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Progress and Potential 
As human researchers, we are trained to reduce the number of variables to make experiments 
manageable. This limits the depth and kinds of phenomena we can study. High-dimensional 
iterative search empowers us to investigate richer, more complex materials phenomena.   
  
Importantly we envisage network effects for the globally integrated autonomous experimentation 
systems, where beyond the tipping point, the size and degree of interconnectedness greatly 
multiply the impact of each research robot's contribution to the network. 
 
However, to truly exploit the potential of autonomous research, we must build substantial 
programmatic investments to develop a workforce comfortable working with artificial 
intelligence. 
 
Summary 
Solutions to many of the world's problems depend upon materials research and development. 
However, advanced materials can take decades to discover and decades more to fully deploy. 
Humans and robots have begun to partner to advance science and technology orders-of-
magnitude faster than humans do today through the development and exploitation of closed-loop, 
autonomous experimentation systems. This review discusses the specific challenges and 
opportunities related to materials discovery and development that will emerge from this new 
paradigm. Our perspective incorporates input from stakeholders in academia, industry, 
government laboratories, and funding agencies. We outline the current status, barriers, and 
needed investments, culminating with a vision for the path forward. We intend the article to 
spark interest in this emerging research area and to motivate potential practitioners by illustrating 
early successes. We also aspire to encourage a creative reimagining of the next generation of 
materials science infrastructure. To this end, we frame future investments in materials science 
and technology, hardware and software infrastructure, artificial intelligence and autonomy 
methods, and critical workforce development for autonomous research.  
 
Keywords: autonomy, artificial intelligence, machine learning, algorithmic development, 
research methods, human–machine teaming, workforce development, materials discovery, 
carbon nanotubes, additive manufacturing 
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1. INTRODUCTION 
 
Materials science and technology are at the core of society, and the development of new 
materials defines our history. Indeed, specific materials technologies give appellation to the 
Stone, Bronze, and Iron Ages, to the Industrial Revolution (steel), and to our modern Information 
Age (silicon).1 Future advances in quantum computation2 and synthetic biology3 will similarly 
arise from advancements in materials research. However, while the pace of technological 
advancement is ever increasing, the rate of materials development remains slow, with decades 
typically needed to transition a new material from discovery to commercial use.4, 5 This slow 
development directly impedes humanity's ability to solve existential problems such as climate 
change, and to generate new technologies that fuel economic growth.6 Indeed, the futurist 
Hiroaki Kitano has said, “Scientific discovery is at pre-industry revolution level."7 The 
importance of artificial intelligence (AI) in augmenting research and autonomous 
experimentation (AE) is becoming recognized as a solution to these needs. Former US Secretary 
of Defense M. Esper recently remarked, “…AI is advancing automated chemistry… These 
advances free up time for our scientists and researchers to focus on next-generation innovation, 
rather than countless tests and experiments.”8 
 
1.1 Distinguishing AE from Previous Attempts to Increase the Rate of Research 
 
The materials community has worked for many years to improve the rate of research progress. 
High-throughput and combinatorial (HT/Combi) approaches9 allow many experiments to be 
conducted simultaneously, covering large libraries in composition and processing. Integrated 
computational materials engineering (ICME)10 is a longstanding effort to reduce the time and 
costs needed for materials development by substituting modeling and simulation for experiments, 
with the Materials Genome Initiative (MGI)4, 11, 12 as the flagship effort. Recently, using the 
power of AI and machine learning (ML) to segment materials characteristics in high-dimensional 
parameter space, new potential compounds and processes have been identified using existing 
databases of simulations and experiments.13-16 This paper will make the case that, although 
powerful, these methods have not and will not speed the rate of research as effectively as AE. 
 
AE uses advanced decision algorithms to plan and execute a series of materials experiments 
iteratively towards human-directed outcomes.6, 17-27 More precisely, an iterative research loop of 
planning, experiment, and analysis is carried out autonomously (see Figure 1). Once human 
researchers have provided the necessary information (e.g., campaign objectives; constraints; 
relevant data from previous experiments, also referred to as prior knowledge), the AE campaign 
is initialized, and the AE system plans the first group of experiments. These experiments—which 
are broadly defined to encompass physical tests, modeling/simulation, or data mining—are 
conducted via automation without human intervention to generate experimental outputs from 
supplied inputs. Next, the results are analyzed automatically and incorporated into an updated 
understanding of the series of experiments in the framework of a knowledge representation.28 
Finally, a decision algorithm employing AI once again plans the next experiment phase and 
generates a new set of experimental inputs by considering the research campaign objectives and 
the value of a particular next experiment towards furthering the objective. The system 
autonomously advances through the iterations of planning, experiment, and analysis. Iterations 
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continue until the campaign objective is achieved or other exit criteria are met, concluding the 
AE campaign. The hundreds or perhaps thousands of iterations that may comprise an 
experimental campaign form the powerful core of AE systems. 
 
In previous efforts to speed research, HT/Combi, ICME, and AI methods typically comprise only 
a few iterations. While they are powerful for exploring materials parameter spaces and producing 
and analyzing large amounts of data, they have low iteration rates (related to the “Analysis 
Bottleneck”29), where interpreting results and planning further iterations are the rate-limiting 
factor. AE systems can execute tens or hundreds of iterations without human intervention. It is 
this power of an iterative, targeted experimental search that enables AE systems to achieve 
exceptional speed and fidelity of research results. 
  
1.2 Value Proposition of AE 
 
The value proposition of AE lies in its ability to advance research progress much faster than 
current methods, to make better use of human researcher time and effort, to allow for novel 
unanticipated findings, and to arrive at a better understanding of a system—all while expending 
fewer resources. Repetitive manual human labor can be done by research robots more efficiently 
and reproducibly without human confirmation bias,30 freeing up human researchers to do more 
creative work. Cognitive labor is achieved through AI, and research robots are able to analyze 
data in high-dimensional parameter space beyond human capabilities. Highly autonomous 
systems also facilitate experiments to be performed remotely, including inaccessible 
environments such as in the Mars missions, or simply over the internet,31 making AE highly 
accessible to the broad community. Thus, in general, we can view AE as an opportunity to re-
think the division of labor between human and robot researchers.  
 
1.3 Organization of the Review 
 
The intent of this review is to inform the broad materials community about the current status and 
future directions of AE from researchers active in the area. After presenting the basics of AE and 
considerations in the design of AE campaigns, we will set the background with a brief overview 
of previous attempts to speed research—through HT/Combi research and by applying AI to 
materials data sets non-iteratively. We will then illustrate the state of the art of AE systems for 
materials, describing their achievements in discovery and development, speeding research, and 
AI learning methods. Next, we will set out a future vision for how to expand and exploit AE, and 
we will identify needed investments in hardware, data management, software infrastructure, and 
algorithm development. Additionally, we will present the challenges and needed investments in 
workforce development, while considering the broad implications of AE on society, including 
the role of humans in human–robot research teams and the democratization of science. 
 
2. WHAT IS AUTONOMOUS EXPERIMENTATION (AE)? 
 
We first clarify our terminology, as many of the terms have multiple interpretations. We use 
automation to refer to a system that can execute experimental actions without human 
intervention. An example is using robotics to mix chemicals and measure results. In contrast, 
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autonomy involves the independence of action, integration of delegated decision-making, and 
complexity of operations. An autonomous experimentation (AE) system uses automation to 
execute experiments; it critically has the additional capability to act without human intervention 
(but in partnership with humans) to incorporate new knowledge derived from these experiments 
and to reason over and make decisions on subsequent iterations. AE systems can incorporate new 
knowledge and design appropriate experiments towards the research objective using AI and ML. 
While artificial intelligence (AI) and machine learning (ML) are often used interchangeably, we 
will use the broader term AI to emphasize algorithms used for decision-making in experiments; 
ML will refer to a subset of methods that include interpolation, classification, and statistical 
inference. In summary, an AE system comprises AI for choosing conditions of the next 
experiment or simulation, automated physical and computational experiments for generating new 
information, automated perception or sensing, and a knowledge representation or analysis for 
incorporating the latest information into an updated understanding. In doing so, AE takes 
advantage of iterative, sequential experimentation to rapidly progress towards a research 
objective. 
 
2.1 The AE Campaign of ARES 
 
To illustrate the AE campaign, we review ARES (Autonomous Research System), which was 
developed by Nikolaev et al.18 as the first AE system for materials development. ARES was able 
to learn to grow carbon nanotubes (CNTs) at controlled rates over a six-dimensional processing 
parameter space, ultimately delivering an improved understanding of CNT growth phenomena. 
 
