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Progress and Potential

As human researchers, we are trained to reduce the number of variables to make experiments
manageable. This limits the depth and kinds of phenomena we can study. High-dimensional
iterative search empowers us to investigate richer, more complex materials phenomena.

Importantly we envisage network effects for the globally integrated autonomous experimentation
systems, where beyond the tipping point, the size and degree of interconnectedness greatly
multiply the impact of each research robot's contribution to the network.

However, to truly exploit the potential of autonomous research, we must build substantial
programmatic investments to develop a workforce comfortable working with artificial
intelligence.

Summary

Solutions to many of the world's problems depend upon materials research and development.
However, advanced materials can take decades to discover and decades more to fully deploy.
Humans and robots have begun to partner to advance science and technology orders-of-
magnitude faster than humans do today through the development and exploitation of closed-loop,
autonomous experimentation systems. This review discusses the specific challenges and
opportunities related to materials discovery and development that will emerge from this new
paradigm. Our perspective incorporates input from stakeholders in academia, industry,
government laboratories, and funding agencies. We outline the current status, barriers, and
needed investments, culminating with a vision for the path forward. We intend the article to
spark interest in this emerging research area and to motivate potential practitioners by illustrating
early successes. We also aspire to encourage a creative reimagining of the next generation of
materials science infrastructure. To this end, we frame future investments in materials science
and technology, hardware and software infrastructure, artificial intelligence and autonomy
methods, and critical workforce development for autonomous research.

Keywords: autonomy, artificial intelligence, machine learning, algorithmic development,
research methods, human—machine teaming, workforce development, materials discovery,
carbon nanotubes, additive manufacturing



1. INTRODUCTION

Materials science and technology are at the core of society, and the development of new
materials defines our history. Indeed, specific materials technologies give appellation to the
Stone, Bronze, and Iron Ages, to the Industrial Revolution (steel), and to our modern Information
Age (silicon).! Future advances in quantum computation? and synthetic biology? will similarly
arise from advancements in materials research. However, while the pace of technological
advancement is ever increasing, the rate of materials development remains slow, with decades
typically needed to transition a new material from discovery to commercial use.* > This slow
development directly impedes humanity's ability to solve existential problems such as climate
change, and to generate new technologies that fuel economic growth. Indeed, the futurist
Hiroaki Kitano has said, “Scientific discovery is at pre-industry revolution level."” The
importance of artificial intelligence (Al) in augmenting research and autonomous
experimentation (AE) is becoming recognized as a solution to these needs. Former US Secretary
of Defense M. Esper recently remarked, “...Al is advancing automated chemistry... These
advances free up time for our scientists and researchers to focus on next-generation innovation,
rather than countless tests and experiments.”®

1.1 Distinguishing AE from Previous Attempts to Increase the Rate of Research

The materials community has worked for many years to improve the rate of research progress.
High-throughput and combinatorial (HT/Combi) approaches’ allow many experiments to be
conducted simultaneously, covering large libraries in composition and processing. Integrated
computational materials engineering (ICME)!? is a longstanding effort to reduce the time and
costs needed for materials development by substituting modeling and simulation for experiments,
with the Materials Genome Initiative (MGI)* - 12 as the flagship effort. Recently, using the
power of Al and machine learning (ML) to segment materials characteristics in high-dimensional
parameter space, new potential compounds and processes have been identified using existing
databases of simulations and experiments.!3-1® This paper will make the case that, although
powerful, these methods have not and will not speed the rate of research as effectively as AE.

AE uses advanced decision algorithms to plan and execute a series of materials experiments
iteratively towards human-directed outcomes.® 727 More precisely, an iterative research loop of
planning, experiment, and analysis is carried out autonomously (see Figure 1). Once human
researchers have provided the necessary information (e.g., campaign objectives; constraints;
relevant data from previous experiments, also referred to as prior knowledge), the AE campaign
is initialized, and the AE system plans the first group of experiments. These experiments—which
are broadly defined to encompass physical tests, modeling/simulation, or data mining—are
conducted via automation without human intervention to generate experimental outputs from
supplied inputs. Next, the results are analyzed automatically and incorporated into an updated
understanding of the series of experiments in the framework of a knowledge representation.?
Finally, a decision algorithm employing Al once again plans the next experiment phase and
generates a new set of experimental inputs by considering the research campaign objectives and
the value of a particular next experiment towards furthering the objective. The system
autonomously advances through the iterations of planning, experiment, and analysis. Iterations



continue until the campaign objective is achieved or other exit criteria are met, concluding the
AE campaign. The hundreds or perhaps thousands of iterations that may comprise an
experimental campaign form the powerful core of AE systems.

In previous efforts to speed research, HT/Combi, ICME, and Al methods typically comprise only
a few iterations. While they are powerful for exploring materials parameter spaces and producing
and analyzing large amounts of data, they have low iteration rates (related to the “Analysis
Bottleneck™??), where interpreting results and planning further iterations are the rate-limiting
factor. AE systems can execute tens or hundreds of iterations without human intervention. It is
this power of an iterative, targeted experimental search that enables AE systems to achieve
exceptional speed and fidelity of research results.

1.2 Value Proposition of AE

The value proposition of AE lies in its ability to advance research progress much faster than
current methods, to make better use of human researcher time and effort, to allow for novel
unanticipated findings, and to arrive at a better understanding of a system—all while expending
fewer resources. Repetitive manual human labor can be done by research robots more efficiently
and reproducibly without human confirmation bias,*® freeing up human researchers to do more
creative work. Cognitive labor is achieved through Al, and research robots are able to analyze
data in high-dimensional parameter space beyond human capabilities. Highly autonomous
systems also facilitate experiments to be performed remotely, including inaccessible
environments such as in the Mars missions, or simply over the internet,>! making AE highly
accessible to the broad community. Thus, in general, we can view AE as an opportunity to re-
think the division of labor between human and robot researchers.

1.3 Organization of the Review

The intent of this review is to inform the broad materials community about the current status and
future directions of AE from researchers active in the area. After presenting the basics of AE and
considerations in the design of AE campaigns, we will set the background with a brief overview
of previous attempts to speed research—through HT/Combi research and by applying Al to
materials data sets non-iteratively. We will then illustrate the state of the art of AE systems for
materials, describing their achievements in discovery and development, speeding research, and
Al learning methods. Next, we will set out a future vision for how to expand and exploit AE, and
we will identify needed investments in hardware, data management, software infrastructure, and
algorithm development. Additionally, we will present the challenges and needed investments in
workforce development, while considering the broad implications of AE on society, including
the role of humans in human—robot research teams and the democratization of science.

2. WHAT IS AUTONOMOUS EXPERIMENTATION (AE)?
We first clarify our terminology, as many of the terms have multiple interpretations. We use

automation to refer to a system that can execute experimental actions without human
intervention. An example is using robotics to mix chemicals and measure results. In contrast,



autonomy involves the independence of action, integration of delegated decision-making, and
complexity of operations. An autonomous experimentation (AE) system uses automation to
execute experiments; it critically has the additional capability to act without human intervention
(but in partnership with humans) to incorporate new knowledge derived from these experiments
and to reason over and make decisions on subsequent iterations. AE systems can incorporate new
knowledge and design appropriate experiments towards the research objective using Al and ML.
While artificial intelligence (AI) and machine learning (ML) are often used interchangeably, we
will use the broader term Al to emphasize algorithms used for decision-making in experiments;
ML will refer to a subset of methods that include interpolation, classification, and statistical
inference. In summary, an AE system comprises A/ for choosing conditions of the next
experiment or simulation, automated physical and computational experiments for generating new
information, automated perception or sensing, and a knowledge representation or analysis for
incorporating the latest information into an updated understanding. In doing so, AE takes
advantage of iterative, sequential experimentation to rapidly progress towards a research
objective.

2.1 The AE Campaign of ARES

To illustrate the AE campaign, we review ARES (Autonomous Research System), which was
developed by Nikolaev et al.!® as the first AE system for materials development. ARES was able
to learn to grow carbon nanotubes (CNTs) at controlled rates over a six-dimensional processing
parameter space, ultimately delivering an improved understanding of CNT growth phenomena.

