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Key  Sensitivities Qual tified in this VVork
Changes in climate impact investment decisions:

o Up to 17 GW additional Western Interconnection generating capacity could be needed by 2038 to meet
peak loads (6.6% increase).

o Cumulative 20-year investment and operating costs increase by $5—$17 billion in climate impact scenarios.

System reliability was observed to remain robust under our drought scenarios:
o Over 99.9% of energy and reserves met in models.
o Thermal capacity buffer significantly higher when ReEDS build-out planned for certain climate
conditions.

Climate change influenced system economics by increasing operational costs:
o +9 to +19% for drought/heat scenarios compared to baseline conditions.
o -2 to +4% for ReEDS build-outs which included climate foresight compared to those that didn't.

Hydropower flexibility had significant impact on production costs:
o -2 to +17% for hydropower flexibility.
o However, changing hydropower flexibility has a relatively small influence on capacity expansion in the
Western Interconnection through 2038.



Collaboration

Wr,CC partners with the National Labs to leverage
their expertise, data, models, and methods to assist
Wr,CC in answering those questions where WFCC
lacks the expertise to answer.

National Labs benefit from WF,CC's understanding
and perspective on the coordination of power
system planning, operations, and reliability
assurance of the Western Interconnection.

National Labs benefit from the perspectives of
WECC's broadly diverse stakeholder community
/ccc what's on their radar?").
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WECC EWCC Key Questions

1. What risks to the reliability of the Bulk Electric System in
the Western Interconnection might arise from the Energy-
Water-Climate Change (EWCC) nexus?

2. How might EWCC increase risk exposure to extreme
natural events?

3. How might EWCC impact reliability with regard to an
accelerated dependence on renewables for energy
production?

4. Will an accelerated dependence on renewables for energy
production have a quantifiable impact EWCC?

5. How might EWCC impact reliability with regard to an
increased dependence on natural gas fired generation for
energy production and operation 41 flexibility?

Ska 



WECC EWCC Key Questions

6. How might EWCC impact reliability with regard to continued
dependence on hydropower for energy production?

7. To what extent can hydropower provide increased operational
flexibility in response to increased variability arising from an
increase of renewables in the resource mix?

8. What new operational__ and regional coordination challenges may
arise from VCC and how might they need to adapt to assure
reliability?

9. What new tools and modeling improvements are needed to
address the risk uncertainties arising from EWCC.

10. What decisions need to be made now to minimize risk and
uncertainty arising from EWCC in terms of investment,
operations, and grid reliability protocols?

Ska 



From Climate To Generation
Constraints: Modeling of Water
Availability Trends and Critical
Droughts
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Long Term  Climate Tre
Inter-annual Variability

14

13
'7)

12

+-)

[1_3
cu
1 1

°-.) 10

9

u,8

ric Differ From

70

60 ,-„*

50

a.)
40 7-3—

F[3.

30 f5.

20 S3.

3
10 3

0



Critical Droughts Spec
Electricity IFfastructure

Conditions are never average everywhere at once

'icall Affects The

Author' 
Brad Rippey

U.S. Department of Agric u ltu re

USDA

droughtmonitor. u nl.edu

Intensity:

  N one

  DO Abnormally Dry

  D1 Moderate Drought

- D2 Severe Drought

D3 Extreme Drought

▪ D4 Exceptional Drought

The Drought fvfonitor focuses on 1:road-scale
conditions. Locai condition s may vary See
aecomparlymg text summary for forecast
statements.

2013 2014

Last week of Ju(y is presented for each year. Only dry conditions are presented.



Using MOSART-WM ,.„ de„,n,i" vv2 ink

constraints for capacity build-out and
production cost models

Climate

Hydrology

River Model

I. Runoff and Baseflow
Routed to Edge of

Grid Cell

II. Flow Routed Through
Flow Network to Outlet
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• 10 x 10 miles spatial resolution
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"Water Scarcity  Grid n • act Factor"

A grid-centric water availability index summarizes the compounded generation constraints from
individual power plants to the scale of bulk power system operations
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Voisin et al. 2016. - Vulnerability of the US Western Electric Grid to Hydro-Climatological Conditions: how bad can it get? - Energy

O'Connell et al. 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability." Applied Energy



Drought scenarios ad-
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Water availability trends for capacity build-out

1. Long term
trends in
regional
capacity-
weighted water
availability
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Climate model water

Moderate emissions pathway

P wo'ections diver•e

Relative trends in available hydropower

GFOL-E514214 RCP4.5

IPSL.CM5A-LR RCP8.5

NT=

Extreme emissions pathway NAM

411 FA rtil

IPSL-CM5A-LR RCP4 5

MIRCC-ESM-CHEM RCP8.5

Impact (%)
2038 vs 2018
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Monthly hydro for reliab lity modeling

En
er
gy
 S
ce

na
ri

os
 

Load

,

Climate

Projections

VIC-MOSART/WM

Climate Scenarios

mill
1

ReEDS

20 Scenarios

( 
J

Capacity Expansion

Modeling

Hydrologic

Modeling

Select

Builds

Drought Scenarios

i
PLEXOS

20 Scenarios

Production Cost

Modeling

Load

_L

.