Before the first cycle of planning, experiment, and analysis (see Figure 2), a human researcher 
enabled initialization of the campaign by generating a database to seed the AI planner algorithm 
of 140 input synthesis conditions with resultant growth rates. A random-forest model was trained 
on the database to determine the reaction conditions to be pursued, enabling the AE system to 
plan the first experimental phase. Sequential experiments were performed on an automated 
chemical vapor deposition (CVD) system with computer control of the input synthesis 
conditions, including laser heating conditions, reactor pressure, and mixture ratios of the four 
process gases. The resultant growth rates were measured using in-situ Raman spectroscopy.32 For 
analysis, the input conditions and output growth rate were updated in the database after each 
experiment; following each update, a random-forest model was trained on the database. Using 
the most recent database and random-forest model as well as a genetic algorithm that sampled 
suggested experimental input conditions, the AI planner determined the next experiment most 
likely to achieve the target growth rate. 
 
After approximately 600 autonomous iterations, ARES concluded the campaign; it had 
converged on its target and was able to supply input growth conditions that led to the targeted 
growth rate. Starting from no prior knowledge of nanotube growth physics, ARES taught itself to 
grow CNTs at controlled rates via optimized sampling of a vast, complex, six-dimensional 
parameter space that was much too large to sample using grid-based33 or open-loop DOE (design 
of experiments)34 methods. For example, a full factorial span of 6 parameters with 5 conditions 
per parameter yields 7776 experiments, which would take over 500 years! 
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These results provide a direct demonstration that an AE system can control complex chemical 
reactions. It is essential to point out that the AI-driven iterative search over high-dimensional 
experimental parameter space is a fundamentally new way to conduct experimental research. It 
represents a marked departure from the conventional reductionist approach, where reduced-order 
relations are extracted from pre-determined input conditions subject to specific constraints (e.g., 
by changing one variable at a time). 
  
2.2 Considerations in the Design of an AE Campaign 
 
2.2.1 Campaign Objective 
 
In the first step in developing an AE system, human researchers design the campaign objective, 
which will be the goal of the iterative search process. In its most basic form, the objective can be 
an accurate prediction of a result. The objective in the first ARES campaign was to closely 
predict the growth rate of CNTs from prior experiments.18 Other examples of campaign 
objectives could be to maximize a property,35 or to test a hypothesis.36  
 
2.2.2 Knowledge Representation 
 
Considering once again the closed research loop where the AE system plans, experiments, and 
analyzes (Figure 1), we enter where new results or outputs are generated from experimental 
inputs or controlled conditions. From output signals or spectra (experiment), the next step in the 
loop is to incorporate these results into a machine-interpretable representation of the knowledge 
gained from past experiments, including the mapping from inputs to outputs (analyze). The 
representation can also employ AI and further statistical analyses to identify anomalies in data, 
categorize regions where experiments are prone to fail, detect fundamentally different system 
responses, or build beliefs into hyperparameters to models. The difference between the results of 
the experiment and the expected results from the model can be thought of as a feedback signal 
for the control loop; for example, it can be used as the basis for training subsequent models. As 
the campaign advances, an understanding of the response of the material from a user-defined 
knowledge representation develops and improves its fidelity. 
 
2.2.3 Decisions and the Exploration–Exploitation Dilemma 
 
The AE system plans the next experiment based on the current understanding from the 
knowledge base and the campaign objective (Figure 1). Design of the AI planner requires careful 
consideration of the design policy, which is directly related to the field of optimal experimental 
design.37 Throughout the execution of a campaign, the task of achieving the research objective 
(such as minimizing a response) is often in tension with resolving the uncertainties inherent in 
the autonomous system's knowledge. This tension, also known as the exploration–exploitation 
dilemma in the AI community,15, 38, 39 fundamentally arises from the limited, imperfect, and 
uncertain knowledge the autonomous system has about the physical system under study. The 
system may choose to perform experiments that are more tailored to reducing overall 
uncertainties and to searching for new minima of the response function (exploration), or it may 
choose to perform experiments near minima predicted based on current knowledge, uncertainties 
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in that knowledge not withstanding (exploitation). A balance between these two modes, in which 
the response function is learned globally prior to optimization, is often more efficient than the 
decoupled alternative. Understanding the optimal balance between exploration and exploitation 
is an active area of research and will be discussed further (see Current and Related AI 
Technologies for AE).   
 
2.2.4 Attributes of Autonomy 
 
With respect to AE systems, autonomy has several attributes that need consideration when 
designing the research loop and its AI algorithms. The interaction between the AE system and 
the human researcher can be thought of as a collaboration—so called, “human–machine 
teaming”—so communication is necessary. The attributes for communication include 
interpretability, explainability, and interrogability (e.g., Can the human researcher understand 
and exploit the results?). Trust between humans and autonomous systems is also necessary; it is 
an active area of study40 and is broadly characterized by predictable behavior, the ability to 
achieve intended behavior, and the expectation of two-way communication of well-defined and 
achievable objectives. Another attribute of autonomy is the ability to integrate uncertainty and 
contextual information into the decision-making of the planning phase. Examples of uncertainty 
could be an intrinsic variability in the materials phenomena themselves, noise from the feedback 
characterization tools, or the influence of exogenous parameters we do not control/measure. 
Additionally, autonomy would not be possible without a depth of intelligence; while a simple 
home thermostat can act on its own, its degree of intelligence is limited. Profound AI for AE can 
include logical reasoning, independent hypothesis generation and testing, understanding by 
analogy, ability to extrapolate concepts, and ability to design experiments to efficiently and 
effectively discern complex relationships among myriad possible outcomes. A final attribute of 
autonomy to be considered in loop and algorithm design, is the delegation of decision authority 
(e.g., When is it important for the AE system to ask permission from the human researcher? How 
do ethics and policy come into consideration?). 
 
2.2.5 Deciding on the Decision-Maker: AE System or Human? 
 
As human researchers delegate decision-making to an AE system, one must consider the desired 
degree of its independence and responsibility to act in experimental campaigns. Delegation to an 
AE system is most appropriate when an algorithm is likely to make a better decision. Examples 
of cognitive labor better and more easily done by machine include scenarios where decisions 
require: (i) a faster pace than that of human cognitive and/or manual ability; (ii) holistic and 
detailed understanding of every preceding experiment; and (iii) interpolation/extrapolation in 
multi-dimensional spaces, with requisite tracking uncertainties, variances, and covariances; and 
lastly, (iv) when decisions are easy but numerous, and tedious such that they will tire or bore a 
human, potentially leading to errors.  
 
On the other hand, a completely autonomous system is inappropriate in some cases. When there 
are clear issues of safety and/or ethics involved in the next experiment, it is imperative that 
humans oversee AI experiments to ensure relevant safety and ethical practices are observed, e.g., 
that dangerous reactions are avoided. This is an active area of study for autonomous systems in 
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general,41, 42 much of which is appropriate to materials AE systems. Human decision-makers are 
also better than AE systems when new insights or inferences beyond the supplied physical rules 
are required to understand a phenomenon, when difficult-to-define objective functions are 
involved, and in general when information beyond the context of what has been supplied to the 
AE system becomes relevant.  
 
At the campaign level, autonomous workflows work only when the subset of experimental 
modules to be used are predefined, already automated, and configured to push–pull data in a 
consistent manner, and when new experiments do not require frequent workflow modifications 
to incorporate new analytical tools or processes. In all cases, AE campaigns are best pursued 
with good teaming between human and robot researchers. 
 
3. FOUNDATIONS AND STATE OF THE ART OF AE 
 
3.1 Foundations of Autonomous Research and their Contributions to AE 
 
The development of AE builds upon prior investments in technologies developed to accelerate 
the research process, and AE integrates them in new ways. These technologies include: (i) 
HT/Combi experimentation as a method to increase the rate at which new experiments are 
performed; (ii) modeling and simulation as a substitute for slow and costly experiments; and (iii) 
data science methods to extract information from simulation and experimental data. The 
groundwork for these developments was laid in part by the MGI,12 as well as by similar 
initiatives worldwide.43, 44 We will briefly review the state of each of these technology areas to 
clarify their contribution to AE. 
 
