
X

The above is true for arbitrary set B C X, hence we have
limy o0 [Peh](x) = 0.

12)

|
We now state the main theorem on the convex formulation
of the optimal control problem.
Theorem 5: Under the Assumption 2, the optimal control
problem (10) can be written as following infinite dimensional
convex optimization problem

p(x) "Rp(x)
/X 4090 + PR
st. V-(fp+gp)=nh

min dx
p=>0,p

13)

and the optimal feedback control input recovered from the
solution of the above linear program as

(14)

Proof 6: With the feedback control input the cost can be
written as

W= [ [ ax(®) + kxo) RK(x(0)iedo 13
X1
where x(t) is the solution of feedback control system

x = f(x) + g(x)k(x) = f.(x). (16)

Let U; and P{ be the Koopman and P-F semigroup for the
feedback control system (16). The cost function can be written
in terms of the Koopman operator as

= Jx, Jo [U§(g + k"RK)](x) dtdug

—fo (Us(g +k"RK), h)y dt (17)

where (-, )% stands for inner product between functions and
we have used the fact that dug = hdx. Using the duality
property between the P-F and Koopman operator, we obtain

J= / (¢ +k Rk, Pih)y, dt = (g + k" Rk, P)x,
0

where we have exchanged the integral over time with integral

over space and defined
p(x) :=

PSR (x)dt, x € X, (18)

0
It follows that p(x) is a solution to the following equation

V- (f.(x)p(x)) = h(x), z€X;4 (19)
Substituting (18) in (19), we obtain
V- (@0p0) = [V EGopRIa
— [ - Emeon = - tm(x)\ " =) @

where we have used the infinitesimal generator property of P-F
operator Eq. (3) and the fact that lim;_, . [P{h](x) = 0 from
Lemma 3. Furthermore, since h > 0, it follows that p > 0
from the positivity property of P-F semigroup P;. The OCP
can then be written as

/X (g(x) + k() TR(x))p(x)dx
st. V- ((f+gk)p) =h.

min
k,p>0

21

Using the fact that p > 0, we can write above problem as

-T

. p Rp
min x)p(x) + dx
min | 40900 + 2

st. V-(fp+gp)=nh

(22)

where p(x) = k(x)p(x). Once we solve for p and p, k can
be recovered as k(x) = Z 83 [ |
We next consider optimization problem with £; norm on

control input.

mm fxl Uo

s.t. x:f( )

x) + Blk()[lx dt] dp(x)
+ g8(x)k(x)

The solution to the above optimization problem can be
obtained by solving the following infinite-dimensional linear
program.

Theorem 7: Under the Assumption 2, the optimal control
problem (23) can be written as following infinite dimensional
linear optimization problem

/X 4(x)p(x) + B]p() || dx
st. V-(fp+gp)=h

(23)

min
p=0,p

(24)

and the optimal feedback control input recovered from the
solution of the above linear program as k(x) = i—é)’:—).
Remark 1: The cost function is optimized in the region
excluding the small neighborhood around the origin. The rea-
son for this can be explained as follows. The optimal density
function serves a density function for occupation measure.
In particular, i(A) := [, p(x)dx signifies the amount of
time system trajectories for the close loop system spend in
set A. Hence the optimal density function has singularity
at the origin as all the trajectories are funnel to the origin.
This singularity at the origin create computation challenge for
the approximation of the cost function near the origin. There



are two potential approaches to address this challenge due
to singularity. The first approach is to ignore the optimality
at the origin as the neighborhood around the origin is small
the performance of closed loop system is not compromised.
The second approach is to design a locally optimal stabilizing
controller based on the linearization of the nonlinear system
at the origin. The local optimal controller can be designed as
a linear quadratic regulator. In this paper, we adopt the later
approach.

IV. SOS-BASED COMPUTATION FRAMEWORK FOR
OPTIMAL CONTROL

In this section, we provide SOS-based computational frame-
work for the finite dimensional approximation of optimal
control formulation involving £ norm (Eq. (23)) and L2 norm
(Eq. (10)) for the control cost.

A. Optimal Control with L1 norm of feedback control

Consider the parameterization of p(x) and p(x) as follows:

) = ik o) = 25)
where the polynomials a(x) > 0 and c(x) =

[e1(x), ..., Cm(x)}T. Here, b(x) is a positive polynomial
(positive at x # 0), and « is a positive constant which
is sufficiently large so that the integrability condition in
Theorem 1 holds. Using (25), we can restate the left-hand
side of (24) as follows [4]:

1
b
14+ a)bV - (fa+ gc) — aV - (bfa + bge)).