Before the first cycle of planning, experiment, and analysis (see Figure 2), a human researcher
enabled initialization of the campaign by generating a database to seed the Al planner algorithm
of 140 input synthesis conditions with resultant growth rates. A random-forest model was trained
on the database to determine the reaction conditions to be pursued, enabling the AE system to
plan the first experimental phase. Sequential experiments were performed on an automated
chemical vapor deposition (CVD) system with computer control of the input synthesis
conditions, including laser heating conditions, reactor pressure, and mixture ratios of the four
process gases. The resultant growth rates were measured using in-situ Raman spectroscopy.’? For
analysis, the input conditions and output growth rate were updated in the database after each
experiment; following each update, a random-forest model was trained on the database. Using
the most recent database and random-forest model as well as a genetic algorithm that sampled
suggested experimental input conditions, the Al planner determined the next experiment most
likely to achieve the target growth rate.

After approximately 600 autonomous iterations, ARES concluded the campaign; it had
converged on its target and was able to supply input growth conditions that led to the targeted
growth rate. Starting from no prior knowledge of nanotube growth physics, ARES taught itself to
grow CNTs at controlled rates via optimized sampling of a vast, complex, six-dimensional
parameter space that was much too large to sample using grid-based*® or open-loop DOE (design
of experiments)** methods. For example, a full factorial span of 6 parameters with 5 conditions
per parameter yields 7776 experiments, which would take over 500 years!



These results provide a direct demonstration that an AE system can control complex chemical
reactions. It is essential to point out that the Al-driven iterative search over high-dimensional
experimental parameter space is a fundamentally new way to conduct experimental research. It
represents a marked departure from the conventional reductionist approach, where reduced-order
relations are extracted from pre-determined input conditions subject to specific constraints (e.g.,
by changing one variable at a time).

2.2 Considerations in the Design of an AE Campaign
2.2.1 Campaign Objective

In the first step in developing an AE system, human researchers design the campaign objective,
which will be the goal of the iterative search process. In its most basic form, the objective can be
an accurate prediction of a result. The objective in the first ARES campaign was to closely
predict the growth rate of CNTs from prior experiments.'8 Other examples of campaign
objectives could be to maximize a property,* or to test a hypothesis.3®

2.2.2 Knowledge Representation

Considering once again the closed research loop where the AE system plans, experiments, and
analyzes (Figure 1), we enter where new results or outputs are generated from experimental
inputs or controlled conditions. From output signals or spectra (experiment), the next step in the
loop is to incorporate these results into a machine-interpretable representation of the knowledge
gained from past experiments, including the mapping from inputs to outputs (analyze). The
representation can also employ Al and further statistical analyses to identify anomalies in data,
categorize regions where experiments are prone to fail, detect fundamentally different system
responses, or build beliefs into hyperparameters to models. The difference between the results of
the experiment and the expected results from the model can be thought of as a feedback signal
for the control loop; for example, it can be used as the basis for training subsequent models. As
the campaign advances, an understanding of the response of the material from a user-defined
knowledge representation develops and improves its fidelity.

2.2.3 Decisions and the Exploration—Exploitation Dilemma

The AE system plans the next experiment based on the current understanding from the
knowledge base and the campaign objective (Figure 1). Design of the Al planner requires careful
consideration of the design policy, which is directly related to the field of optimal experimental
design.’” Throughout the execution of a campaign, the task of achieving the research objective
(such as minimizing a response) is often in tension with resolving the uncertainties inherent in
the autonomous system's knowledge. This tension, also known as the exploration—exploitation
dilemma in the AT community,'> 3% 3% fundamentally arises from the limited, imperfect, and
uncertain knowledge the autonomous system has about the physical system under study. The
system may choose to perform experiments that are more tailored to reducing overall
uncertainties and to searching for new minima of the response function (exploration), or it may
choose to perform experiments near minima predicted based on current knowledge, uncertainties



in that knowledge not withstanding (exploitation). A balance between these two modes, in which
the response function is learned globally prior to optimization, is often more efficient than the
decoupled alternative. Understanding the optimal balance between exploration and exploitation
is an active area of research and will be discussed further (see Current and Related Al
Technologies for AE).

2.2.4 Attributes of Autonomy

With respect to AE systems, autonomy has several attributes that need consideration when
designing the research loop and its Al algorithms. The interaction between the AE system and
the human researcher can be thought of as a collaboration—so called, “human—machine
teaming”—so communication is necessary. The attributes for communication include
interpretability, explainability, and interrogability (e.g., Can the human researcher understand
and exploit the results?). Trust between humans and autonomous systems is also necessary; it is
an active area of study*® and is broadly characterized by predictable behavior, the ability to
achieve intended behavior, and the expectation of two-way communication of well-defined and
achievable objectives. Another attribute of autonomy is the ability to integrate uncertainty and
contextual information into the decision-making of the planning phase. Examples of uncertainty
could be an intrinsic variability in the materials phenomena themselves, noise from the feedback
characterization tools, or the influence of exogenous parameters we do not control/measure.
Additionally, autonomy would not be possible without a depth of intelligence; while a simple
home thermostat can act on its own, its degree of intelligence is limited. Profound Al for AE can
include logical reasoning, independent hypothesis generation and testing, understanding by
analogy, ability to extrapolate concepts, and ability to design experiments to efficiently and
effectively discern complex relationships among myriad possible outcomes. A final attribute of
autonomy to be considered in loop and algorithm design, is the delegation of decision authority
(e.g., When is it important for the AE system to ask permission from the human researcher? How
do ethics and policy come into consideration?).

2.2.5 Deciding on the Decision-Maker: AE System or Human?

As human researchers delegate decision-making to an AE system, one must consider the desired
degree of its independence and responsibility to act in experimental campaigns. Delegation to an
AE system is most appropriate when an algorithm is likely to make a better decision. Examples
of cognitive labor better and more easily done by machine include scenarios where decisions
require: (1) a faster pace than that of human cognitive and/or manual ability; (ii) holistic and
detailed understanding of every preceding experiment; and (iii) interpolation/extrapolation in
multi-dimensional spaces, with requisite tracking uncertainties, variances, and covariances; and
lastly, (iv) when decisions are easy but numerous, and tedious such that they will tire or bore a
human, potentially leading to errors.

On the other hand, a completely autonomous system is inappropriate in some cases. When there
are clear issues of safety and/or ethics involved in the next experiment, it is imperative that
humans oversee Al experiments to ensure relevant safety and ethical practices are observed, e.g.,
that dangerous reactions are avoided. This is an active area of study for autonomous systems in



general,*!**?> much of which is appropriate to materials AE systems. Human decision-makers are

also better than AE systems when new insights or inferences beyond the supplied physical rules
are required to understand a phenomenon, when difficult-to-define objective functions are
involved, and in general when information beyond the context of what has been supplied to the
AE system becomes relevant.

At the campaign level, autonomous workflows work only when the subset of experimental
modules to be used are predefined, already automated, and configured to push—pull data in a
consistent manner, and when new experiments do not require frequent workflow modifications
to incorporate new analytical tools or processes. In all cases, AE campaigns are best pursued
with good teaming between human and robot researchers.

3. FOUNDATIONS AND STATE OF THE ART OF AE
3.1 Foundations of Autonomous Research and their Contributions to AE

The development of AE builds upon prior investments in technologies developed to accelerate
the research process, and AE integrates them in new ways. These technologies include: (i)
HT/Combi experimentation as a method to increase the rate at which new experiments are
performed; (ii) modeling and simulation as a substitute for slow and costly experiments; and (iii)
data science methods to extract information from simulation and experimental data. The
groundwork for these developments was laid in part by the MGIL,!? as well as by similar
initiatives worldwide.** * We will briefly review the state of each of these technology areas to
clarify their contribution to AE.