,

Lo
ad
 S
ce

na
ri

os
 

2. Plant-level,
monthly
hydropower
generation



Selection of Critical D ou • ht Scenarios

Criteria

Three distinct water years

Extreme conditions to stress the system...

... but also plausible

Dry conditions throughout WECC

Selection

Extreme drought from climate models

Average water year from climate models

Drought from history (1977)
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Droughts scenarios at

1977 drought (historical)

dro•nwer •lants

2053 drought (projected, rPSL)

impact on annual hydro generation,
relative to long-term average Pah)

500

0

-500

1 -1000

-1500

-2000

These droughts cause -5-10 % reduction in
total hydro generation ...
... and -5% reduction in total thermal
capacity through derating across individual
plants



Electric Sector Capacity
Expansion Modeling
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Capacity Expansion An?
Regional Energy Deployment System (ReEDS

ReEDS generates scenarios of the
future U.S. power system
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ReEDS is An Advanced and
Well-Established Model

Finds the lowest-cost investment and operation of
generation, transmission, and storage in the
continental United States through 2050

Satisfies energy and capacity requirements under
resource, transmission, policy, and power system
constraints

Extensive suite of generation and storage technologies
with additional detail for variable renewables

134 balancing areas and 356 renewable resource
regions describe regional differences

17 sub-annual time slices represent seasonal and
diurnal load and resource availability i5.0

Used extensively for DOE and other federal, industry,
and academic electric sector scenario analysis, e.g.,
DOE Vision reports, NREL Standard Scenarios
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ReEDS Scenarios lnclu 
Future Climate-Water Impacts

Cooling Water Constraints

New thermal generating capacity must purchase
water access from SNL-developed water supply
curves

Water withdrawals are limited by water access
purchases and any future changes to water
availability

Climate Impacts

Temperature changes affect electricity demand,
power plant performance, and transmission line
capacity

Surface water and hydropower energy availabilit
changes based on hydrology modeling from
VIC-MOSART/WM
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WECC Scenario Analysis Includes a Range of
Infrastructure and Climate Scenarios

Infrastructure expansion scenarios vary the possible future generation mix

1. REF : default ReEDS v2018 assumptions

2. LOW.VG.COST: NR14,1_, ATB 2018 Low Cost case for wind and solar

3. HIGH.VG.COST: NREL ATB 2018 High Cost case for wind and solar

4. ELEC: NREL Electrification Futures High Technology Adoption, Moderate Technology Advancement
case with moderate demand flexibility (in review)

Climate scenarios bound future temperature and precipitation

1. HISTORIC: Static historical climate conditions

2. IPSL85: Uses data from the IPSL climate model under RCP8.5 conditions

3. MIROC85: Uses data from the Miroc climate model under RCP8.5 conditions

4. IPSL45: Uses data from the IPSL climate model under RCP4.5 conditions

5. GFDL45: Uses data from the GFDL climate model under RCP4.5 conditions

Preliminary: Do Not Cite or Distribute
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Determines Future Expansion Trends

REF.HISTORIC

1111:1111i
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LOW.VG.COST.HISTORIC HIGH.VG.COST.HISTORIC ELEC.HISTORIC

irk Am•-.!null

Cc/ cc/ cc/ Cc/
(1, cl, /

Qo 
, (1,Qs (-1,Qo cl.Q• (-1, (-1,Qo . (-1, (-1,

CAES - Distributed PV (AC) = Landfill-gas = Oil-Gas-Steam = Cofire

Battery PV (AC) Biopower Gas-CT Coal-IGCC

PSH - CSP Geothermal Gas-CC-CCS - Coal

= Wind = Hydro = Gas-CC = Nuclear

Modeled capacity investment is primarily a combination of PV, wind, and natural gas

The relative competitiveness of technologies depends on assumed technology costs and demand
Preliminary: Do Not Cite or Distribute