3.1.1 From HT/Combi Experimentation to AE 
 
Traditional HT/Combi experiments expedite materials science discovery by parallelizing 
materials synthesis, processing, and characterization.45 A typical HT/Combi experiment starts 
with the automated synthesis of a set of 101–102 samples, in which some combination of 
composition, microstructure, and processing have been systematically varied to cover the entire 
parameter space of interest. This library of samples is then screened either in parallel or serially 
using a set of automated measurement tools. HT/Combi experimental campaigns are typically 
limited to one or a few iterations of libraries. Some representative recent examples46, 47 of this for 
materials are reviewed by Green et al.45   
 
Historically, HT experimentation (HTE) hardware development efforts have focused on 
increasing the number of experimental results per unit time and decreasing the cost per 
experiment. This makes sense in a non-autonomous (“open-loop”) scenario, where the desired 
goal is either to obtain the desired material by a brute-force experimental search or to generate a 
sufficiently large dataset that can be used post hoc to determine the relative composition–
processing–structure–property linkages and provide information on regions of optimal 
performance for subsequent study. The shift towards autonomous approaches may eliminate the 
need for many experiments and instead favor faster turnaround for smaller batches of targeted 
experiments, as new results can be incorporated into the experiment planning. In a non-iterative 
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(“open loop”) system, AI can be used to intelligently guide an automated characterization tool to 
subsample a pre-deposited compositional spread library, realizing a 2× to 10× decrease in the 
number of samples required to extract information from the system.45 Some relevant examples of 
the trend towards lower-throughput, low-latency, small-batch laboratory automation include 3D-
printed carousels for performing iterative syntheses of gold nanoparticles to obtain a desired 
spectrum,24 dexterous, free-roaming robot chemists that synthesize and characterize small 
batches of photocatalysts,48 one-at-a-time synthesis and optoelectronic characterization of 
perovskite thin films,22 and the iterative synthesis of perovskite nanocrystals.49 Microfluidic flow 
chemistry targeting nanocrystalline materials are especially amenable to this type of approach, as 
the products can be observed in iteratively changed conditions.50-52 
 
AE takes this trend further to autonomous systems with fully closed loops, combining automated 
on-demand synthesis of AI- (or AI–human-) selected samples with automated characterization 
on a per sample or per few-sample basis. Unlike the traditional combinatorial experimental stack, 
autonomous systems are capable of adapting sampling as needed. Replicates are made where 
experimental uncertainties are high. Redundant information is minimized, and regions of optimal 
material properties are densely mapped. 
 
3.1.2 From Modeling and Simulation to AE 
 
The use of physics-based modeling simulations in materials sciences is a mature field, and it is 
now widely accepted that physics-based simulations can identify possible materials of interest.53 
This is exemplified in national efforts, such as the MGI,12 as well as by large-scale 
computational materials database/repositories,54 such as the Materials Project,11 AflowLib,55 
Open Quantum Materials Database,56 the Harvard Clean Energy Project (for solar materials),57 
and the NOMAD repository.58 Rich toolsets have been developed for facilitating large-scale 
computation and data archiving, such as ChemML59 and Atomate.60 Whereas past efforts have 
focused on making predictions that are subsequently tested in the laboratory, autonomy enables 
the incorporation of this information into the ongoing experimental process. That is, simulations 
are used to select better experiments, and simultaneously incoming experimental data are used to 
select more informative simulations, in a closed-loop process. A notable recent example of this 
idea is in the use of density functional theory (DFT) alloy thermodynamics as a probabilistic 
constraint in the (experimental) Bayesian optimization (BO) of perovskite alloys for structure 
and stability.61 
 
3.1.3 From Data Science Methodologies to AE 
 
The use of ML and AI methods for materials applications is now well established and is the topic 
of recent reviews.14, 30, 62-66 Their use in accelerating tasks in materials research can be broadly 
classified as learning to “see” (e.g., spectral interpretation), learning to “estimate” (e.g., surrogate 
models for predicting outcomes), and learning to “search” (e.g., optimization).67 Many ML 
predictions of new materials and properties have been confirmed experimentally.68, 69 In addition 
to the use of these methods on simulation and experimental data, they have been used to process 
other sources of information, such as the natural language text descriptions of synthesis 
conditions and properties in published papers61 and structured data showing the relationships 
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between known materials.70 In addition to mere prediction, ML approaches can play a role in 
facilitating human understanding. Relevant examples include the use of machine-learned natural 
language models to provide automated summarization of material properties,71 collaborative 
human–algorithm optimization approaches,72 and explainable AI (XAI) methods.73, 74 With such 
versatility, the ML and AI methods should be able to handle the challenges of the analysis and 
decision phases in the AE process. 
 
3.2 State of the Art through a Selection of AE Examples 
 
AE is a quickly developing field with new systems coming online with increasing frequency. In 
order to separate the abstract capabilities of the continually evolving robotic systems from the 
discrete achievements, we will view this progress through the lens of a selection of completed 
AE research campaigns (see Table 1). One overarching theme to note is that reports of fully 
autonomous systems are often closely preceded by related advances in hardware automation, in 
ML-driven experimental planning, or in both, but without the iterative experimentation and 
learning that is characteristic of an autonomous researcher. The related non-autonomous 
advances are included to better illustrate the current state of AE development. For instance, in 
the previously described example of ARES (Table 1, Study A),18 the fully autonomous 
implementation was preceded by the realization of an automated system to map reaction 
conditions.75 The more recent inclusion of scanning probe lithography to introduce 
compositional variations for screening CNT catalysts highlights one path of future 
development.76 
 
3.2.1 AE for Solution Chemistry 
 
One of the main focal points for the development of automation has been platforms for studying 
solution-phase chemistry in a broad sense. For instance, Bédard et al. developed a plug-and-play 
continuous flow AE system for performing synthesis and analysis in an automated fashion 
(Table 1, study B);77 user-specified reactions were automatically optimized through the 
exploration of three discrete reactions using a black-box optimization tool known as SNOBFIT.78 
Building on this platform, Coley et al.79 integrated both a robotic system to dynamically 
reconfigure the flow chemistry platform and a pipeline to search the literature and predict 
synthetic pathways. This highly versatile system was used to discover the optimal synthetic 
pathways for six sample drug substances; however, the process did not comprise experimental 
feedback nor optimization of reaction conditions due to the complexity inherent to multi-step 
reaction chemistry.  
 
An alternate approach to general chemistry has recently been shown by Burger et al., wherein a 
mobile robot can move around a room to access a variety of distinct stand-alone, commercial 
instruments, reducing the need for instrument customization. This AE system was used to 
optimize the hydrogen evolution reaction (Table 1, study G).80 
 
3.2.2 AE for Emulsions: Algorithmic versus Random Sampling 
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Following the initial demonstrations of AE systems, an important trend started in the literature 
with systems explicitly testing the acceleration inherent to the confluence of automation and 
algorithmic planning. Specifically, DropFactory was constructed as an automated system that 
dispenses reagents to form oil-in-water droplets, which exhibit a wide range of behaviors from 
locomotion to self-dividing.81 Incorporating it into an AE campaign, Grizou et al. explored the 
behavioral range resulting from a four-dimensional parameter space (Table 1, study C). One 
important contribution from this work was the comparison of experimental campaigns run by 
random sampling versus those in which each subsequent experiment was chosen algorithmically. 
When given a budget of 1000 experiments, the algorithmically driven system explored 73% of 
the parameter space while random sampling only explored 22%. Perhaps more importantly, the 
algorithmic sampling achieved the same performance in 128 experiments as the random 
sampling achieved in 1000. 
 
3.2.3 AE for Additive Manufacturing: Bayesian Optimization versus Grid-Based Exploration 
 
Building on the trend of introducing new categories of experiments in an autonomous context 
while benchmarking against traditional techniques, Gongora et al.35 developed BEAR, a robotic 
manufacturing and testing system to autonomously optimize the toughness of additively 
manufactured components (BEAR = Bayesian Experimental Autonomous Researcher; see 
Figure 3 and Table 1, Study D). As part of the initial demonstration to study components defined 
by four geometric parameters, the authors included an explicit comparison between experimental 
campaigns guided by BO and those guided by grid-based exploration, revealing the time- and 
cost-efficiency of AE. What the grid-based system achieved in about a month, the Bayesian 
system accomplished in just 12 h; after 24 h, the Bayesian method produced a higher toughness 
performance than that achieved by the month-long grid-based search. They have now extended 
their work to include finite-element modeling of the physical response, successfully increasing 
the toughness by another 30% (see Figure 3, Conclude panel).82 
 
3.2.4 AE for Thin Films 
 
There has been a sustained effort by multiple research groups to develop AE to synthesize and 
study functional thin films for energy applications. Once again, examples in automation and 
HTE came first. In 2019, Sun et al. developed a HT process that allowed the synthesis and 
characterization of 75 unique compositions of perovskite-inspired inorganic films over a span of 
two months.83 Following these results, Langner et al. developed a robotic system to synthesize 
polymer blends for organic photovoltaics and to study degradation in a totally automated 
fashion, at ~300 samples per day. The resulting large dataset in a four-dimensional parameter 
space of compositional blends was used to simulate autonomous campaigns, which suggested 
that a self-driving laboratory could achieve equivalent performance in this space with 32 times 
fewer experiments.84 A fully autonomous realization of functional films was published shortly 
thereafter by MacLeod et al., in which they reported a robotic system moving between synthesis, 
processing, and multiple characterization stations (Table 1, Study E). By guiding this system 
with BO through two 35-sample experimental campaigns, they optimized the hole mobility of an 
organic semiconductor film. Significantly, they also identified a region that exhibits a previously 
unknown local maximum in mobility.22 
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3.2.5 AE for Quantum Dots 
 
In addition to films, quantum dots (QDs) have been the subject of advances in both automation 
and, recently, autonomy. As far back as 2010, HT synthesis had been applied to map the 
synthetic parameter space corresponding to QDs.85 Efforts to screen QDs continue with recent 
reports on metal–halide QDs.86 Recently, the concept of automated QD synthesis was combined 
with a ML-guided experimental planner to realize an artificial chemist for optimizing QD 
synthesis (Table 1, Study F).51 This system utilized flow reactors to study a variety of decision-
making policies in a BO framework. Further, they showed that learning can be accelerated by at 
least two-fold when the knowledge of one set of precursors was transferred to a different set of 
precursors. 
 