V- (fp+gp)=V-[;(fa+ge)|

=l

Thus, it becomes finding a, and c, such that

[(1+ a)bV - (fa + gc) — aV - (bfa + bgc)] (26)

is a non-negative polynomial function. Furthermore, b(x) can
be chosen as a quadratic control Lyapunov function for the
linearized dynamics at x = 0 to guarantee a local stabilization
near the origin. Combining (25)—(26), (24) can be rewritten as
follows:

min
p20,p

s.t.

q(x)a(x) = Blle(x)[1
L e e
(26) > 0, a(x) >0,

27

where a small neighborhood of the origin
N={xeX:|x|<¢ e>0}

is chosen as a polytope and excluded from the integration
of the cost function to remove singularity at the origin due to
rational parameterization in (25). Although the proposed feed-
back control stabilizes the system for the entire X, we design
a local optimal linear quadratic regulator (LQR) controller for
N to guarantee the optimality of control costs through the
entire region.

By calculating the integrals in the cost function in terms
of coefficient vectors of the polynomials and substituting

non-negativity constraints with SOS constraints, (27) can be
expressed as a SOS problem as below:

m
. T T
min d, C, +6Zd2 Cs,

asCe; bs; =1

s.t. (26) € ¥[x], a(x) € X[x], (28)
(s(x) —e(x)) € X[x],
(s(x) + c(x)) € X[x],
where s(x) are the polynomials equal to |c(x)[; Ca, C,

s

and C,, are the vectors containing coefficients of a(x)
¢;j(x), and s;(x) in terms of the monomial vector, ¥(x)
JT such that

2 2
i Bp BT T 18Dy = o s By » 5

a(x) = C, ¥(x),¢;(x) = C. ¥(x),s;(x) = C] ¥(x),

[1,.’)31,..

for j =1,...,m, with ¥(x) having the maximum degree of
a(x), ¢j(x), and s;(x); and the coefficients d; and dy are
calculated as

_ [ ) g
ai= [ e e

W (x)

x, b(x)*

dx. (29

B. Optimal Control with Lo norm of feedback control

Following the same parameterization in (25), £y optimal
control problem in (13) is restated as:

in [ 900009 | c00TRet
x, b(x)* a(x)b(x)"
s.t. (26) >0, a(x) >0,

(30)

where we exclude a small neighborhood of the origin to avoid
singularity at the origin. To convert (30) into a SOS problem,
we first reformulate (30) as follows:

[ e e,
/xl b T b
st. (26) >0, a(x) >0, 31)
w7
M(x) = [c(x) a(x)R_l] =0,

where the positive semidefinite constraint of the polynomial
matrix M(x) is a result of applying the Schur comple-
ment lemma on the Lo control cost bounded by w(x), i.e.,
% < w(x);. Now, to algebraically express the posi-
tive semidefinite matrix M(x), we first introduce the following
lemma:

Lemma 8 (Positive semidefinite polynomial matrix [18]): A
p x p matrix H(x) whose entries are polynomials is positive
semidefinite with respect to the monomial vector z(x), if and
only if, there exist D = 0 such that

H(x) = (2(x) ®1,) " D (2(x) ©1),

where ® denotes a Kronecker product (tensor product) and I,
is an identity matrix with dimension p.

Following Lemma 8, let z(x) be a monomial vector with
deg(z(x)) = floor(2EZENY 1 1 then M(x) in (30) is
positive semidefinite when there exists D »> 0 such that
M(x) = H(x). Using this result and also the integrals of



the cost functions in terms of ¥(x) shown in (29), a SOS
problem equivalent to (31) can be formulated as follows:

min d;rCa + d;Cw
€s,Cn,Co;
B SR
st (26) € X[x], a(x) € X[x],

w(x) — Hyp (x) = 0, (32)
c(x) — Hja(x) =0,
G(X)R_l — H22(X) = 07
D =0,

where H;;(x) denotes a polynomial in ijth entry of H(x);
and C,, is a vector of coefficient of w(x) in terms of ¥(x),
ie., w(x) = Cl¥(x).

V. SIMULATION RESULTS

In this section, we present simulation results for the model-
based optimal control involving examples of systems with
polynomial vector field.

Example 1 Consider a system with following dynamics:

. 3 2 .
T =T — 2] +2x], T2 =1U.