Changes in climate imp
investment decisions
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CAES -

Battery

PSH

- Distributed PV (AC) =

PV (AC)

- CSP

I Wind

Landfill-gas

Biopower

Geotherrnal

- Hydro

-

-

-

Oil-Gas-Stearn

Gas-CT

Gas-CC-CCS

Gas-CC

Cofire

Coal-IGCC

Coal

Nuclear

Climate change primarily affects PV and gas capacity, with up to a 7% increase in total 2038 capacity

Hotter climate requires more total capacity

Wetter climate can reduce capacity needs with additional hydropower generation

Electrification can reduce capacity needs through flexible demand
Preliminary: Do Not Cite or Distribute



Capacity Impacts Vary b

Climate Effects on 2038 Gas-CC Capacity (GW)
scenario=REF.GFDL45 scenario=REF.IPSL85

▪ <= -2.0
-2.0 - -1.0

-1.0 - -0.001

-0.001 - 0.001

0.001 - 1.0

1.0 - 2.0

2 - 3.0

▪ 3.0 - 4.0
▪ > 4.0

Climate Effects on 2038 Utility PV Capacity (GW)
scenario=REF.GFDL45 scenario=REF.IPSL85

Climate affects where new capacity is built

Regional results reflect the interplay of climate impacts, demand, resource availability,
policies, and transmission

Aggregate WECC-wide results do not always reflect regional variations

Some results are robust across climate scenarios (e.g., more Gas-CC in DSW), while
others are not (e.g., PV in R1V1PP)

▪ <= -4.0
▪ -4.0 - -3.0

-3.0 - -2.0

-2.0 - -1.0

-1.0 - -0.001

-0.001 - 0.001

0.001 - 1.0

1.0 - 2.0

2.0 - 3.0

▪ > 3.0

Preliminary: Do Not Cite or Distribute



Electric Sector Production
Cost Modeling
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Production Cost Model 

Simulation of a specific electric 30- ,
infrastructure g 20- II'

Optimized operation for system- 10 -

wide production cost 0

Relevant outputs:
o Total production cost
o Transmission congestion
O Emissions
o Dispatch information
O Reliability metrics: unserved energy,
reserve shortages
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Scenarios for Productio 
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Preliminary: Do Not Cite or Distribute



Climate impact on srtem o• erations
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Curtailment

Net Imports

Storage

PV

CSP

Wind

Biopower

Geothermal

Hydro

Oil-Gas-Stearn

Gas-CT

Gas-CC

Coal

Nuclear

The change in generation relative to the baseline hydrology and load operated in the
build-out without climate foresight.

Resource expansions that
are high in thermal and
low in renewable
generation respond to
changes in climate
mostly through usage of
Gas-CC across the
Western Interconnection.

Resource expansions that
are high in renewables
have a more diverse set
of responses both in type
of generation and in
regional mix of
generation types.

Preliminary: Do Not Cite or Distribute



System reliability was
robust under our drought s :enari
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5000 6000 7000 8000

• Over 99.999% of load being
met in the PLEXOS
simulations of the Western
Interconnection.

• We note that this reliability
assessment is limited to the
assumptions of the
production cost model and
to the number of scenarios
analyzed

• When using climate
foresight in ReEDS with
IPSL85, additional thermal
buffer is available.

Duration curve of available capacity under IPSL Curtailment duration curves under IPSL 2053
2053 drought and the high load case. drought and high load case.



Economic and Environmental
Impacts
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Heat-driven demand can increase costs, but increased hydropower can reduce costs

Cumulative climate impacts on cost range from -17.7-17.6 billion $

Climate impacts on electricity prices are small compared to technology and electrification
Preliminary: Do Not Cite or Distribute



Climate impacted oper 

VRE cost
assumptions in
ReEDS build-out

HIGH.VG.COST

VRE cost
assumptions in
ReEDS build-out

HIGH.VG.COST

Climate foresight in ReEDS
build-out

Historic climate

IPSL85

Historic climate

GFDL45

Absolute change in
generation cost due to
drought/heat from PLEXOS
(Million $)

919-1,116

919-1,117

453-620

460-618

Relative change in
generation cost due to
drought/heat from
PLEXOS (%)

9-12%

10-12%

14-19%

13-18%

Climate foresight Absolute change in PLEXOS
generation cost due to
climate foresight in ReEDS
build-out (Million $)

Relative change in
PLEXOS generation cost
due to climate foresight
in ReEDS build-out (%)

Historic climate versus IPSL85

Historical climate versus
GFDL45

-234 to -236

142 to 154

-2.2 to -2.4%

3.6 to 4.3%

Production cost modeling shows that
generation costs increase under the
drought/heat scenarios analyzed by 9
to 19%.