3.2.6 Developments in Characterization and Analytical Methods in Efforts towards AE 
 
In some cases, efforts towards autonomy in the study of complex properties involve innovative 
approaches to assess properties. Kirman et al. employed optical observation of crystallization to 
identify novel perovskites.87 HT experiments were made possible by using instrumentation 
developed for protein crystallography studies. ML was applied to both optically analyze samples 
to evaluate crystallization and to build a predictive model of whether samples would crystallize. 
Independently, Li et al. also combined robotic synthesis with ML-based experimental selection 
for perovskite synthetic studies.88 While their analysis involved a number of manual steps 
including visual inspection, their experimental selection leveraged a previously developed 
experimental planner termed ESCALATE (Experiment Specification, Capture And Laboratory 
Automation TEchnology).89  
 
Efforts towards materials AE need not originate from a synthetic viewpoint; the active guidance 
of analytical systems can itself accelerate the characterization process. For instance, Noack et al. 
demonstrated how a kriging-based approach could accelerate X-ray scattering experiments by 
selecting the parameters of subsequent experiments.90 This approach was experimentally 
validated through a set of campaigns, each with 600 experiments, on a sample composed of 
nanoparticles; a reduction in error was observed when the system was guided by active learning 
(AL), where the ML model’s uncertainty and expected value are used to select new data points. 
This study highlights a challenge inherent to benchmarking experimental-learning-based studies; 
comparisons can only be made to previously reported experiments. More recently, real-time 
control over X-ray measurements was combined with synthetic capabilities by Rakita et al. to 
dynamically adjust the redox state of compounds in solution.91 While this approach only featured 
a single dimension of control (the presence of reducing or oxidizing agents), it is a promising 
example of how synthesis and characterization can be combined in an autonomous fashion. 
 
3.2.7 AE and Materials Discovery 
 
While there are additional examples at various stages of exploration, we end with examples 
showing the state of the art with respect to materials discovery. Combining HTE and ML, Ren et 
al. discovered a new metallic glass using an iterative approach and an ML model for 
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experimental selection.92 Many important materials properties are intimately tied to the structure. 
As such, learning the relationship between the structure of a material and how it is formed—i.e., 
phase map—can serve as a blueprint for guiding materials discovery and optimization. Kusne et 
al.20 developed CAMEO (Closed-loop, Autonomous system for Materials Exploration and 
Optimization), an AE system that maximizes overall knowledge of the composition–structure 
relationship. By controlling synchrotron X-ray diffraction measurements and exploiting phase-
map knowledge, they identified a novel phase-change material, which has recently attracted 
attention in the electronics industry.93 Further, recent reports of AE systems using first-principles 
simulation provide more evidence that this approach is amenable to the rapid discovery of novel 
materials formulations.94  
 
3.3 Current and Related AI Technologies for AE 
 
At this nascent stage, many of the existing AE systems offer proof-of-concept demonstrations, 
opting to use previously developed ML and AI methods. While these generic methods are 
attractive for their broad and perhaps immediate applicability, they do not necessarily capture 
aspects of the material system, experimental apparatus, and campaign constraints. The ability to 
properly model such factors ultimately impacts the effectiveness of the closed-loop search, the 
agency of the AE system, and the scientific insight gained from such a campaign. To build more 
robust, intelligent platforms with greater autonomy, these factors should be included. In this 
section, we highlight a few examples of such problem-specific features and consider how—if at 
all—current state-of-the-art methods address them. 
 
3.3.1 Bayesian Optimization (BO) and Gaussian Process (GP) Models 
 
Many general methodologies—such as BO,95 AL,96 and statistical DOE97, 98—suggest a model of 
the relevant quantities-of-interest to learn sequentially as well as the decision-making policies 
that can select a set of experimental actions to execute towards a research objective, making 
them useful to closed-loop techniques. For example, in BEAR (Figure 3 and Table 1, 
Study D),35, 82 the mechanical performance of a manufactured structure is viewed as an 
experimental response function over such structures and is modeled as a random function using a 
Gaussian process (GP) model.99 Used with the expected improvement (EI) policy, in which 
sampling is pursued at the point most likely to maximize improvement of a value, this GP model 
is used to select the next structure to test.100 GP models with the EI policy or similar modeling 
and policy choices are attractive because of the modeling and computational ease. The GP model 
allows the specification of the assumed structure, such as smoothness, of the response function 
without being overly restrictive. However, in many materials systems, such assumptions are not 
globally accurate. The archetypal example of this are critical phenomena. Critical regions of 
experiment space (e.g., delineating regimes of pressure or temperature) result in responses that 
change rapidly or discontinuously, which cannot be properly modeled using off-the-shelf GP 
models. This is not isolated to the use of GP models in BO. Many AL and DOE methods 
ultimately rely on similar types of generic models. For example, uncertainty-based methods101-103 
often rely on GP or linear models to model responses. 
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Another feature not immediately captured with off-the-shelf methods is the fact that experiments 
often yield several types of responses. Among others, this could be in the form of various 
characterizations, experiment failure, experimental time or cost, or an uncontrolled factor, such 
as laboratory humidity. More complex models are needed to properly capture the relationships 
between the different responses, as well as the uncertainties between these relationships. A joint 
description capturing a variety of measurable responses and phenomena may not be easy to work 
with. An alternative direction is to utilize an ensemble of more traditional models, each offering 
simple estimates of the functions of interest; however, the lack of formalism makes inference and 
predictions more difficult. For example, Powell and Reyes and co-workers104, 105 describe 
methods for using an ensemble of physics-based kinetic models to represent beliefs on 
experimental responses. Other models such as ensembles of neural networks51 can directly offer 
multi-variate predictions for several types of responses, in which correlations between outputs 
are emergent rather than having to explicitly couple them statistically. Such networks have 
already been used in experimental science and control settings.106 In a broader context, 
ensemble-based methods could allow us to use a variety of different types of models in a single 
decision-making framework. Here, methods such as Bayesian hypothesis testing,107 model 
averaging,108 multi-fidelity modeling,109, 110 strategies for multi-fidelity optimization with 
variable dimensional hierarchical models,109, 111 and multi-information source optimization 
(MISO),112 offer potential avenues for more robust modeling and decision-making. 
 
3.3.2 Reinforcement Learning (RL) 
 
Closely related to closed-loop techniques, such as BO, are reinforcement learning (RL)113 and 
optimal control.114 Markov decision processes (MDPs), a core RL framework, models generic 
states of a closed-loop campaign, stochastic transitions between states upon taking experimental 
actions, and rewards or costs incurred when making such transitions,115 offering a more fluent 
way of modeling many aspects of materials research. Through RL, MDPs allow an agent to 
make more operational considerations. RL decisions are obtained by estimating expected future 
cumulative rewards incurred when pursuing a particular branch of an experimental campaign. 
Many such techniques do so by approximating a value function (i.e., a measure of how “good” 
states are) or a policy function (i.e., the expected best action we can take in an attempt to 
transition to high-value states). As with BO, learning such functions can be done with generic 
black-box models or with more problem-specific models that use probabilistic beliefs on 
response functions, experimental failure, costs, or rewards obtained. 
 
3.3.3 Deep Learning (DL) 
 
Regardless of the type of modeling, approximating the functions needed to execute decision-
making in RL generally requires a significant computational investment. The coupling of deep 
learning (DL)116 with RL—so-called deep reinforcement learning (DRL),117—to calculate DL-
model surrogates of value or policy functions may prove useful here. DL models are trained 
against a large number of states/value pairs. This can be done offline, by considering a large 
number of potential states a campaign can be in and assuming that a representative set of 
potential states can be simulated. While this methodology proved successful in the case of 
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AlphaGo118 and other cases,119 it remains to be seen whether something similar can be applied in 
the context of AE. 
 