3.1.1 From HT/Combi Experimentation to AE

Traditional HT/Combi experiments expedite materials science discovery by parallelizing
materials synthesis, processing, and characterization.* A typical HT/Combi experiment starts
with the automated synthesis of a set of 10'-10% samples, in which some combination of
composition, microstructure, and processing have been systematically varied to cover the entire
parameter space of interest. This library of samples is then screened either in parallel or serially
using a set of automated measurement tools. HT/Combi experimental campaigns are typically
limited to one or a few iterations of libraries. Some representative recent examples*® 47 of this for
materials are reviewed by Green et al.*

Historically, HT experimentation (HTE) hardware development efforts have focused on
increasing the number of experimental results per unit time and decreasing the cost per
experiment. This makes sense in a non-autonomous (“open-loop”) scenario, where the desired
goal is either to obtain the desired material by a brute-force experimental search or to generate a
sufficiently large dataset that can be used post hoc to determine the relative composition—
processing—structure—property linkages and provide information on regions of optimal
performance for subsequent study. The shift towards autonomous approaches may eliminate the
need for many experiments and instead favor faster turnaround for smaller batches of targeted
experiments, as new results can be incorporated into the experiment planning. In a non-iterative



(“open loop”) system, Al can be used to intelligently guide an automated characterization tool to
subsample a pre-deposited compositional spread library, realizing a 2x to 10x decrease in the
number of samples required to extract information from the system.* Some relevant examples of
the trend towards lower-throughput, low-latency, small-batch laboratory automation include 3D-
printed carousels for performing iterative syntheses of gold nanoparticles to obtain a desired
spectrum,?* dexterous, free-roaming robot chemists that synthesize and characterize small
batches of photocatalysts,*® one-at-a-time synthesis and optoelectronic characterization of
perovskite thin films,?? and the iterative synthesis of perovskite nanocrystals.*’ Microfluidic flow
chemistry targeting nanocrystalline materials are especially amenable to this type of approach, as
the products can be observed in iteratively changed conditions.>%->2

AE takes this trend further to autonomous systems with fully closed loops, combining automated
on-demand synthesis of Al- (or Al-human-) selected samples with automated characterization
on a per sample or per few-sample basis. Unlike the traditional combinatorial experimental stack,
autonomous systems are capable of adapting sampling as needed. Replicates are made where
experimental uncertainties are high. Redundant information is minimized, and regions of optimal
material properties are densely mapped.

3.1.2 From Modeling and Simulation to AE

The use of physics-based modeling simulations in materials sciences is a mature field, and it is
now widely accepted that physics-based simulations can identify possible materials of interest.>
This is exemplified in national efforts, such as the MGI,'? as well as by large-scale
computational materials database/repositories,>* such as the Materials Project,'! AflowLib,>
Open Quantum Materials Database,’® the Harvard Clean Energy Project (for solar materials),>’
and the NOMAD repository.>® Rich toolsets have been developed for facilitating large-scale
computation and data archiving, such as ChemML?> and Atomate.®® Whereas past efforts have
focused on making predictions that are subsequently tested in the laboratory, autonomy enables
the incorporation of this information into the ongoing experimental process. That is, simulations
are used to select better experiments, and simultaneously incoming experimental data are used to
select more informative simulations, in a closed-loop process. A notable recent example of this
idea is in the use of density functional theory (DFT) alloy thermodynamics as a probabilistic
constraint in the (experimental) Bayesian optimization (BO) of perovskite alloys for structure
and stability.°!

3.1.3 From Data Science Methodologies to AE

The use of ML and Al methods for materials applications is now well established and is the topic
of recent reviews.!# 3% 6266 Their use in accelerating tasks in materials research can be broadly
classified as learning to “see” (e.g., spectral interpretation), learning to “estimate” (e.g., surrogate
models for predicting outcomes), and learning to “search” (e.g., optimization).®” Many ML
predictions of new materials and properties have been confirmed experimentally.®®  In addition
to the use of these methods on simulation and experimental data, they have been used to process
other sources of information, such as the natural language text descriptions of synthesis
conditions and properties in published papers®! and structured data showing the relationships



between known materials.” In addition to mere prediction, ML approaches can play a role in
facilitating human understanding. Relevant examples include the use of machine-learned natural
language models to provide automated summarization of material properties,’! collaborative
human-algorithm optimization approaches,’”? and explainable AI (XAI) methods.”: 7 With such
versatility, the ML and Al methods should be able to handle the challenges of the analysis and
decision phases in the AE process.

3.2 State of the Art through a Selection of AE Examples

AE is a quickly developing field with new systems coming online with increasing frequency. In
order to separate the abstract capabilities of the continually evolving robotic systems from the
discrete achievements, we will view this progress through the lens of a selection of completed
AE research campaigns (see Table 1). One overarching theme to note is that reports of fully
autonomous systems are often closely preceded by related advances in hardware automation, in
ML-driven experimental planning, or in both, but without the iterative experimentation and
learning that is characteristic of an autonomous researcher. The related non-autonomous
advances are included to better illustrate the current state of AE development. For instance, in
the previously described example of ARES (Table 1, Study A),'® the fully autonomous
implementation was preceded by the realization of an automated system to map reaction
conditions.” The more recent inclusion of scanning probe lithography to introduce
compositional variations for screening CNT catalysts highlights one path of future
development.’¢

3.2.1 AE for Solution Chemistry

One of the main focal points for the development of automation has been platforms for studying
solution-phase chemistry in a broad sense. For instance, Bédard et al. developed a plug-and-play
continuous flow AE system for performing synthesis and analysis in an automated fashion
(Table 1, study B);”” user-specified reactions were automatically optimized through the
exploration of three discrete reactions using a black-box optimization tool known as SNOBFIT."®
Building on this platform, Coley et al.”® integrated both a robotic system to dynamically
reconfigure the flow chemistry platform and a pipeline to search the literature and predict
synthetic pathways. This highly versatile system was used to discover the optimal synthetic
pathways for six sample drug substances; however, the process did not comprise experimental
feedback nor optimization of reaction conditions due to the complexity inherent to multi-step
reaction chemistry.

An alternate approach to general chemistry has recently been shown by Burger et al., wherein a
mobile robot can move around a room to access a variety of distinct stand-alone, commercial
instruments, reducing the need for instrument customization. This AE system was used to

optimize the hydrogen evolution reaction (Table 1, study G).%

3.2.2 AE for Emulsions: Algorithmic versus Random Sampling
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Following the initial demonstrations of AE systems, an important trend started in the literature
with systems explicitly testing the acceleration inherent to the confluence of automation and
algorithmic planning. Specifically, DropFactory was constructed as an automated system that
dispenses reagents to form oil-in-water droplets, which exhibit a wide range of behaviors from
locomotion to self-dividing.®! Incorporating it into an AE campaign, Grizou et al. explored the
behavioral range resulting from a four-dimensional parameter space (Table 1, study C). One
important contribution from this work was the comparison of experimental campaigns run by
random sampling versus those in which each subsequent experiment was chosen algorithmically.
When given a budget of 1000 experiments, the algorithmically driven system explored 73% of
the parameter space while random sampling only explored 22%. Perhaps more importantly, the
algorithmic sampling achieved the same performance in 128 experiments as the random
sampling achieved in 1000.

3.2.3 AE for Additive Manufacturing: Bayesian Optimization versus Grid-Based Exploration

Building on the trend of introducing new categories of experiments in an autonomous context
while benchmarking against traditional techniques, Gongora et al.*>> developed BEAR, a robotic
manufacturing and testing system to autonomously optimize the toughness of additively
manufactured components (BEAR = Bayesian Experimental Autonomous Researcher; see
Figure 3 and Table 1, Study D). As part of the initial demonstration to study components defined
by four geometric parameters, the authors included an explicit comparison between experimental
campaigns guided by BO and those guided by grid-based exploration, revealing the time- and
cost-efficiency of AE. What the grid-based system achieved in about a month, the Bayesian
system accomplished in just 12 h; after 24 h, the Bayesian method produced a higher toughness
performance than that achieved by the month-long grid-based search. They have now extended
their work to include finite-element modeling of the physical response, successfully increasing
the toughness by another 30% (see Figure 3, Conclude panel).*

3.2.4 AE for Thin Films

There has been a sustained effort by multiple research groups to develop AE to synthesize and
study functional thin films for energy applications. Once again, examples in automation and
HTE came first. In 2019, Sun et al. developed a HT process that allowed the synthesis and
characterization of 75 unique compositions of perovskite-inspired inorganic films over a span of
two months.3 Following these results, Langner et al. developed a robotic system to synthesize
polymer blends for organic photovoltaics and to study degradation in a totally automated
fashion, at ~300 samples per day. The resulting large dataset in a four-dimensional parameter
space of compositional blends was used to simulate autonomous campaigns, which suggested
that a self-driving laboratory could achieve equivalent performance in this space with 32 times
fewer experiments.®* A fully autonomous realization of functional films was published shortly
thereafter by MacLeod et al., in which they reported a robotic system moving between synthesis,
processing, and multiple characterization stations (Table 1, Study E). By guiding this system
with BO through two 35-sample experimental campaigns, they optimized the hole mobility of an
organic semiconductor film. Significantly, they also identified a region that exhibits a previously
unknown local maximum in mobility.??
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3.2.5 AE for Quantum Dots

In addition to films, quantum dots (QDs) have been the subject of advances in both automation
and, recently, autonomy. As far back as 2010, HT synthesis had been applied to map the
synthetic parameter space corresponding to QDs.®* Efforts to screen QDs continue with recent
reports on metal-halide QDs.*¢ Recently, the concept of automated QD synthesis was combined
with a ML-guided experimental planner to realize an artificial chemist for optimizing QD
synthesis (Table 1, Study F).>! This system utilized flow reactors to study a variety of decision-
making policies in a BO framework. Further, they showed that learning can be accelerated by at
least two-fold when the knowledge of one set of precursors was transferred to a different set of
precursors.