The finite-dimensional approximation of the infinite dimen-
sional optimization problem is obtained as follows. For the
stabilization equations (refer to (25)-(26)), the parameters
are chosen: deg(a(x)) = 0 : 2, deg(e(x)) = 0 : 5,
deg(s(x)) = 0: 6, and a = 4. Also, the parameters for £; and
Lo optimal control costs are chosen with reference to (27) as
follows: 8 = 0.1, R = 1, b(x) = 4.722+4.47x122+2.12% and
q(x) = 3.52% +x3. By solving the SOS optimization problems
for both £1 and L5 control costs described in Section IV,
an optimal control solution is obtained, u(x) = 28‘()) In
Fig. 1 and 2, we show the plot for the closed loop trajec-
tories with control designed using £; and L5 cost on the
control input. The domain for simulation is assumed to be
X = [—4,4] x [—4,4]. We notice that all the trajectories are
attracted to the origin. The small red box around the origin
denotes the small neighborhood N (Remark 1). We design a
local optimal linear quadratic regulator (LQR) controller based
on the linearization of the system which is active inside .
Example 2 Consider the dynamics of Van der Pol oscillator
as follows:

T = x9, To = (1 —22)zy — 21 + u.

In this example, we will consider Lo feedback control. For the
procedure of formulating finite-dimensional optimal control
problems described in Section IV for the feedback control, we
consider the parameters to (25)—(27) as follows: deg(a(x)) =
0 : 3, deg(c(x)) = 0 : 6, deg(s(x)) = 0 : 7, b(x) =
5.872 + 2.97172 + 2.922, o = 4, ¢(x) = 3.52% + 23, and
R = 1. By solving the resulting SOS optimization problems
in Section IV, we get the stabilized trajectories starting from
arbitrary initial points in X = [—2,2] x [—2,2], converging
to the origin, as shown in Fig. 3. Similar to the previous
example, the small red box in the figures represents the small
neighborhood of the origin, N' = [—0.1,0.1] x [-0.1,0.1],
where the control is switched to the local LQR controller

€2
o

Fig. 1: Closed-loop trajectories of the system in Example 1
stabilised by the proposed method for £; feedback control.

i

,,,,

T2
o

R R

T

Fig. 2: Closed-loop trajectories of the system in Example 1
stabilised by the proposed method for £, feedback control.

once the trajectories are attracted to £ towards the origin by
the nonlinear optimal feedback controls synthesized from the
proposed method.

Example 3: Consider the dynamics of Lorentz attractor:

.i‘l = O'($2 — .Z‘l),
To=x1(p — x3) — T2 + U,

T3 = T1T2 — VI3,

where 0 = 10, p = 28, and v = $. To formulate finite-
dimensional L, optimal control problem described in Sec-
tion IV, consider deg(a(x)) = 0 : 2, deg(c(x)) = 0 : 9,
and deg(s(x)) = 0 : 10, b(x) = 39.152% + 60.82z172 +
23.725 + 0222, o = 4, ¢(x) = 3.522 + 22 + 22, and
R = 1. The result of £, control synthesized from our
proposed method is shown in Fig. 5. The closed-loop trajec-
tories are stabilized, starting from arbitrary initial conditions
in X = [—4,4] x [—4,4] x [-4,4]. The LQR control for
the linearized system is applied to the region near the origin,



Fig. 3: Dynamics of Van der Pol oscillator stabilized by the
proposed method for £, feedback control case.

N =[-0.1,0.1] x [-0.1,0.1] x [-0.1,0.1] as denoted by the
red box in Fig. 5.

40+

20+

T1~3

5 ---z1 uncontrolled
x5 uncontrolled
---z3 uncontrolled
—x1 controlled
o controlled
—x3 controlled

100 150
t[s]

0 50

Fig. 4: Dynmics of Lorentz attractor stabilised by £, feedback
control. The red and blue plots represent open and closed loop
control repectively.

VI. CONCLUSION

A systematic convex optimization-based framework is pro-
vided for optimal control of nonlinear system. The optimal
control problem is formulated in the dual space of density
function leading to infinite dimensional convex optimization
problem for optimal control. The proposed approach use Sum
of Square (SoS) optimization framework for the finite di-
mensional approximation of the optimization problem. Future
research efforts will focus on extending the framework to
data-driven setting, where the explicit knowledge of system
dynamics is not assumed to be known.
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