In general, DL methods are also proving useful outside the context of predicting value or policy 
functions. They work well by self-discovering latent and predictive features from raw, often 
high-dimensional data.120 Despite impressive results in many problems, the direct use of DL in 
materials AE is limited due to the high data requirements needed to train models. Requiring large 
sets of representative data is somewhat antithetical to the intelligent and nuanced exploration of 
experiment space discussed above. There are, however, opportunities for this powerful technique 
inside the closed loop when simulations and physical models are used to generate synthetic data 
for offline pre-training of the DL model. DL can also be used to autonomously analyze rich 
characterization data, such as microscopy or tomography data, and possibly map such data into 
signals that the autonomous agent can use to close the loop. Current examples of this use in non-
autonomous settings include DL for optimal microscopy,121 cryo-electron microscopy,122 and 
atom probe tomography.123 
 
3.3.4 Transfer Learning (TL) 
 
The lack of data is frequently encountered in autonomous research and generally prohibits the 
use of larger DL outright. To mitigate this, transfer learning (TL) can be used to leverage 
existing data of previously studied, related materials systems. One way to do this is with deep 
transfer learning (DTL).124 Above, we discussed pre-training a DL model in a way similar to 
what would be encountered during the online execution of the closed loop. In DTL, a DL model 
is trained using data obtained from a separate task, often in an unsupervised manner, resulting in 
a learned latent representation of some material in general. Then, within the closed loop, the 
model is trained from latent representation features to a material property of interest. Pre-training 
the mapping from material to latent features reduces the data requirements needed to learn the 
mapping to the property of interest. Alternatively, one can use adjacent data to build more 
informative priors for BO models used in closed-loop design. This is the perspective taken by 
Roy and Kaelbling125 and applied, for example, to building Bayesian priors for the tribological 
properties in two-dimensional TMD (transition metal dichalcogenide) materials using adjacent 
materials descriptors.126 
 
4. POTENTIAL IMPACT AND FUTURE DIRECTIONS OF AE  
 
With these early demonstrations of AE, we can begin to assess the potential impact of AE on the 
research process. As demonstrated for specific research tasks (ARES,18 BEAR,35 CAMEO20),  
AE has enabled materials research to be orders-of-magnitude faster and has been successful in 
the discovery of novel functional materials.20 AE can also achieve better research outcomes than 
current processes in terms of parameters, such as materials performance or fidelity of 
characterization.20, 35  
 
4.1 Economics of Research 
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Maruyama has proposed a "Moore's Law for the Speed of Research".127 That is, over time, we 
may see an exponential increase in the speed of research progress akin to Moore's Law for 
semiconductors. Others expect an initial burst in research speed with incoming investment, 
followed by slower progress as we surpass the more easily overcome barriers. For either 
outcome, AE promises to disrupt the current research enterprise and investment structure. While 
it is difficult to quantify the rate of research progress, it is straightforward to expect large 
increases over time as experimental hardware is automated and as closed-loop iterative 
algorithms are implemented and improved. Already, we have seen a 100× increase in 
experimental iteration rates in ARES18 and a 10× increase in convergence rates in BEAR.35 
 
Market economics may be helpful in understanding the implications of the exponential growth of 
AE on society and the research community. A corollary to Moore’s Law for the Speed of 
Research is that research becomes exponentially cheaper to execute (if fixed costs for equipment 
and labor are constant). Since labor dominates the cost of research, AE can effectively multiply 
the effort of an individual researcher. That is over time, hundreds of experimental iterations can 
be done with the time and labor it previously took to do one, making the marginal cost of 
subsequent experiments extremely low. Moreover, the progress towards the research objective is 
faster because of the iterative search, and so progress (as contrasted to more experiments) is 
exponentially cheaper. Faster research progress will bring materials to market faster, and it will 
enable agile, efficient, and effective response, better-tailored materials solutions, and greater 
scientific understanding in society. Furthermore, as research becomes more affordable, we 
expect it to become more accessible, just as computing power became more accessible with low-
cost processors. Greater access to research can spur a rise in the number of people engaging in 
scientific research, potentially leading to a revolution in citizen science. In Culture of Growth,128 
Joel Mokyr describes how a “Marketplace of Ideas” spurred the Industrial Revolution, increasing 
the rate of production and transmission of useful knowledge. Outlining impediments to scientific 
progress (e.g., barriers to entry, transaction costs), he noted that “Economists think that 
knowledge tends to be chronically underproduced...” By making scientific research faster and 
more accessible, AE may similarly revolutionize the way we do research. 
 
Figure 4 depicts our projections for increasing the speed of research (per researcher), as well as 
expectations for the associated access to research robots, which increases the number of 
researchers. We see three phases of AE development stemming from their degree of 
interconnectedness. Current AE systems are stand-alone and self-contained. In 3–5 years, we 
anticipate a transition to locally connected systems, where multiple robots can perform mutually 
dependent research. In 15–20 years, we expect a network of AE systems to be globally 
integrated, much like the internet is today. Importantly, we envisage network effects for the 
globally integrated AE systems, where beyond the tipping point, the size and degree of 
interconnectedness greatly multiply the impact of each new research robot's contribution to the 
network. We can thus expect solutions to currently intractable problems, as a result of leveraging 
network effects from data sharing and interpretation and a community-driven approach to 
scientific investigation.  
  
4.2 Impact on Research Strategies 
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AE has been successfully applied to a broad range of materials, processes, and characterization 
modalities using complex campaigns. With the potential for increased complexity, we must 
consider the implications of AE on the design of campaign objectives and search strategies. AI 
algorithms are expected to explore experimental spaces differently from humans. That is, human 
researchers design experimental campaigns to balance the likelihood of success, potential 
benefits of success, and explainability of outcomes. Often this takes the form of starting from 
known experiments129 and making modifications one variable at a time.130 This strategy can be 
effective for local optimizations, but it has difficulty in multiparameter problems and results in 
biased datasets.131 The speed and reduced human effort of AE enable a greater diversity of 
experiments, and since AI/ML algorithms excel at high-dimensional search problems, they are 
holistic rather than reductionist. 
 
The further development of AE has strategic implications for the risk appetite per experiment. 
Human researchers tailor experimental campaigns to balance the likelihood of success with the 
potential benefit from success. That is, experiments that have a reasonable chance of success 
using the available timeframe and resources will be pursued. With AE, we can perform many 
more experimental iterations, and therefore increase the overall likelihood of success. The failure 
of one or even several experiments does not doom a campaign. In fact, "failed experiments" can 
serve to inform where experiments do not work and further improve the ML model.132 
Previously intractable problems become more likely to succeed. Using AE, we can pursue more 
challenging, high-dimensional problems.   
 
We have described the scope of a general AE system as one that encompasses multiple materials 
and processes, multimodal characterization, constraint optimization, and—distinctively—an 
iterative search via sequential decision-making for experimental design. Next, we consider 
advanced strategies for closing the autonomous research loop. 
 
4.3 Hypothesis-Driven AI 
 
AE offers an opportunity to tightly integrate the scientific method's hypothesis generation and 
testing into the iterative experimentation loop. Advanced strategies to close the loop may exploit 
the full range of AI, reasoning, decision science, optimal experimental design, and the 
convergence of the scientific method with research robots. While autonomous systems promise 
to more reliably perform optimal experiments towards an objective, some have expressed 
concern that robots will ignore results that are outside the objective but are nonetheless 
interesting and that they will miss serendipitous and synergistic unanticipated results that a 
human would naturally recognize.133 "In the fields of observation chance favors only the 
prepared mind," said Louis Pasteur.134 How can we imbue AE with curiosity, creativity and 
insight? In the future, we may be able to incorporate serendipity-awareness into autonomous 
research algorithms.81 
 
Iterative experimentation can be used to explicitly test physics-based models, which are 
effectively scientific hypotheses.135 Thus, it is possible to confirm or negate hypotheses inline, 
leading to a hypothesis-driven search. Another goal of a campaign could be to search over 
multiple hypothesized models, known in the AI community as model selection, where the 
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models would be potentially operative physical and chemical models, enabling physics-informed 
sequential decision-making. This approach is particularly appealing in that these models 
incorporate physics-based phenomena, e.g., Arrhenius behavior, into their knowledge 
representations rather than being naïve or purely statistical representations.104 King et al.36 built 
one of the earliest robot scientists called "ADAM," which produced yeast enzymes by generating 
hypotheses of biological synthesis routes that it evaluated in a closed loop.136 Similar to the 
symbolic regression work of Schmidt and Lipson,137 we envisage AE campaigns where the 
objective is to select and parameterize from a broad range of materials phenomena (in place of 
mathematical symbols) using iterative experimental search strategies that are designed to regress 
quickly to the operative physics. AE output as physical models is clearly superior to output as 
naïve or black-box statistical models—which, while they may be predictive, are scientifically 
uninformative. Additionally, while statistical techniques, such as ML, are appropriate for 
interpolation, they do not excel at extrapolation, which is where hypothesis-driven research has 
the advantage. And so, we feel this broader approach to hypothesis-driven, physics-based models 
can capture unanticipated results and ultimately be more comprehensive than strictly human-
supplied hypotheses. 
 
Hypothesis-driven exploration enables extrapolation to unexplored and unanticipated 
compositions, properties and phenomena, promising to revolutionize research by providing 
expert-level analyses and super-human capabilities with respect to speed and the complexity of 
the research problems. Such hypothesis-driven exploration is a ripe opportunity for investment in 
initiatives that integrate the AI and materials communities, establishing mutual challenge 
problems and workforce development programs that bridge the two communities.  
 