3.2.6 Developments in Characterization and Analytical Methods in Efforts towards AE

In some cases, efforts towards autonomy in the study of complex properties involve innovative
approaches to assess properties. Kirman et al. employed optical observation of crystallization to
identify novel perovskites.}” HT experiments were made possible by using instrumentation
developed for protein crystallography studies. ML was applied to both optically analyze samples
to evaluate crystallization and to build a predictive model of whether samples would crystallize.
Independently, Li et al. also combined robotic synthesis with ML-based experimental selection
for perovskite synthetic studies.®® While their analysis involved a number of manual steps
including visual inspection, their experimental selection leveraged a previously developed
experimental planner termed ESCALATE (Experiment Specification, Capture And Laboratory
Automation TEchnology).%’

Efforts towards materials AE need not originate from a synthetic viewpoint; the active guidance
of analytical systems can itself accelerate the characterization process. For instance, Noack et al.
demonstrated how a kriging-based approach could accelerate X-ray scattering experiments by
selecting the parameters of subsequent experiments.”® This approach was experimentally
validated through a set of campaigns, each with 600 experiments, on a sample composed of
nanoparticles; a reduction in error was observed when the system was guided by active learning
(AL), where the ML model’s uncertainty and expected value are used to select new data points.
This study highlights a challenge inherent to benchmarking experimental-learning-based studies;
comparisons can only be made to previously reported experiments. More recently, real-time
control over X-ray measurements was combined with synthetic capabilities by Rakita et al. to
dynamically adjust the redox state of compounds in solution.”! While this approach only featured
a single dimension of control (the presence of reducing or oxidizing agents), it is a promising
example of how synthesis and characterization can be combined in an autonomous fashion.

3.2.7 AE and Materials Discovery
While there are additional examples at various stages of exploration, we end with examples

showing the state of the art with respect to materials discovery. Combining HTE and ML, Ren et
al. discovered a new metallic glass using an iterative approach and an ML model for
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experimental selection.”” Many important materials properties are intimately tied to the structure.
As such, learning the relationship between the structure of a material and how it is formed—i.e.,
phase map—can serve as a blueprint for guiding materials discovery and optimization. Kusne et
al.2? developed CAMEO (Closed-loop, Autonomous system for Materials Exploration and
Optimization), an AE system that maximizes overall knowledge of the composition—structure
relationship. By controlling synchrotron X-ray diffraction measurements and exploiting phase-
map knowledge, they identified a novel phase-change material, which has recently attracted
attention in the electronics industry.”® Further, recent reports of AE systems using first-principles
simulation provide more evidence that this approach is amenable to the rapid discovery of novel
materials formulations.”*

3.3 Current and Related AI Technologies for AE

At this nascent stage, many of the existing AE systems offer proof-of-concept demonstrations,
opting to use previously developed ML and Al methods. While these generic methods are
attractive for their broad and perhaps immediate applicability, they do not necessarily capture
aspects of the material system, experimental apparatus, and campaign constraints. The ability to
properly model such factors ultimately impacts the effectiveness of the closed-loop search, the
agency of the AE system, and the scientific insight gained from such a campaign. To build more
robust, intelligent platforms with greater autonomy, these factors should be included. In this
section, we highlight a few examples of such problem-specific features and consider how—if at
all—current state-of-the-art methods address them.

3.3.1 Bayesian Optimization (BO) and Gaussian Process (GP) Models

Many general methodologies—such as BO,”> AL, and statistical DOE®”- *®—suggest a model of
the relevant quantities-of-interest to learn sequentially as well as the decision-making policies
that can select a set of experimental actions to execute towards a research objective, making
them useful to closed-loop techniques. For example, in BEAR (Figure 3 and Table 1,

Study D), 82 the mechanical performance of a manufactured structure is viewed as an
experimental response function over such structures and is modeled as a random function using a
Gaussian process (GP) model.”” Used with the expected improvement (EI) policy, in which
sampling is pursued at the point most likely to maximize improvement of a value, this GP model
is used to select the next structure to test.!°” GP models with the EI policy or similar modeling
and policy choices are attractive because of the modeling and computational ease. The GP model
allows the specification of the assumed structure, such as smoothness, of the response function
without being overly restrictive. However, in many materials systems, such assumptions are not
globally accurate. The archetypal example of this are critical phenomena. Critical regions of
experiment space (e.g., delineating regimes of pressure or temperature) result in responses that
change rapidly or discontinuously, which cannot be properly modeled using off-the-shelf GP
models. This is not isolated to the use of GP models in BO. Many AL and DOE methods
ultimately rely on similar types of generic models. For example, uncertainty-based methods!?!-1%3
often rely on GP or linear models to model responses.
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Another feature not immediately captured with off-the-shelf methods is the fact that experiments
often yield several types of responses. Among others, this could be in the form of various
characterizations, experiment failure, experimental time or cost, or an uncontrolled factor, such
as laboratory humidity. More complex models are needed to properly capture the relationships
between the different responses, as well as the uncertainties between these relationships. A joint
description capturing a variety of measurable responses and phenomena may not be easy to work
with. An alternative direction is to utilize an ensemble of more traditional models, each offering
simple estimates of the functions of interest; however, the lack of formalism makes inference and
predictions more difficult. For example, Powell and Reyes and co-workers!%* 195 describe
methods for using an ensemble of physics-based kinetic models to represent beliefs on
experimental responses. Other models such as ensembles of neural networks®! can directly offer
multi-variate predictions for several types of responses, in which correlations between outputs
are emergent rather than having to explicitly couple them statistically. Such networks have
already been used in experimental science and control settings.!% In a broader context,
ensemble-based methods could allow us to use a variety of different types of models in a single
decision-making framework. Here, methods such as Bayesian hypothesis testing,'°” model
averaging,'% multi-fidelity modeling,'% 110 strategies for multi-fidelity optimization with
variable dimensional hierarchical models,!** ! and multi-information source optimization
(MISO),!'? offer potential avenues for more robust modeling and decision-making.

3.3.2 Reinforcement Learning (RL)

Closely related to closed-loop techniques, such as BO, are reinforcement learning (RL)!'!® and
optimal control.!'* Markov decision processes (MDPs), a core RL framework, models generic
states of a closed-loop campaign, stochastic transitions between states upon taking experimental
actions, and rewards or costs incurred when making such transitions,!!> offering a more fluent
way of modeling many aspects of materials research. Through RL, MDPs allow an agent to
make more operational considerations. RL decisions are obtained by estimating expected future
cumulative rewards incurred when pursuing a particular branch of an experimental campaign.
Many such techniques do so by approximating a value function (i.e., a measure of how “good”
states are) or a policy function (i.e., the expected best action we can take in an attempt to
transition to high-value states). As with BO, learning such functions can be done with generic
black-box models or with more problem-specific models that use probabilistic beliefs on
response functions, experimental failure, costs, or rewards obtained.

3.3.3 Deep Learning (DL)

Regardless of the type of modeling, approximating the functions needed to execute decision-
making in RL generally requires a significant computational investment. The coupling of deep
learning (DL)!!'® with RL—so-called deep reinforcement learning (DRL),'!—to calculate DL-
model surrogates of value or policy functions may prove useful here. DL models are trained
against a large number of states/value pairs. This can be done offline, by considering a large
number of potential states a campaign can be in and assuming that a representative set of
potential states can be simulated. While this methodology proved successful in the case of

14



AlphaGo'!8 and other cases,!!? it remains to be seen whether something similar can be applied in
the context of AE.