Production cost modeling shows that
the effect of climate foresight in
operating the ReEDS built-outs
changed the generation cost under
any given drought/heat condition by -
2 to +4%.



Projected CO2 emissions and water use are M:r
driven primarily by the electricity scenario
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Sensitivity of Results to
Hydropower Operational
Representation



Additional scenarios examined impacts of
varying hydropower flexibility

Scenarios represent bounding cases of increased (HIFLEX) or decreased
(LOFLEX) flexibility of the dispatchable (non-run-of-river) hydropower fleet.

HIFLEX: Dispatchable hydropower can vary power output from zero to its
maximum rated capacity at any time of the year.

LOFLEA: Dispatchable hydropower produces constant output across a
representative season (ReEDS) or month (PLEXOS) within energy limits.
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Net load and hydro dispatch for LOW.VG.COST in PLEXOS, showing impact of

hydropower flexibility on hourly dispatch.
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Varying hydropower flexibility has a relatively IIIM:r
small influence on net capacity expansion
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Net capacity impacts (black
dots) are typically very
small.

Changes to hydropower
flexibility can have some
influence on PV expansion.
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Hydropower flexibility
impact on production costs
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Change in generation (top) and cost (bottom) compared to baseline hydro flexibility.

• Hourly simulations show that
increased need for flexibility in
the system is met by increased
deployments of Gas-CC
generation in all systems and by
additionally curtailing wind and
PV in high renewable systems.

• The change in generation cost is
-2 to +17% in the high
renewable system
(LOW.VG.COST), and up to 4%
increase in the high thermal
system (HIGH.VG.COST).





Key  Sensitivities Qual tified in this VVork
Changes in climate impact investment decisions:

o Up to 17 GW additional Western Interconnection generating capacity could be needed by 2038 to meet
peak loads (6.6% increase).

o Cumulative 20-year investment and operating costs increase by $5—$17 billion in climate impact scenarios.

System reliability was observed to remain robust under our drought scenarios:
o Over 99.9% of energy and reserves met in models.
o Thermal capacity buffer significantly higher when ReEDS build-out planned for certain climate
conditions.

Climate change influenced system economics by increasing operational costs:
o +9 to +19% for drought/heat scenarios compared to baseline conditions.
o -2 to +4% for ReEDS build-outs which included climate foresight compared to those that didn't.

Hydropower flexibility had significant impact on production costs:
o -2 to +17% for hydropower flexibility.
o However, changing hydropower flexibility has a relatively small influence on capacity expansion in the
Western Interconnection through 2038.





Project Synergies

HydroWIRES B1: Improving representation of hydropower availability and flexibility in production cost models for resources
adequacy and reliability studies
o A weekly representation driven by water availability and environmental constraints that lets the production cost model defines realistic flexibility
needs
o Multi-year datasets to understand risk associated with water availability

HydroWIRES D1: Improving capacity expansion model representations of hydropower and closed-loop PSH resource
assessment
o Improved hydropower formulation will enable more detailed exploration of hydropower flexibility and value
o New PSH resource potential could be impacted by future water availability scenarios

9505 Report — Secure Water Act: Evaluate threat of climate change to federal hydropower
o Use of large-scale hydrology modeling, large ensemble of climate models and multi-hydropower model approach to evaluate uncertainties
o Project-specific calibration for accurate representation of environmental constraints at monthly time scale.

Integrated Multi-Scale, Multi-Sector Modeling (Office of Science).- Developing understanding and tools needed to
investigate the impact of various natural and human stressors on multi-sector dynamics
o Drought and heat impacts on Western Interconnection in PLEXOS at county-scale using simulated daily extreme temperatures, thermal power
plant deratings, and WM-modeled historical drought impacts.
o Comparison of thermal power plant deratings including impacts of air temperature, water temperature, and water availability.
o Operational (PLEXOS) modeling of hundreds of water conditions using WM-modeled climate-forced hydropower and thermal plant impacts.

Water Risk for the Bulk Power System (GMLC/WPTO):
o To provide a comprehensive understanding of water-related impacts and risks from the asset level to the bulk power system scale, including
sensitivities to varying climate-hydrologic drivers and infrastructure futures.
o To create a national-scale analysis and visualization platform that enables utilities and system operators to evaluate water-related impacts and
risks of existing and new grid assets that can inform operations and investment decisions.