4.4 Bringing the AI and Materials Communities Together 
 
The distinguishing component of closed-loop AE systems from merely automated 
experimentation are the sequential, iterative decisions made by an AI/ML planner. The choice of 
planning approach is currently the subject of intense exploration, with established approaches 
(such as statistical experimental design, BO, and RL) in use. The exploration of advanced AI/ML 
methods is also an active area of research.20, 138-140 Notably, AE systems offer a unique 
opportunity to the AI community as platforms for the development and testing of their models 
and algorithms. The value proposition of AE to the AI community is the iterative nature of the 
platform over unknown search spaces, that nonetheless have a ground truth in materials 
phenomena because they originate from fundamental chemistry and physics. There is no direct 
mechanistic analogue in social media response or static voluminous databases, where advanced 
AI methods are often applied. 
 
A key challenge at the intersection of materials and AI research is the integration of ML with AI 
reasoning in the context of scientific knowledge, e.g., in data interpretation tasks that humans 
tackle with a phenomenological approach. AI reasoning comprises the ability to infer new facts 
via the consideration of various information sources, making it complementary to statistical ML 
and critical to the emulation of human scientific exploration in automated systems. The broad AI 
area of knowledge representation and reasoning encompasses various sub-areas, such as search, 
logic and probabilistic reasoning, knowledge representation, planning, and sequential decision-
making. As such, coupled AI-reasoning/ML is a pillar of the so-called third wave of AI,141-143 
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and the phenomenological nature of the physical sciences make it particularly well-suited for the 
development and demonstration of AI reasoning systems. AI reasoning will enable search, 
reasoning, and inference over hypothesis space rather than over raw experimental parameter 
space, elevating autonomous systems from the current emphasis on black-box statistical models 
to a future emphasis on generation and validation of scientific hypotheses.  
 
SARA (Scientific Autonomous Reasoning Agent) is an AE system under development through a 
multidisciplinary initiative led by Cornell University.144 It will use combinatorial samples with 
laser spike annealing to generate time, temperature, and transformation (TTT) diagrams for novel 
functional oxides. SARA uses AL strategies with the distinguishing feature that complex 
reasoning is required to guide experiment selection. For example, one operational mode for 
SARA is the identification of all unique synthesis routes for a given structure. This requires AI 
algorithms that are deeply aware of the structure of phase diagrams, non-equilibrium processes, 
properties of all known phases, and how to recognize new phases, among other issues. Realizing 
this breadth of expertise in an AI system requires learning-and-reasoning-based algorithms well 
beyond the purview of ML algorithms demonstrated in materials research to date. The need for 
revolutionary materials-aware AI combined with the substantial automation complexity of the 
composition–processing–structure instrumentation makes the SARA project emblematic of the 
grand challenges in autonomous materials science.  
 
Materials research is clearly benefiting from AI, while the AI community sees AE as a platform 
to rapidly develop their approaches in what are effectively AL robots. Moreover, unlike social 
networks, which occupy a significant fraction of AI research and are less subject to controlled 
scientific experimentation, AE systems can be iteratively probed and critically have physical and 
chemical phenomena as ground truth. Indeed, an opportunity exists for the autonomous materials 
and AI communities to pursue the Nobel–Turing Challenge set out by futurist Hiroaki Kitano.145  
 
5. CHALLENGES AND INVESTMENTS 
 
In order to fully benefit from AE, the community must overcome significant challenges by 
investing in key areas. Fundamental research funding typically focuses on addressing specific 
foundational questions. However, investments in AE will establish an infrastructure that will 
broadly enable faster research towards many scientific questions as well as industry-relevant 
results. Here we summarize challenges and needed investments in experimental hardware, data, 
software, and workforce development. 
 
5.1 Investments in Experimental Hardware 
 
Designing an automated system to increase the speed, agility, and reproducibility of experiments 
is a challenge when using existing commercial, off-the-shelf equipment, which are primarily 
designed for human use and not for robotic or automated sample handling. Although it is 
possible to design mobile robotic systems that can work in existing laboratories,80 this is not an 
ideal long-term solution compared to standardized sample exchange interfaces, which will 
reduce complexity and design or robot-path planning time. The redesign of microscopes, 
synchrotron beamlines, and other sophisticated instrumentation to be compatible with robotic 
sample handling—akin to the multi-plate-handling robots in the bio-community—is an essential 
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area needing investment. It will also be necessary to integrate in-situ/inline and real-time 
metrologies with automated data processing pipelines for various material data formats.80 For 
example, in-situ microscopes could generate a massive amount of image frames at a 
microsecond frame rate,146 and inline image analysis carried out as fast as the frame rate is 
crucial for accelerating multistage experimental campaigns.147 
 
Innovative new technologies for on-demand sample fabrication and in-situ characterization are 
also needed to translate these early wins to the full spectrum of materials science applications. 
Many material properties and desired functionalities are emergent from multiple phenomena. In 
thermoelectrics, the interplay of electronic, magnetic, and vibrational effects over length scales 
from the atomic to mesoscopic, leads to the desired property. Full characterization of these 
effects requires local transport, optical, electronic, and scanning probe measurements. Such in-
situ characterization generates multimodal data sets that may span many dimensions of spatial, 
temporal, and spectral information. This improves the rate and degree of convergence towards 
campaign goals. However, it is not generally tractable to measure every spot of a heterogeneous 
sample with every tool, particularly when destructive characterization techniques are necessary. 
Optimizing the information obtained by multiple techniques requires a judicious subsampling of 
this measurement space to uncover the relevant descriptors.148  
 
Thus for hardware, we encourage non-proprietary interfaces to enable facile sample exchange 
across multiple commercial tools for synthesis and characterization.  
 
5.2 Investments in Data Management and Sharing 
 
By their very nature, AE systems will generate much larger data sets than current laboratory 
practice, and this data is inherently machine-readable. This creates an opportunity to encourage 
the organized collection, sharing, and reuse of data at much larger scales than at present. Such 
accumulated and well-curated databases resulting from many experiments can be reused by a 
distributed network of AE systems. This in turn provides a dataset from which prior knowledge 
of related scientific domains92, 149, 150 can be extracted and then used to supplement RL151 and 
TL,126, 152, 153 algorithms. 
 
Such data repositories will only be successful if they contain comprehensive experimental data 
and metadata. More attention must be paid to the collection of data from failed experiments132 
and to the automated labeling of data as they are collected. These needs have been highlighted in 
the MGI12 and other efforts, and they are captured in the FAIR data principles of findability, 
accessibility, interoperability, and reusability.154 Newly developed AE systems present a unique 
opportunity to satisfy FAIR principles at the point of data generation, rather than at the time of 
publication. The distinction for AE is that research robots can immediately probe the system and 
generate new responses with immediate feedback in the form of materials experiments, which is 
not possible using static databases. This provides new opportunities for identifying and rectifying 
data anomalies. 
 
We encourage increased investment into open-source/open-standards data file formats and 
application programming interfaces (APIs), and discourage proprietary software and data 
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formats for experimental hardware. Investments will be needed for the large-scale structured 
repositories of both data (e.g., Materials Data Facility,155 Materials Project,11 PRISMS156) and 
trained AI/ML models (e.g., DLHub157)—designed for use by machines and people—as well as 
the automated tools for constructing and curating these databases.11 Additionally, efforts to 
develop uniform metadata descriptions, such as tracking material sources and workflow 
methodologies will be needed.  
 
5.3 Investments in Software Infrastructure 
 
Irrespective of whether a system is fully automated, the algorithms used to direct experimental 
decision-making need to be both robust and flexible enough to be used on a variety of different 
experimental platforms. Investment is needed in the software infrastructure for AE. ChemOS,158 
ESCALATE,89 LabMate.ML,159 MAOS,160 BlueSky,161 and ARES™ OS31 are examples of such 
efforts in progress. However, the broader range of materials, modeling software, and 
experimental hardware will require further investment into software. Commercial hardware often 
uses software and data formats that are proprietary and difficult to access or modify for 
incorporation into AE systems. To build automated and AE systems that can incorporate multiple 
commercial systems for synthesis and characterization, more open-source software, data 
standards, and APIs are needed. 
 
5.4 Challenges of Decision Algorithms in Novel Environments 
 
In addition to information-theoretic considerations, physical experimental campaigns often have 
real-life operational considerations or constraints (e.g., time, cost, available inventories) that may 
need to be incorporated into the decision algorithm. Decisions could also include a "cost–
benefit" analysis that utilizes multiple information sources.112, 162 These information sources 
could include a mix of experiments that exploit various characterization techniques and in-silico 
simulations of multiple levels of fidelity. Experimental decisions that are most valuable in an 
information-theoretic sense may not be so easy to execute in practice, and an AE system should 
be able to capture such practical constraints in its decision-making. A variety of similar, 
established fields, such as decision theory, optimal design, AL, and RL, provide various methods 
and algorithms for striking a balance between exploration, exploitation, and operational 
constraints.  
 