In general, DL methods are also proving useful outside the context of predicting value or policy
functions. They work well by self-discovering latent and predictive features from raw, often
high-dimensional data.'?® Despite impressive results in many problems, the direct use of DL in
materials AE is limited due to the high data requirements needed to train models. Requiring large
sets of representative data is somewhat antithetical to the intelligent and nuanced exploration of
experiment space discussed above. There are, however, opportunities for this powerful technique
inside the closed loop when simulations and physical models are used to generate synthetic data
for offline pre-training of the DL model. DL can also be used to autonomously analyze rich
characterization data, such as microscopy or tomography data, and possibly map such data into
signals that the autonomous agent can use to close the loop. Current examples of this use in non-
autonomous settings include DL for optimal microscopy,'?! cryo-electron microscopy,'?? and
atom probe tomography.!?3

3.3.4 Transfer Learning (TL)

The lack of data is frequently encountered in autonomous research and generally prohibits the
use of larger DL outright. To mitigate this, transfer learning (TL) can be used to leverage
existing data of previously studied, related materials systems. One way to do this is with deep
transfer learning (DTL).!?* Above, we discussed pre-training a DL model in a way similar to
what would be encountered during the online execution of the closed loop. In DTL, a DL model
is trained using data obtained from a separate task, often in an unsupervised manner, resulting in
a learned latent representation of some material in general. Then, within the closed loop, the
model is trained from latent representation features to a material property of interest. Pre-training
the mapping from material to latent features reduces the data requirements needed to learn the
mapping to the property of interest. Alternatively, one can use adjacent data to build more
informative priors for BO models used in closed-loop design. This is the perspective taken by
Roy and Kaelbling!® and applied, for example, to building Bayesian priors for the tribological
properties in two-dimensional TMD (transition metal dichalcogenide) materials using adjacent
materials descriptors.'?6

4. POTENTIAL IMPACT AND FUTURE DIRECTIONS OF AE

With these early demonstrations of AE, we can begin to assess the potential impact of AE on the
research process. As demonstrated for specific research tasks (ARES,!® BEAR,* CAMEO?),
AE has enabled materials research to be orders-of-magnitude faster and has been successful in
the discovery of novel functional materials.?’ AE can also achieve better research outcomes than
current processes in terms of parameters, such as materials performance or fidelity of
characterization.?% 3

4.1 Economics of Research
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Maruyama has proposed a "Moore's Law for the Speed of Research".!?’ That is, over time, we
may see an exponential increase in the speed of research progress akin to Moore's Law for
semiconductors. Others expect an initial burst in research speed with incoming investment,
followed by slower progress as we surpass the more easily overcome barriers. For either
outcome, AE promises to disrupt the current research enterprise and investment structure. While
it is difficult to quantify the rate of research progress, it is straightforward to expect large
increases over time as experimental hardware is automated and as closed-loop iterative
algorithms are implemented and improved. Already, we have seen a 100x increase in
experimental iteration rates in ARES!® and a 10x increase in convergence rates in BEAR.*

Market economics may be helpful in understanding the implications of the exponential growth of
AE on society and the research community. A corollary to Moore’s Law for the Speed of
Research is that research becomes exponentially cheaper to execute (if fixed costs for equipment
and labor are constant). Since labor dominates the cost of research, AE can effectively multiply
the effort of an individual researcher. That is over time, hundreds of experimental iterations can
be done with the time and labor it previously took to do one, making the marginal cost of
subsequent experiments extremely low. Moreover, the progress towards the research objective is
faster because of the iterative search, and so progress (as contrasted to more experiments) is
exponentially cheaper. Faster research progress will bring materials to market faster, and it will
enable agile, efficient, and effective response, better-tailored materials solutions, and greater
scientific understanding in society. Furthermore, as research becomes more affordable, we
expect it to become more accessible, just as computing power became more accessible with low-
cost processors. Greater access to research can spur a rise in the number of people engaging in
scientific research, potentially leading to a revolution in citizen science. In Culture of Growth,'*
Joel Mokyr describes how a “Marketplace of Ideas” spurred the Industrial Revolution, increasing
the rate of production and transmission of useful knowledge. Outlining impediments to scientific
progress (e.g., barriers to entry, transaction costs), he noted that “Economists think that
knowledge tends to be chronically underproduced...” By making scientific research faster and
more accessible, AE may similarly revolutionize the way we do research.

Figure 4 depicts our projections for increasing the speed of research (per researcher), as well as
expectations for the associated access to research robots, which increases the number of
researchers. We see three phases of AE development stemming from their degree of
interconnectedness. Current AE systems are stand-alone and self-contained. In 3—5 years, we
anticipate a transition to locally connected systems, where multiple robots can perform mutually
dependent research. In 15-20 years, we expect a network of AE systems to be globally
integrated, much like the internet is today. Importantly, we envisage network effects for the
globally integrated AE systems, where beyond the tipping point, the size and degree of
interconnectedness greatly multiply the impact of each new research robot's contribution to the
network. We can thus expect solutions to currently intractable problems, as a result of leveraging
network effects from data sharing and interpretation and a community-driven approach to
scientific investigation.

4.2 Impact on Research Strategies
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AE has been successfully applied to a broad range of materials, processes, and characterization
modalities using complex campaigns. With the potential for increased complexity, we must
consider the implications of AE on the design of campaign objectives and search strategies. Al
algorithms are expected to explore experimental spaces differently from humans. That is, human
researchers design experimental campaigns to balance the likelihood of success, potential
benefits of success, and explainability of outcomes. Often this takes the form of starting from
known experiments!?’ and making modifications one variable at a time.'*° This strategy can be
effective for local optimizations, but it has difficulty in multiparameter problems and results in
biased datasets.!*! The speed and reduced human effort of AE enable a greater diversity of
experiments, and since AI/ML algorithms excel at high-dimensional search problems, they are
holistic rather than reductionist.

The further development of AE has strategic implications for the risk appetite per experiment.
Human researchers tailor experimental campaigns to balance the likelihood of success with the
potential benefit from success. That is, experiments that have a reasonable chance of success
using the available timeframe and resources will be pursued. With AE, we can perform many
more experimental iterations, and therefore increase the overall likelihood of success. The failure
of one or even several experiments does not doom a campaign. In fact, "failed experiments" can
serve to inform where experiments do not work and further improve the ML model.!3?
Previously intractable problems become more likely to succeed. Using AE, we can pursue more
challenging, high-dimensional problems.

We have described the scope of a general AE system as one that encompasses multiple materials
and processes, multimodal characterization, constraint optimization, and—distinctively—an
iterative search via sequential decision-making for experimental design. Next, we consider
advanced strategies for closing the autonomous research loop.

4.3 Hypothesis-Driven Al

AE offers an opportunity to tightly integrate the scientific method's hypothesis generation and
testing into the iterative experimentation loop. Advanced strategies to close the loop may exploit
the full range of Al reasoning, decision science, optimal experimental design, and the
convergence of the scientific method with research robots. While autonomous systems promise
to more reliably perform optimal experiments towards an objective, some have expressed
concern that robots will ignore results that are outside the objective but are nonetheless
interesting and that they will miss serendipitous and synergistic unanticipated results that a
human would naturally recognize.!* "In the fields of observation chance favors only the
prepared mind," said Louis Pasteur.!** How can we imbue AE with curiosity, creativity and
insight? In the future, we may be able to incorporate serendipity-awareness into autonomous
research algorithms.8!

Iterative experimentation can be used to explicitly test physics-based models, which are
effectively scientific hypotheses.!3® Thus, it is possible to confirm or negate hypotheses inline,
leading to a hypothesis-driven search. Another goal of a campaign could be to search over
multiple hypothesized models, known in the Al community as model selection, where the
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models would be potentially operative physical and chemical models, enabling physics-informed
sequential decision-making. This approach is particularly appealing in that these models
incorporate physics-based phenomena, e.g., Arrhenius behavior, into their knowledge
representations rather than being naive or purely statistical representations.!** King et al.*¢ built
one of the earliest robot scientists called "ADAM," which produced yeast enzymes by generating
hypotheses of biological synthesis routes that it evaluated in a closed loop.'*¢ Similar to the
symbolic regression work of Schmidt and Lipson,'3” we envisage AE campaigns where the
objective is to select and parameterize from a broad range of materials phenomena (in place of
mathematical symbols) using iterative experimental search strategies that are designed to regress
quickly to the operative physics. AE output as physical models is clearly superior to output as
naive or black-box statistical models—which, while they may be predictive, are scientifically
uninformative. Additionally, while statistical techniques, such as ML, are appropriate for
interpolation, they do not excel at extrapolation, which is where hypothesis-driven research has
the advantage. And so, we feel this broader approach to hypothesis-driven, physics-based models
can capture unanticipated results and ultimately be more comprehensive than strictly human-
supplied hypotheses.

Hypothesis-driven exploration enables extrapolation to unexplored and unanticipated
compositions, properties and phenomena, promising to revolutionize research by providing
expert-level analyses and super-human capabilities with respect to speed and the complexity of
the research problems. Such hypothesis-driven exploration is a ripe opportunity for investment in
initiatives that integrate the Al and materials communities, establishing mutual challenge
problems and workforce development programs that bridge the two communities.