Advanced materials development frequently involves expensive methods and instrumentation or 
limited-access, highly competitive facilities (e.g., synchrotron X-ray or neutron sources), making 
the ability to reliably select the right experiment especially impactful. Often-used electron and 
ion microscopy methods are time-consuming and costly; molecular beam epitaxy and CVD can 
yield extraordinary control over synthesis at the atomic scale, but they also require expensive 
instrumentation. New algorithms should be developed for efficient exploration of high-
dimensional parameter space in a time-constrained environment, thus reducing the number of 
required experiments. In the CAMEO system of Kusne et al.,20 phase maps of composition 
spreads were identified using synchrotron X-ray diffraction, generating a combinatorial library 
with an effectively infinite number of compositions to characterize. By combining graph 
segmentation techniques, BO methods, and physical constraints in closed-loop iteration, they 
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were able to demonstrate maximal knowledge with minimal experiments and obtain an accurate 
phase map of the material system. Exploiting the phase map autonomously, they discovered an 
optimal phase-change memory material using only one-tenth the number of measurements 
required by the standard grid-based approach. The new material also outperforms the current 
industry standard, underscoring the effectiveness of implementing AE on a combinatorial 
platform. 
 
5.5 Bringing Together Industry, Academia, and Government – The Challenges and 
Investments 
 
Beyond academic research, many materials and chemical corporations (such as BASF, Bayer 
AG, Merck Group, and Dow) have internal HT/Combi units within their technology innovation 
divisions. These units actively explore applications of AI tools in research and are directly 
benefitting from the network of AE labs in academia through licensing the technology, 
subcontracting research-and-development projects to academic teams, and also involving these 
teams in joint development processes. There is also an ongoing effort in knowledge transfer from 
academia to industry, where the research teams directly commercialize technologies of AE 
materials discovery. Existing examples include ML tools for materials data analysis (Citrine 
Informatics), a closed-loop discovery platform for molecular materials that combines AI control 
with robotic synthesis and characterization (Kebotix), software for upgrading existing HT/Combi 
robots for automation (Atinary), and automation for chemical manufacture (Snapdragon 
Chemistry).  
 
National-scale scientific user facilities (SUFs) can also play a critical role in encouraging the 
transition from small-team independent research to cooperative scientific networks. On the one 
hand, SUFs offer the highest-caliber materials science tools available, concentrated at a few 
large-scale facilities, which are coupled to high-performance computing resources and are staffed 
by technique specialists. On the other hand, these tools are typically used by single-investigator 
teams after a lengthy, competitive proposal process; data formats are diverse, and there is little—
if any—coordination between complementary experiments at different SUFs. The centralized 
nature of these facilities offers an opportunity to establish common data formats, data sharing 
policies, and new access paradigms such as multi-facility proposals. The national laboratory-
scale engineering resources can be leveraged to enhance automation, develop hardware and 
software standards around which large community-scale AE programs can nucleate.  
 
We expect that forming partnerships and consortia between academic, government, and 
industrial partners will be one of the pathways for future development. However, the main 
barrier to effective partnerships between academic and industrial teams is in the ownership of the 
co-developed intellectual property. With laboratory capabilities distributed across different 
entities and open-sourced ML algorithms trained with proprietary data, the questions about 
product ownership and the contributions of involved parties will be a persistent concern.  
 
We have recommended a variety of investments to help establish a new infrastructure for AE to 
accelerate research progress. We suggest that investments that parallel equipment or capability 
modernization as a potential path forward. In the longer term, we envision AE systems linked 
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together over networks where experimental, simulation, and information processing nodes 
combine with human direction to form autonomous "collaboratories," which generate scientific 
knowledge at rates barely imaginable today (see Figure 4).163 
 
5.6 Workforce Development and Human–Robot Teaming 
 
We also see workforce development for AE systems as a critical need going forward. Our 
existing workforce does not have the skillset to do both materials and autonomy research, and 
universities are just beginning to develop curricula to address computer science and AI for 
materials research. However, to truly exploit the potential of AE, we need substantial 
programmatic investments to develop a workforce of "AI natives." They must be as comfortable 
doing closed-loop AE as we are doing conventional materials research today to enable effective 
human–robot research teaming.164 
 
5.6.1 Human–Robot Research Teaming 
 
Designing effective human–AI teaming is an emerging area in autonomy and user-experience 
research.165 Teams of humans and chess-playing computers outperform either humans alone or 
computers alone.166 In the 2005 Freestyle Chess Tournament, a team of chess masters and a 
supercomputer were defeated by a team of amateur humans and desktop computers with superior 
teaming. Nascent efforts at teaming humans with AI exist for inorganic materials,72 and such 
efforts must be accelerated.   
  
To clarify a common misconception, it should be noted that AE is not meant to remove humans 
from the research process, but to enhance their efforts. Robots excel at performing repetitive 
work with precision, so it is easy to imagine that manual labor can be done by research robots 
more quickly, more reproducibly, and more cost-effectively. Research robots can also analyze 
data in high-dimensional parameter space in ways that are beyond the capabilities of human 
researchers; they can make principled, more effective decisions towards a set of research goals 
and without human confirmation bias.30 With AE relieving human researchers of the tedious 
manual labor and high-dimensional cognitive efforts, they are freed to focus on creativity, 
insight, oversight, and high-level goal definition. AE should multiply the effort of human 
researchers in the same way that a tractor multiplies manual labor or a computer multiplies 
cognitive effort. To this end, there are on-going efforts to incorporate human expertise, 
judgement, and prior knowledge into search and decision-making algorithms.167 Future AE 
systems would greatly benefit from investments to human–robot research teaming. 
 
5.6.2 Maintaining the Human Workforce 
 
The materials research community faces a persistent challenge in attracting the STEM (science, 
technology, engineering, and mathematics) workforce. Young potential scientists are often 
discouraged from materials research as they tend to start in the laboratory performing mundane, 
repetitive tasks as required in the current research workflow; they are the present-day robots. The 
associated slow pace of research and lack of immediate feedback can also be discouraging. To 
recruit and retain future researchers, and to maintain the STEM workforce, the materials 
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community must make the research process more intellectually rewarding. We believe that teams 
of human and robot researchers, far from displacing human researchers, will make research more 
attractive and fulfilling.  
  
While studies have indicated that workforce development and curricular innovation is needed at 
all levels,164 one particularly pressing need is for technicians to manage the hybrid mechanical–
electrical–chemical systems. Because of similarities to workforce needs in advanced 
manufacturing, there may be opportunities to extend the existing efforts of community 
colleges.168 As a result, there is a critical need for pedagogical material that can form the basis of 
new courses or be incorporated into existing courses.   
  
In addition to education, we must address systemic bias in recruiting young people to science. 
Lei et al. found that "Children lose confidence in their potential to ‘be scientists,’ but not in their 
capacity to ‘do science’… This pernicious decline is especially evident among underrepresented 
groups, including girls, members of some racial and ethnic minorities, and children from lower 
socioeconomic backgrounds."169 To partly rectify this problem, we need to invest in making 
scientific research more accessible to everyone, especially those at risk.  
 
Currently, only those with access to large, well-resourced laboratories are able to participate in 
materials research at the highest level. A potential outcome of AE is a rise in citizen science 
where—as in the astronomy and high-energy physics communities—contributions to the field 
can be made by enthusiasts with access to data or instruments. Today in contrast, most materials 
science research is conducted by small teams, typically consisting of a principal investigator, 
students, and post-doctoral researchers. Despite efforts to make data more widely available (e.g., 
Materials Data Facility170), most data are kept proprietary and are not used fully even by the 
team that produced them. With minimal future reuse, the potential value of the data is not 
captured. 
  
In the future, greater access to AE will provide more people the opportunity to access research 
robots and be able to do meaningful research. This may take the form of remote-access "cloud 
labs" (e.g., Emerald Cloud Lab, Strateos), which may include low-cost, relatively self-contained 
benchtop equipment analogous to 3D printers (e.g., Molecule Maker Lab, Martin Burke's 
synthesis machine),171 or open-access challenges where participants can propose new 
experiments based on collected datasets (e.g., the DARPA SD2 Perovskites Synthesis challenge, 
performed on the RAPID system).88  
 
6. CONCLUSION 
 
We hope that this paper informs, sparks interest, and potentially inspires the larger community 
for AE systems. The first research robots are already making an impact in materials research and 
development. From optimizing the growth of CNTs to accelerating the understanding of 
composition–structure–property maps, they are revolutionizing the way scientific research is 
conducted. Disrupting conventional research methods, AE has demonstrated an increased rate of 
knowledge generation by orders of magnitude and has resulted in the discovery of new 
compounds. Broad deployment of AE will require substantial investment in hardware, software, 
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and data infrastructure, as well as in education and recruitment to overcome technological and 
workforce challenges. Integrated, online AE systems need to be made cheaper and exponentially 
more accessible. Upon the demonstration of a sufficient number of AE platforms, funding of 
large-scale multi-institutional "collaboratories" will enable researchers to attack civilization’s 
most pressing topics.   
 