4.4 Bringing the Al and Materials Communities Together

The distinguishing component of closed-loop AE systems from merely automated
experimentation are the sequential, iterative decisions made by an AI/ML planner. The choice of
planning approach is currently the subject of intense exploration, with established approaches
(such as statistical experimental design, BO, and RL) in use. The exploration of advanced AI/ML
methods is also an active area of research.® 138140 Notably, AE systems offer a unique
opportunity to the Al community as platforms for the development and testing of their models
and algorithms. The value proposition of AE to the Al community is the iterative nature of the
platform over unknown search spaces, that nonetheless have a ground truth in materials
phenomena because they originate from fundamental chemistry and physics. There is no direct
mechanistic analogue in social media response or static voluminous databases, where advanced
Al methods are often applied.

A key challenge at the intersection of materials and Al research is the integration of ML with Al
reasoning in the context of scientific knowledge, e.g., in data interpretation tasks that humans
tackle with a phenomenological approach. Al reasoning comprises the ability to infer new facts
via the consideration of various information sources, making it complementary to statistical ML
and critical to the emulation of human scientific exploration in automated systems. The broad Al
area of knowledge representation and reasoning encompasses various sub-areas, such as search,
logic and probabilistic reasoning, knowledge representation, planning, and sequential decision-
making. As such, coupled Al-reasoning/ML is a pillar of the so-called third wave of AI,#!-143
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and the phenomenological nature of the physical sciences make it particularly well-suited for the
development and demonstration of Al reasoning systems. Al reasoning will enable search,
reasoning, and inference over hypothesis space rather than over raw experimental parameter
space, elevating autonomous systems from the current emphasis on black-box statistical models
to a future emphasis on generation and validation of scientific hypotheses.

SARA (Scientific Autonomous Reasoning Agent) is an AE system under development through a
multidisciplinary initiative led by Cornell University.!#* It will use combinatorial samples with
laser spike annealing to generate time, temperature, and transformation (TTT) diagrams for novel
functional oxides. SARA uses AL strategies with the distinguishing feature that complex
reasoning is required to guide experiment selection. For example, one operational mode for
SARA is the identification of all unique synthesis routes for a given structure. This requires Al
algorithms that are deeply aware of the structure of phase diagrams, non-equilibrium processes,
properties of all known phases, and how to recognize new phases, among other issues. Realizing
this breadth of expertise in an Al system requires learning-and-reasoning-based algorithms well
beyond the purview of ML algorithms demonstrated in materials research to date. The need for
revolutionary materials-aware Al combined with the substantial automation complexity of the
composition—processing—structure instrumentation makes the SARA project emblematic of the
grand challenges in autonomous materials science.

Materials research is clearly benefiting from Al, while the Al community sees AE as a platform
to rapidly develop their approaches in what are effectively AL robots. Moreover, unlike social
networks, which occupy a significant fraction of Al research and are less subject to controlled
scientific experimentation, AE systems can be iteratively probed and critically have physical and
chemical phenomena as ground truth. Indeed, an opportunity exists for the autonomous materials
and Al communities to pursue the Nobel-Turing Challenge set out by futurist Hiroaki Kitano.!#

5. CHALLENGES AND INVESTMENTS

In order to fully benefit from AE, the community must overcome significant challenges by
investing in key areas. Fundamental research funding typically focuses on addressing specific
foundational questions. However, investments in AE will establish an infrastructure that will
broadly enable faster research towards many scientific questions as well as industry-relevant
results. Here we summarize challenges and needed investments in experimental hardware, data,
software, and workforce development.

5.1 Investments in Experimental Hardware

Designing an automated system to increase the speed, agility, and reproducibility of experiments
is a challenge when using existing commercial, off-the-shelf equipment, which are primarily
designed for human use and not for robotic or automated sample handling. Although it is
possible to design mobile robotic systems that can work in existing laboratories,® this is not an
ideal long-term solution compared to standardized sample exchange interfaces, which will
reduce complexity and design or robot-path planning time. The redesign of microscopes,
synchrotron beamlines, and other sophisticated instrumentation to be compatible with robotic
sample handling—akin to the multi-plate-handling robots in the bio-community—is an essential
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area needing investment. It will also be necessary to integrate in-situ/inline and real-time
metrologies with automated data processing pipelines for various material data formats.*° For
example, in-situ microscopes could generate a massive amount of image frames at a
microsecond frame rate,'#¢ and inline image analysis carried out as fast as the frame rate is
crucial for accelerating multistage experimental campaigns.'4’

Innovative new technologies for on-demand sample fabrication and in-sifu characterization are
also needed to translate these early wins to the full spectrum of materials science applications.
Many material properties and desired functionalities are emergent from multiple phenomena. In
thermoelectrics, the interplay of electronic, magnetic, and vibrational effects over length scales
from the atomic to mesoscopic, leads to the desired property. Full characterization of these
effects requires local transport, optical, electronic, and scanning probe measurements. Such in-
situ characterization generates multimodal data sets that may span many dimensions of spatial,
temporal, and spectral information. This improves the rate and degree of convergence towards
campaign goals. However, it is not generally tractable to measure every spot of a heterogeneous
sample with every tool, particularly when destructive characterization techniques are necessary.
Optimizing the information obtained by multiple techniques requires a judicious subsampling of
this measurement space to uncover the relevant descriptors.!'#8

Thus for hardware, we encourage non-proprietary interfaces to enable facile sample exchange
across multiple commercial tools for synthesis and characterization.

5.2 Investments in Data Management and Sharing

By their very nature, AE systems will generate much larger data sets than current laboratory
practice, and this data is inherently machine-readable. This creates an opportunity to encourage
the organized collection, sharing, and reuse of data at much larger scales than at present. Such
accumulated and well-curated databases resulting from many experiments can be reused by a
distributed network of AE systems. This in turn provides a dataset from which prior knowledge
of related scientific domains®* 4% 150 can be extracted and then used to supplement RL'*! and
TL,!26: 152,153 glgorithms.

Such data repositories will only be successful if they contain comprehensive experimental data
and metadata. More attention must be paid to the collection of data from failed experiments!3?
and to the automated labeling of data as they are collected. These needs have been highlighted in
the MGI'? and other efforts, and they are captured in the FAIR data principles of findability,
accessibility, interoperability, and reusability.!>* Newly developed AE systems present a unique
opportunity to satisfy FAIR principles at the point of data generation, rather than at the time of
publication. The distinction for AE is that research robots can immediately probe the system and
generate new responses with immediate feedback in the form of materials experiments, which is
not possible using static databases. This provides new opportunities for identifying and rectifying
data anomalies.

We encourage increased investment into open-source/open-standards data file formats and
application programming interfaces (APIs), and discourage proprietary software and data
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formats for experimental hardware. Investments will be needed for the large-scale structured
repositories of both data (e.g., Materials Data Facility,'>> Materials Project,!! PRISMS!¢) and
trained AI/ML models (e.g., DLHub!>7)—designed for use by machines and people—as well as
the automated tools for constructing and curating these databases.!! Additionally, efforts to
develop uniform metadata descriptions, such as tracking material sources and workflow
methodologies will be needed.

5.3 Investments in Software Infrastructure

Irrespective of whether a system is fully automated, the algorithms used to direct experimental
decision-making need to be both robust and flexible enough to be used on a variety of different
experimental platforms. Investment is needed in the software infrastructure for AE. ChemOS,!*
ESCALATE,? LabMate. ML,'>* MAOS,'® BlueSky,'®! and ARES™ OS3! are examples of such
efforts in progress. However, the broader range of materials, modeling software, and
experimental hardware will require further investment into software. Commercial hardware often
uses software and data formats that are proprietary and difficult to access or modify for
incorporation into AE systems. To build automated and AE systems that can incorporate multiple
commercial systems for synthesis and characterization, more open-source software, data
standards, and APIs are needed.

5.4 Challenges of Decision Algorithms in Novel Environments

In addition to information-theoretic considerations, physical experimental campaigns often have
real-life operational considerations or constraints (e.g., time, cost, available inventories) that may
need to be incorporated into the decision algorithm. Decisions could also include a "cost—
benefit" analysis that utilizes multiple information sources.!!? 2 These information sources
could include a mix of experiments that exploit various characterization techniques and in-silico
simulations of multiple levels of fidelity. Experimental decisions that are most valuable in an
information-theoretic sense may not be so easy to execute in practice, and an AE system should
be able to capture such practical constraints in its decision-making. A variety of similar,
established fields, such as decision theory, optimal design, AL, and RL, provide various methods
and algorithms for striking a balance between exploration, exploitation, and operational
constraints.

Advanced materials development frequently involves expensive methods and instrumentation or
limited-access, highly competitive facilities (e.g., synchrotron X-ray or neutron sources), making
the ability to reliably select the right experiment especially impactful. Often-used electron and
ion microscopy methods are time-consuming and costly; molecular beam epitaxy and CVD can
yield extraordinary control over synthesis at the atomic scale, but they also require expensive
instrumentation. New algorithms should be developed for efficient exploration of high-
dimensional parameter space in a time-constrained environment, thus reducing the number of
required experiments. In the CAMEO system of Kusne et al.,?’ phase maps of composition
spreads were identified using synchrotron X-ray diffraction, generating a combinatorial library
with an effectively infinite number of compositions to characterize. By combining graph
segmentation techniques, BO methods, and physical constraints in closed-loop iteration, they
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were able to demonstrate maximal knowledge with minimal experiments and obtain an accurate
phase map of the material system. Exploiting the phase map autonomously, they discovered an
optimal phase-change memory material using only one-tenth the number of measurements
required by the standard grid-based approach. The new material also outperforms the current
industry standard, underscoring the effectiveness of implementing AE on a combinatorial
platform.

5.5 Bringing Together Industry, Academia, and Government — The Challenges and
Investments

Beyond academic research, many materials and chemical corporations (such as BASF, Bayer
AG, Merck Group, and Dow) have internal HT/Combi units within their technology innovation
divisions. These units actively explore applications of Al tools in research and are directly
benefitting from the network of AE labs in academia through licensing the technology,
subcontracting research-and-development projects to academic teams, and also involving these
teams in joint development processes. There is also an ongoing effort in knowledge transfer from
academia to industry, where the research teams directly commercialize technologies of AE
materials discovery. Existing examples include ML tools for materials data analysis (Citrine
Informatics), a closed-loop discovery platform for molecular materials that combines Al control
with robotic synthesis and characterization (Kebotix), software for upgrading existing HT/Combi
robots for automation (Atinary), and automation for chemical manufacture (Snapdragon
Chemistry).

National-scale scientific user facilities (SUFs) can also play a critical role in encouraging the
transition from small-team independent research to cooperative scientific networks. On the one
hand, SUFs offer the highest-caliber materials science tools available, concentrated at a few
large-scale facilities, which are coupled to high-performance computing resources and are staffed
by technique specialists. On the other hand, these tools are typically used by single-investigator
teams after a lengthy, competitive proposal process; data formats are diverse, and there is little—
if any—coordination between complementary experiments at different SUFs. The centralized
nature of these facilities offers an opportunity to establish common data formats, data sharing
policies, and new access paradigms such as multi-facility proposals. The national laboratory-
scale engineering resources can be leveraged to enhance automation, develop hardware and
software standards around which large community-scale AE programs can nucleate.

We expect that forming partnerships and consortia between academic, government, and
industrial partners will be one of the pathways for future development. However, the main
barrier to effective partnerships between academic and industrial teams is in the ownership of the
co-developed intellectual property. With laboratory capabilities distributed across different
entities and open-sourced ML algorithms trained with proprietary data, the questions about
product ownership and the contributions of involved parties will be a persistent concern.

We have recommended a variety of investments to help establish a new infrastructure for AE to

accelerate research progress. We suggest that investments that parallel equipment or capability
modernization as a potential path forward. In the longer term, we envision AE systems linked
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together over networks where experimental, simulation, and information processing nodes
combine with human direction to form autonomous "collaboratories," which generate scientific
knowledge at rates barely imaginable today (see Figure 4).163

5.6 Workforce Development and Human—Robot Teaming

We also see workforce development for AE systems as a critical need going forward. Our
existing workforce does not have the skillset to do both materials and autonomy research, and
universities are just beginning to develop curricula to address computer science and Al for
materials research. However, to truly exploit the potential of AE, we need substantial
programmatic investments to develop a workforce of "Al natives." They must be as comfortable
doing closed-loop AE as we are doing conventional materials research today to enable effective
human-robot research teaming. !4

5.6.1 Human—Robot Research Teaming

Designing effective human—AlI teaming is an emerging area in autonomy and user-experience
research.!® Teams of humans and chess-playing computers outperform either humans alone or
computers alone.!®® In the 2005 Freestyle Chess Tournament, a team of chess masters and a
supercomputer were defeated by a team of amateur humans and desktop computers with superior
teaming. Nascent efforts at teaming humans with Al exist for inorganic materials,’? and such
efforts must be accelerated.

To clarify a common misconception, it should be noted that AE is not meant to remove humans
from the research process, but to enhance their efforts. Robots excel at performing repetitive
work with precision, so it is easy to imagine that manual labor can be done by research robots
more quickly, more reproducibly, and more cost-effectively. Research robots can also analyze
data in high-dimensional parameter space in ways that are beyond the capabilities of human
researchers; they can make principled, more effective decisions towards a set of research goals
and without human confirmation bias.*® With AE relieving human researchers of the tedious
manual labor and high-dimensional cognitive efforts, they are freed to focus on creativity,
insight, oversight, and high-level goal definition. AE should multiply the effort of human
researchers in the same way that a tractor multiplies manual labor or a computer multiplies
cognitive effort. To this end, there are on-going efforts to incorporate human expertise,
judgement, and prior knowledge into search and decision-making algorithms.!%” Future AE
systems would greatly benefit from investments to human—robot research teaming.

5.6.2 Maintaining the Human Workforce

The materials research community faces a persistent challenge in attracting the STEM (science,
technology, engineering, and mathematics) workforce. Young potential scientists are often
discouraged from materials research as they tend to start in the laboratory performing mundane,
repetitive tasks as required in the current research workflow; they are the present-day robots. The
associated slow pace of research and lack of immediate feedback can also be discouraging. To
recruit and retain future researchers, and to maintain the STEM workforce, the materials
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community must make the research process more intellectually rewarding. We believe that teams
of human and robot researchers, far from displacing human researchers, will make research more
attractive and fulfilling.

While studies have indicated that workforce development and curricular innovation is needed at
all levels,'®* one particularly pressing need is for technicians to manage the hybrid mechanical—
electrical-chemical systems. Because of similarities to workforce needs in advanced
manufacturing, there may be opportunities to extend the existing efforts of community
colleges.'®® As a result, there is a critical need for pedagogical material that can form the basis of
new courses or be incorporated into existing courses.

In addition to education, we must address systemic bias in recruiting young people to science.
Lei et al. found that "Children lose confidence in their potential to ‘be scientists,” but not in their
capacity to ‘do science’... This pernicious decline is especially evident among underrepresented
groups, including girls, members of some racial and ethnic minorities, and children from lower
socioeconomic backgrounds."!®® To partly rectify this problem, we need to invest in making
scientific research more accessible to everyone, especially those at risk.

Currently, only those with access to large, well-resourced laboratories are able to participate in
materials research at the highest level. A potential outcome of AE is a rise in citizen science
where—as in the astronomy and high-energy physics communities—contributions to the field
can be made by enthusiasts with access to data or instruments. Today in contrast, most materials
science research is conducted by small teams, typically consisting of a principal investigator,
students, and post-doctoral researchers. Despite efforts to make data more widely available (e.g.,
Materials Data Facility!’?), most data are kept proprietary and are not used fully even by the
team that produced them. With minimal future reuse, the potential value of the data is not
captured.

In the future, greater access to AE will provide more people the opportunity to access research
robots and be able to do meaningful research. This may take the form of remote-access "cloud
labs" (e.g., Emerald Cloud Lab, Strateos), which may include low-cost, relatively self-contained
benchtop equipment analogous to 3D printers (e.g., Molecule Maker Lab, Martin Burke's
synthesis machine),'”! or open-access challenges where participants can propose new
experiments based on collected datasets (e.g., the DARPA SD2 Perovskites Synthesis challenge,
performed on the RAPID system).%8

6. CONCLUSION

We hope that this paper informs, sparks interest, and potentially inspires the larger community
for AE systems. The first research robots are already making an impact in materials research and
development. From optimizing the growth of CNTs to accelerating the understanding of
composition—structure—property maps, they are revolutionizing the way scientific research is
conducted. Disrupting conventional research methods, AE has demonstrated an increased rate of
knowledge generation by orders of magnitude and has resulted in the discovery of new
compounds. Broad deployment of AE will require substantial investment in hardware, software,
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and data infrastructure, as well as in education and recruitment to overcome technological and
workforce challenges. Integrated, online AE systems need to be made cheaper and exponentially
more accessible. Upon the demonstration of a sufficient number of AE platforms, funding of
large-scale multi-institutional "collaboratories" will enable researchers to attack civilization’s
most pressing topics.