AE has led to the collaboration between the materials and autonomy communities. Early 
collaborators in the autonomy community used materials AE systems as a platform to develop 
and test advanced AI and autonomy approaches, where materials research problems are both 
more accessible and representative of complex real-world environments. From the autonomy 
community, the materials community has learned about algorithm development, application, and 
search strategies, and notably of the importance of human–machine integration and teaming. 
Teaming of human and robot researchers shifts mundane manual and computationally intensive 
cognitive labor to machines. This is critical in research, which, unlike advanced manufacturing, 
is dominated by labor costs.172 
 
Overcoming the challenges identified in the paper has the potential to reshape science and 
particularly the roles of human researchers, freeing us to engage with science more meaningfully 
and interactively. This will lower the barrier to entry for asking and answering scientific 
questions, generating a new breed of scientists who focus on insight and creativity and lowering 
the barrier to entry for citizen scientists. These tools will bring together artificial and human 
intelligence in efficient and effective efforts to accelerate technological and fundamental 
scientific progress transforming the world around us.  
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Figure Captions 
 
Figure 1. Schematic showing the different parts of an autonomous experimentation (AE) 
campaign. 
An AE campaign comprises an iterative research loop that is carried out autonomously towards a 
research objective. Initialize: Before the first research cycle, the AE system incorporates 
information provided by human researchers to initialize the campaign. Plan: In this first part of 
the research loop, the system considers the predefined campaign objective and the most recent 
knowledge base and plans the next experiments to be pursued. Experiment: The experiments—
which are broadly defined to encompass physical tests, modeling/simulation, or data mining—
are carried out without human intervention. Analyze: Finally, the AE system uses the output data 
of the experiments to update the knowledge base, which will then be used in the planning of the 
next loop. Conclusion: Once the campaign objective is reached or some other criteria is met, the 
system completes the AE campaign and discontinues the iterations of planning, experiment, and 
analysis. Further development of this new research process is expected to significantly increase 
the efficiency of scientific investigations and completely shift the way research is carried out. 
 
Figure 2. Schematic showing the autonomous experimentation (AE) campaign of ARES 
(Autonomous Research System), the first reported AE system.18 
Initialize: ARES was provided with a database to seed its AI planner algorithm of 140 input 
synthesis condition with resultant growth rates. Plan: ARES used the subsequent database to 
train a random-forest model, which it used to determine the reaction conditions of the first 
experimental phase, beginning the first cycle of planning, experiment, and analysis. Experiment: 
Using automated apparatus, carbon nanotubes (CNTs) were synthesized via chemical vapor 
deposition (CVD), and CNT growth was tracked via in-situ Raman spectroscopy. Left inset 
shows the experimental set-up: an array of pillars for experiments with a laser heating one pillar. 
Right inset shows the time series of spectra (waterfall plot), revealing CNT growth via the 
increasing intensity of the G peak with time. Analyze: The growth rate, ν, of each experiment 
was extracted as shown by plotting G-peak intensity versus time. Along with the results of 
previous experiments (input conditions and output results), the results were analyzed and used to 
update the random-forest knowledge representation. Plan: Considering the latest knowledge 
representation, the AI planner once again decides on new experimental input conditions to target 
growth rates using a genetic algorithm. Conclude: After hundreds of iterations, the system 
converged on the maximum growth rate, demonstrating that ARES taught itself to grow CNTs at 
controlled rates.  
 
Figure 3. Schematic showing features of autonomous experimentation (AE) campaigns of 
BEAR (Bayesian Experimental Autonomous Researcher).35, 82 
BEAR is an AE system for producing and mechanically testing additively manufactured 
components. Initialize: The diagrams define the strut thickness (t), strut radius (r), number of 
struts (n), and twist (θ) of the components. These four parameters were varied to optimize 
toughness, the campaign objective. Performance was measured during uniaxial compression in 
which the structure was compressed by displacement D. Plan: The plot is an example of how 
parameter selection in one of BEAR's AE campaigns progressed with campaign time. Planning 
involved Bayesian optimization (BO) in all AE campaigns; in a set of campaigns, finite-element 
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modeling of prior physical data was also included through transfer learning to evaluate the 
inclusion of this data into the AE campaign. Experiment: The image shows the automated 
experimental apparatus of BEAR, where components were manufactured and tested for 
toughness (U). Analyze: Plot showing how U was obtained by measuring the force (F) as D was 
varied, adding to the knowledge base. Conclude: BEAR was used to benchmark the performance 
of AE by exploring the mechanical toughness of components that were either chosen from a grid 
or by an active-learning algorithm. Plotted are the median performance of the grid-based 
exploration and the AE campaigns. Even after 60 experiments, AE (blue diamonds) 
outperformed the 1800 experiments chosen from a grid (black squares). Providing the system 
with prior information about physical response (orange triangles) led to a +30% improvement in 
median performance. 
 
Figure 4. Schematic showing the expected exponential increase of the speed of research as 
autonomous experimentation (AE) is further developed. We see a progression from 
connected AE systems to locally integrated systems, and finally to globally integrated systems. 
At a critical (or tipping) point, integration will create network effects that multiply the 
contribution of individual research nodes, greatly increasing research speed. Global integration 
and reduced cost will exponentially impact the access of researchers to AE systems. By 
leveraging network effects from data sharing and interpretation, and from the community-driven 
approach to scientific investigation, we anticipate solutions to currently intractable problems. 
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Table 
 
Table 1. Selected Autonomous Experimentation (AE) Campaigns for Materials 
Development. The breadth of materials classes, synthesis methods, and characterization methods 
reveals the versatility of AE, and the benchmarked examples show that AE has successfully 
accelerated the research process. (UV, vis, and NIR represent ultraviolet, visible, and near 
infrared, respectively.) 
  

Study (including publication 
date) 

Material 
class and 
synthesis 
method 

Characterization 
method 

Planning and 
learning 
algorithm 

Experimental 
campaigns and 
objectives 

Metric of 
acceleration 
and 
benchmarking 

(A) Autonomy in materials 
research: a case study in 
carbon nanotube growth 
(Oct 2016)18 
see Figure 2 and the ARES 
example in the text 

Chemical vapor 
deposition of 
nano-materials  

in situ Raman 
spectroscopy 

Random-forest 
model 

600 experiments 
to obtain a 
controlled 
growth rate 

none 

(B) Reconfigurable system 
for automated optimization of 
diverse chemical reactions 
(Sept 2018)77  

Flow-based 
chemistry of 
soluble 
molecules 

High-performance 
liquid 
chromatography 

Blackbox 
optimization 
software 
(SNOBFIT) 

112 experiments 
to optimize 
three chemical 
reactions  

none 

(C) A curious formulation 
robot enables the discovery of 
a novel protocell behavior  
(Jan 2020)81 

Syringe-based 
liquid handling 
of oil-in-water 
emulsions 

Optical imaging Random goal 
exploration on a 
support vector 
regressor 

1000 
experiments to 
explore 
temperature 
response of 
emulsions 

8× reduction in 
the number of 
experiments 
needed to match 
the performance 
of 1000 random 
experiments 

(D) A Bayesian experimental 
autonomous researcher for 
mechanics 
(April 2020)35 
see Figure 3 and the BEAR 
example in text 

Additive 
manufacturing 
of structural 
polymers 

Mechanical uniaxial 
compression, 
weight 
measurement, 
optical imaging 

Bayesian 
optimization 

6 repetitions of 
100 to 
maximize 
component 
toughness 

55× reduction in 
number of 
experiments 
needed to match 
1800 
experiments on 
a grid 

(E) Self-driving laboratory for 
accelerated discovery of thin-
film materials (May 2020)22 

Spin-coating of 
mixtures of 
photoactive 
chemicals 

Dark-field 
photography, UV–
vis–NIR 
spectroscopy, 4-
point probe 

Bayesian 
optimization 

2 campaigns, 
each with 35 
experiments to 
maximize hole 
mobility 

none 

(F) Artificial chemist: an 
autonomous quantum dot 
synthesis  
(June 2020)51 

Solution-phase 
quantum-dot 
halide exchange 
reaction in flow 

in situ UV–vis 
absorption and 
photoluminescence 
spectroscopy 

Neural network 
ensemble, 
Bayesian 
optimization 

X campaigns of 
25 experiments 
to obtain a 
target emission 
energy with 
maximized 
brightness 

Comparison of 
decision-making 
policies and role 
of pre-training 

(G) A mobile robotic chemist  
(July 2020)80 

Vial-based 
solution 
chemistry  

Gas 
chromatography 

Batched, 
constrained, 
Bayesian 
optimization 
algorithm 

688 experiments 
performed over 
8 days 

none 
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