AE has led to the collaboration between the materials and autonomy communities. Early
collaborators in the autonomy community used materials AE systems as a platform to develop
and test advanced Al and autonomy approaches, where materials research problems are both
more accessible and representative of complex real-world environments. From the autonomy
community, the materials community has learned about algorithm development, application, and
search strategies, and notably of the importance of human—machine integration and teaming.
Teaming of human and robot researchers shifts mundane manual and computationally intensive
cognitive labor to machines. This is critical in research, which, unlike advanced manufacturing,
is dominated by labor costs.!”?

Overcoming the challenges identified in the paper has the potential to reshape science and
particularly the roles of human researchers, freeing us to engage with science more meaningfully
and interactively. This will lower the barrier to entry for asking and answering scientific
questions, generating a new breed of scientists who focus on insight and creativity and lowering
the barrier to entry for citizen scientists. These tools will bring together artificial and human
intelligence in efficient and effective efforts to accelerate technological and fundamental
scientific progress transforming the world around us.
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Figure Captions

Figure 1. Schematic showing the different parts of an autonomous experimentation (AE)
campaign.

An AE campaign comprises an iterative research loop that is carried out autonomously towards a
research objective. Initialize: Before the first research cycle, the AE system incorporates
information provided by human researchers to initialize the campaign. Plan: In this first part of
the research loop, the system considers the predefined campaign objective and the most recent
knowledge base and plans the next experiments to be pursued. Experiment: The experiments—
which are broadly defined to encompass physical tests, modeling/simulation, or data mining—
are carried out without human intervention. Analyze: Finally, the AE system uses the output data
of the experiments to update the knowledge base, which will then be used in the planning of the
next loop. Conclusion: Once the campaign objective is reached or some other criteria is met, the
system completes the AE campaign and discontinues the iterations of planning, experiment, and
analysis. Further development of this new research process is expected to significantly increase
the efficiency of scientific investigations and completely shift the way research is carried out.

Figure 2. Schematic showing the autonomous experimentation (AE) campaign of ARES
(Autonomous Research System), the first reported AE system.!8

Initialize: ARES was provided with a database to seed its Al planner algorithm of 140 input
synthesis condition with resultant growth rates. Plan: ARES used the subsequent database to
train a random-forest model, which it used to determine the reaction conditions of the first
experimental phase, beginning the first cycle of planning, experiment, and analysis. Experiment:
Using automated apparatus, carbon nanotubes (CNTs) were synthesized via chemical vapor
deposition (CVD), and CNT growth was tracked via in-situ Raman spectroscopy. Left inset
shows the experimental set-up: an array of pillars for experiments with a laser heating one pillar.
Right inset shows the time series of spectra (waterfall plot), revealing CNT growth via the
increasing intensity of the G peak with time. Analyze: The growth rate, v, of each experiment
was extracted as shown by plotting G-peak intensity versus time. Along with the results of
previous experiments (input conditions and output results), the results were analyzed and used to
update the random-forest knowledge representation. Plan: Considering the latest knowledge
representation, the Al planner once again decides on new experimental input conditions to target
growth rates using a genetic algorithm. Conclude: After hundreds of iterations, the system
converged on the maximum growth rate, demonstrating that ARES taught itself to grow CNTs at
controlled rates.

Figure 3. Schematic showing features of autonomous experimentation (AE) campaigns of
BEAR (Bayesian Experimental Autonomous Researcher).’> %

BEAR is an AE system for producing and mechanically testing additively manufactured
components. Initialize: The diagrams define the strut thickness (¢), strut radius (), number of
struts (n), and twist (6) of the components. These four parameters were varied to optimize
toughness, the campaign objective. Performance was measured during uniaxial compression in
which the structure was compressed by displacement D. Plan: The plot is an example of how
parameter selection in one of BEAR's AE campaigns progressed with campaign time. Planning
involved Bayesian optimization (BO) in all AE campaigns; in a set of campaigns, finite-element
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modeling of prior physical data was also included through transfer learning to evaluate the
inclusion of this data into the AE campaign. Experiment: The image shows the automated
experimental apparatus of BEAR, where components were manufactured and tested for
toughness (U). Analyze: Plot showing how U was obtained by measuring the force (£) as D was
varied, adding to the knowledge base. Conclude: BEAR was used to benchmark the performance
of AE by exploring the mechanical toughness of components that were either chosen from a grid
or by an active-learning algorithm. Plotted are the median performance of the grid-based
exploration and the AE campaigns. Even after 60 experiments, AE (blue diamonds)
outperformed the 1800 experiments chosen from a grid (black squares). Providing the system
with prior information about physical response (orange triangles) led to a +30% improvement in
median performance.

Figure 4. Schematic showing the expected exponential increase of the speed of research as
autonomous experimentation (AE) is further developed. We see a progression from
connected AE systems to locally integrated systems, and finally to globally integrated systems.
At a critical (or tipping) point, integration will create network effects that multiply the
contribution of individual research nodes, greatly increasing research speed. Global integration
and reduced cost will exponentially impact the access of researchers to AE systems. By
leveraging network effects from data sharing and interpretation, and from the community-driven
approach to scientific investigation, we anticipate solutions to currently intractable problems.
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Table

Table 1. Selected Autonomous Experimentation (AE) Campaigns for Materials
Development. The breadth of materials classes, synthesis methods, and characterization methods
reveals the versatility of AE, and the benchmarked examples show that AE has successfully
accelerated the research process. (UV, vis, and NIR represent ultraviolet, visible, and near

infrared, respectively.)

Study (including publication
date)

(A) Autonomy in materials
research: a case study in
carbon nanotube growth

(Oct 2016)'8

see Figure 2 and the ARES
example in the text

(B) Reconfigurable system
for automated optimization of
diverse chemical reactions
(Sept 2018)77

(C) A curious formulation
robot enables the discovery of
a novel protocell behavior
(Jan 2020)%!

(D) A Bayesian experimental
autonomous researcher for
mechanics

(April 2020)**

see Figure 3 and the BEAR
example in text

(E) Self-driving laboratory for
accelerated discovery of thin-
film materials (May 2020)?

(F) Artificial chemist: an
autonomous quantum dot
synthesis

(June 2020)"!

(G) A mobile robotic chemist
(July 2020)%

Material

class and
synthesis
method
Chemical vapor
deposition of
nano-materials

Flow-based
chemistry of
soluble
molecules

Syringe-based

liquid handling
of oil-in-water

emulsions

Additive
manufacturing
of structural

polymers

Spin-coating of
mixtures of
photoactive
chemicals

Solution-phase
quantum-dot
halide exchange
reaction in flow

Vial-based
solution
chemistry

Characterization
method

in situ Raman
spectroscopy

High-performance
liquid
chromatography

Optical imaging

Mechanical uniaxial
compression,
weight
measurement,
optical imaging

Dark-field
photography, UV—
vis—NIR
spectroscopy, 4-
point probe

in situ UV—vis
absorption and
photoluminescence
spectroscopy

Gas
chromatography

Planning and
learning
algorithm

Random-forest
model

Blackbox
optimization
software
(SNOBFIT)

Random goal
exploration on a
support vector
regressor

Bayesian
optimization

Bayesian
optimization

Neural network
ensemble,
Bayesian
optimization

Batched,
constrained,
Bayesian
optimization
algorithm

Experimental
campaigns and
objectives

600 experiments
to obtain a
controlled
growth rate

112 experiments
to optimize
three chemical
reactions

1000
experiments to
explore
temperature
response of
emulsions

6 repetitions of
100 to
maximize
component
toughness

2 campaigns,
each with 35
experiments to
maximize hole
mobility

X campaigns of
25 experiments
to obtain a
target emission
energy with
maximized
brightness

688 experiments
performed over
8 days

Metric of
acceleration
and
benchmarking

none

none

8% reduction in
the number of
experiments
needed to match
the performance
of 1000 random
experiments
55x reduction in
number of
experiments
needed to match
1800
experiments on
a grid

none

Comparison of
decision-making
policies and role
of pre-training

none
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Figure 3
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